用户名: 密码: 验证码:
青藏高原复杂地形雷达估测降水关键方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷达估测降水一直是一个非常复杂的问题,在雷达覆盖较好的平原地区,雷达降水估测方面的研究相对比较成功。而对地形复杂的青藏高原,雷达降水估测面临着巨大的挑战:第一,青藏高原地形复杂,常规基于地形的混合扫描方法由于树、建筑物等不在地形数据中,而造成混合扫描仰角的计算误差。第二,青藏高原海拔高,零度层低,不得不用零度层亮带及以上固态降水区域的资料估测降水。用常规的估测液态降水的Z-R关系不适合于估测青藏高原固态降水或受亮带影响的降水。第三,青藏高原雨量计非常稀少,无法用常规对雨量站密度要求较高的雨量计校准方法。
     为了解决以上这些青藏高原降水估测的难点和问题,本文利用青藏高原上的雷达、雨量计资料,通过以下三方面的研究,来提高青藏高原降水估测精度。第一,研究基于反射率气候学的混合扫描仰角计算方法,避免由于地形数据不包括树、建筑物等产生的误差;第二,在考虑雷达最低几层仰角受遮挡的情况下,利用反射率垂直廓线和亮带识别订正参数,对亮带区进行订正,减小零度层亮带对降水估测的影响;针对不同降水类型(零度层以上固态降水、零度层以下液态降水、受亮带影响区降水),提出相应的Z-R关系。第三,研究适合于雨量计稀少地区,对雨量计密度要求不高的雨量计校准方法。这对研究青藏高原云和降水在能量和水分循环中的作用,验证各种卫星遥测青藏高原云和降水的方法以及山洪泥石流等灾害性局地强降水的准确及时的预报都有重要意义。
Radar precipitation estimation is a very complicated issue, and the research on it is relatively successful in the plains with better radar coverage. However, regarding to the complex terrain of the Tibet Plateau, radar precipitation estimation faces big challenges:firstly, due to its special geographical environment, the ground clutter of the Tibet Plateau has some differences from any other parts of that in the past, so the previous ground identification algorithm is not suitable for the Tibet Plateau. Secondly, the Tibet Plateau is in complex terrain, because of trees, buildings and others are not in terrain data, the conventional terrain-based hybrid scan method will result in calculation error of the hybrid scanning elevation. Thirdly, since the Tibet Plateau has high sea level and low zero layer, then it has used the information for the bright band of the zero layer and the solid-state precipitation region over it for precipitation estimation. However, as the lowest layers of radar elevation are blocked, and bright band identification of the revised methodology (for plains with better radar coverage) of zero layers in complex terrain is not with good correction effect, the improvement in precipitation estimation is not obvious. The conventional precipitation classification of convective and stratiform clouds and their corresponding liquid precipitation of Z-R relationship are not fit for estimation of solid-state precipitation or precipitation influenced by bright band over the Tibet Plateau.
     In order to solve the difficulties and issues of precipitation estimations over the Tibet Plateau, this paper uses the radar on the Tibet Plateau, and rain gauge data to improve the precipitation estimation accuracy over the Tibet Plateau through the study of the following four sections.
     1). Propose the ground clutter identification parameters fits for the Tibet Plateau according to the ground clutter characteristics, and uses the fuzzy logic methods to identify ground clutter of the Tibet Plateau;
     2). Study the hybrid scan elevation calculation based on reflectivity climatology, so as to avoid any error produced as the terrain data does not include trees, buildings and other things;
     3). Regarding that the lowest layers of radar elevation are blockage, use the vertical profile of reflectivity bright band to make the identification of the revised parameters, and correct the bright band so as to reduce the impact of the bright band on precipitation estimation;Put forward the corresponding Z-R relationship for different types of precipitation.
     This has an important significance for research on roles of clouds and precipitation over the Tibet Plateau in the aspects of energy and water cycle, and to verify various methods of satellite remote sensing of cloud and precipitation over the Tibet Plateau as well as accurate and timely forecasts of heavy local precipitation because of debris flow and other disastrous.
引文
1) 陈渭民.卫星气象学.北京:气象出版社,2005,P398。
    2) 陈明轩,高峰.利用一种自动识别算法移除天气雷达反射率因子中的亮带.应用气象学报,2006,17(2):207-21.
    3) 杜秉玉,高志球.雷达反射率因子垂直廓线研究和多种遥感资料综合估计降水.南京气象学院学报,1998,21(4)729-736.
    4) 冯锦明,刘黎平,王致君.青藏高原地面Doppler雷达与TRMM星载雷达测云比较.高原气象,2001,20(4):345-353
    5) 冯锦明,刘黎平,王致君.青藏高原那曲地区雨季雷达回波、降水和部分热力参量的统计特征.高原气象,2002,21(4):368-374
    6)傅云飞,李宏图,自勇TRMM卫星探测青藏高原谷地的降水云结构个例分析.2007.高原气象,26(1):98-106
    7)傅云飞,刘奇,自勇.基于TRMM卫星探测的夏季青藏高原降水和潜热分析.2008,28(1):8-18.高原山地气象研究.
    8) 李柏,周玉淑,张沛源.新一代天气雷达资料在2003年江淮流域暴雨模拟中的初步应用:模拟降水和风场的对比.大气科学.2007,31(5):826-838.
    9) 李建通,杨维生,郭林.提高最优插值法测量区域降水量精度的探讨.大气科学.2000,24(2):263-270.
    10)李建通,郭林,杨洪平.雷达-雨量计联合估测降水初值场形成方法探讨.大气科学.2005,29(6):1010-1020.
    11)李建通,高守亭,郭林.基于分步校准的区域降水量估测方法研究.大气科学.2009,33(3):501-512
    12)李建通,张培昌.最优插值法用于天气雷达测定区域降水量.台湾海峡,1996,15(3):255-259.
    13)刘黎平,楚荣忠,宋新民GAME TIBET青藏高原云和降水综合观测概况及初步结果.高原气象,1999,18(3):441-450
    14)刘黎平,吴林林,杨引明.基于模糊逻辑的分步式超折射地物回波识别方法的建立和效果分析.气象学报,2007,65(2):252-260
    15)刘晓阳,毛节泰,李纪人.雷达联合雨量计估测降水模拟水库入库流量.水利学报.2002,(4):51-55.
    16)刘晓阳,杨洪平,李建通.新一代天气雷达定量降水估测集成系统.气象.2010,36(4):90-95.
    17)马耀明,姚檀栋,胡泽勇,王介民。青藏高原能力与水循环国际合作研究的进展与展望。地球科学进展,2009,24:1280-1284.
    18)钱正安,张世敏,单扶民.1979年夏季高原地区对流云的分析.青藏高原气象科学实验文集.北京:科学出版社,1984:243-257。
    19)秦宏德,周和生,刘建西.青藏高原那曲地区对流性降水回波的统计特征.青藏高原气象科学实验文集.北京:科学出版社,1884,258-268
    20)邵月红,张万昌,刘永和.BP神经网络在多普勒雷达降水量的估测中的应用.高原气象.2009,28(4):846-853.
    21)汤达章,郭洪源,项经魁.Z-I关系初步讨论.南京气象学院学报.1978,1:91-101.
    22)汤达章,张培昌.用雷达反射因子z和雨强I估算雨滴谱的方法.1984,2:211-218.
    23)肖艳姣,刘黎平.三维雷达反射率资料用于层状云和对流云的识别研究.大气科学.2007,31(4):645-654。
    24)肖艳姣,刘黎平,李中华,王红艳.雷达反射率因子数据中的亮带自动识别和抑制.高原气象,2010.29(1):197-205.
    25)徐祥德,陈联寿.青藏高原大气科学试验研究进展.应用气象学报,2006,17(6):756-772
    26)杨洪平,张沛源,程明虎.多普勒天气雷达组网拼图有效数据区域分析.应用气象学报.2009,20(1):47-55
    27)俞小鼎,姚秀平,熊廷南.新一代天气雷达原理与应用讲义.北京:中国培训中心科学技术培训部,2006,P282.
    28)俞小鼎,郑媛媛,廖玉芳.一次伴随强烈龙卷的强降水超级单体风暴研究.大气科学,2008,32(3):508-522
    29)赵坤,葛文忠,刘国庆.在雷达测雨和洪水预报中自适应卡尔曼滤波法的应用.高原气象.2005,24(6):956-965.
    30)张乐坚,程明虎,陶岚CINRAD-SA/SB零度层亮带识别方法.应用气象学报.2010,21(2):171-179。
    31)张培昌,戴铁丕,伍志芳.用变分法校准数字化天气雷达测定区域降水量基本原理和精度.大气科学.1992,16(2):248-256.
    32)张培昌,杜秉玉,戴铁丕.雷达气象学.北京:气象山版社,2001,P171。
    33)张培昌,戴铁丕,王登炎,等.最优化法求Z-I关系及其在测定降水量中的精度.气象科学,1992,12(3):333-338.
    34)张亚萍,刘均,夏文梅.雷达定量估测区域降水波束阻挡系数的计算.南京气象学院学报.2002,25(5):640-647。
    35)张亚萍,程明虎,夏文梅等.天气雷达回波运动场估测及在降水临近预报中的应用.气象学报,2007,64(5):631-646
    36)郑媛媛,俞小鼎等.一次典型超级单体风暴的多普勒天气雷达观测分析.气象学报,2004,62(3):317-328
    37)仲凌志,刘黎平,顾松山.层状云和对流云的雷达识别及在估测雨量中的应用.高原气象,2007,26(3):593-602
    38)周海光,王玉彬.2003年6月30日梅雨锋大暴雨β和γ中尺度结构的双多普勒雷达反演.气象学报,2005,63(3):301-312
    39)庄薇,刘黎平,余燕群,等.2012.雷达地物回波模糊逻辑识别法的改进及效果检验.气象学报,70(3),576-584
    40) Ahnert P. R., Krajewski W. F., Johnson E. R. Kalman filter estimation of radar-rainfall field bias. IN preprints 23th Conf. On radar, Meteor,1986. JP33-Jp37.
    41) Amatrosov, S. Y., K. A. Clark, and D. E. Kingsmill, A polarimetric radar approach to identify rain, melting-layer, and snow regions for applying corrections to vertical profiles of reflectivity. J. Appl. Meteor. Climatol.,2007,46:154-166.
    42) Andrieu, H., and J. D. Creutin. Identification of vertical profiles of radar reflectivity for hydrological applications using an inverse method. Part I:Formulation. J. Appl. Meteor., 1995,34:225-239.
    43) Atkinson, N. C., and P. K. James. Quality control of data from overlapping weather radars. 1991
    44) Atlas D., Rosenfeld D., Short D. A. The estimation of convective rainfall by area integrals. Part I:The theoretical and empirical basis. J. Geophy. Res.,1990,95, D3:2153-2160.
    45) Atlas D., Bell T. L. The relation of radar to cloud area-time integrals and implications for rain measurements from space. Mon. Wea. Rev.,1992,120:1997-2008.
    46) Atlas,D.C.W.Ulbrich,F.D.Marks,E. Amitai, and C.R.williams. Systeatic variation of drop size and radar rainfall relation. J.Geophys.Res.1999,104:155-169.
    47) Austin P M, Houze Jr R A, Analysisi of the structure of precipitation patterns in New England. J. Appl. Meteor.,1972,11:926-935.
    48) Austin, P. Relation between measured radar reflectivity and surface rainfall. Mon.Wea.Rev. 1987,115:1053-1071.
    49) Bellon, A.,G. Lee, and I. Zawadzki. Error statistics of VPR corrections in stratiform precipitation. J.Appl.Meteor.2005,44:998-1015.
    50) Borga,M.,E.N.Anagnostou, and F.Enrico. On the use of real-time radar rainfall estimates for flood prediction in mountainous basins. J.Geophys.Res.2000,105(D2):2269-2280.
    51) Brandes E. Optimizing rainfall estimates with the aid of radar. J. Appl. Meteor.,1975,14: 1339-1345.
    52) Biggerstaff M I, Listenmaa A. In Improved Scheme for Convective/Stratiform Echo Classification Using Radar Reflectivity. J. Appl. Meteorol.,2000,39:2129-2150.
    53) Byers H. R. The use of radar in determining the amount of rain falling over a small area. Trans. Am. Geophys. Union,1948,29:187-196.
    54) Campos,E.,and I. Zawadzki. Instrumental uncertainties in Z-R relation. J.Appl.Meteor.2000, 39:1088-1102.
    55) Cheng M. H., Brown R. Estimation of area-average rainfall for frontal rain using the threshold method. Quart J. Roy. Meteor. Soc.,1993,119:825-844.
    56) Cheng M. H., Qi Y. J. Frontal Rainfall-Rate Distribution and Conclusions on the Threshold Method. J. Appl. Met,2002,41:1128-1139.
    57) Chiu L. S. Rain estimation from satellite:Areal rainfall-rain area relations. Third conference on satellite meteorology and oceanography. Anaheim, AMS,1988,363-368.
    58) Churchill D D, Houze Jr R A. Development and structure of winter monsoon cloud clusters on 10 December 1978. J. Atmos. Sci.,1984,41:933-960.
    59) Ciach,G.J., Local random errors in tipping-bucket rain gauge measurements. J.Atmos.Oceanic Technol.,2003,20:752-759.
    60) Collier C. G, Larke P. R., May B. R. A weather radar correction procedure for real-time estimation of surface rainfall. Quart. J. R. Meteorol. Soc.,1983,109:589-608.
    61) Collier, C. G, COST-75 final report—A summary. Phys. Chem.Earth,25B,2000:817-822.
    62) Cornelius, R.,1994:Detecting ground clutter contamination of weather radar data with neural networks. Preprints, World Congress on Neural Networks, San Diego, CA, International Neural Network Society.
    63) Doneaud A. A., Niscov S. I., Priegnitz D. L., et al. The area-time integral as an indicator for convective rain volume. J. Climate Appl. Meteorol.,1984,23:555-561.
    64) DeMott C A, Cifelli R, Rutledge S A. An improved method for partitioning radar data into convective and stratiform components. Preprints,27th conf. on Radar Meteorology, Vail, CO, Amer. Soc.,1995,233-236.
    65) Fabry, F., C. Frush, I. Zawadzki, and A. Kilambi. On the extractionof near-surface index of refraction using radar phasemeasurements from ground targets. J. Atmos. Oceanic Technol., 14,1997:978-987.
    66) Fiore, J. V., R. K. Farnsworth, and G Huffman. Quality control of radar-rainfall data with VISSR satellite data. Preprints, Joint Sessions 23d Conf. on Radar Meteorology and Conf. on Cloud Physics, Vol. 3, Snowmass, CO, Amer. Meteor. Soc.,1986:JP15-JP18.
    67) Fulton R. A., Breidenbach J. P., Seo D., et al. The WSR-88D Rainfall Algorithm. Wea. Forecasting,1998,13:377-395.
    68) Fulton, R. A., Sensitivity of WSR-88D rainfall estimates to the rain-rate threshold and rain gauge adjustment:A flash flood case study. Wea. Forecasting.1999,14:604-624.
    69) Gabella,M.,and GPerona. Simulation of the orographic influence on weather radar using geometric-optics approach. J. Atmos. Oceanic. Technol.1998,15:1485-1494.
    70) Germann,U., and J. Joss, Mesobeta profiles to extrapolate radar precipitation measurements above the Alps to ground level. J.Appl. Meteorol.2002,41:542-557.
    71) Germann, G. Galli, M. Boscacci, and M. Bolliger. Radar precipitation measurement in a mountainous region. Quart.J.Roy.Meteor.Soc,2006,132:1669-1692.
    72) Giuli, D., M. Gherardelli, A. Freni, T. A. Seliga, and K. Aydin. Rainfall and clutter discrimination by means of dual-linear polarization radar measurements. J. Atmos. Oceanic Technol.,1991,8:777-789.
    73) Gourley, Jonathan J., David P. Jorgensen, Sergey Y. Matrosov. Evaluation of Incremental Improvements to Quantitative Precipitation Estimates in Complex Terrain. J. Hydrometeor. 2009,10(6):1507-1520.
    74) Grecu, M., and W. F. Krajewski. Detection of anomalous propagation echoes in weather radar data using neural networks. IEEE Trans. Geosci. Remote Sens.,1999,37:287-296.
    75) Guy Delrieu, Brice Boudevillain, John nicol.Bollene-2002 Experiment: Radar Quantitative Precipitation Estimation in the Cevennes-Vivarais Region. Journal of applied meteorology and climatology. France.2009,48:1422-1447.
    76) Habib, E., J. G. Ciach, and W.F.Krajewski. A method for filtering out raingauge representativeness errors from the verification distributions of radar and raingauge rainfall. Adv. Water Resour.2004,27:967-980.
    77) Hall, M. P. M., J. W. F. Goddard, and S. M. Cherry. Identification of hydrometeors and other targets by dual-polarization radar. Radio Sci.,1984,19:132-140.
    78) Heinselman, P. L., and D. M. Schultz. Intraseasonal variability of summer storms over central Arizona during 1997 and 1999. Wea. Forecasting,2006,21:559-578.
    79) Hiroshi Uyeda, Hiroyuki Yamada, Junichi Horikomi. Characteristics of Convective Clouds Observed by a Doppler Radar at Naqu on Tibetan Plateau during the GAME-Tibet IOP. Journal of the Meteorological Society of Japan.2001.79(1B):463-474
    80) Hogg, W. D. Quality control and analysis of an archive of digital radar data. Preprints,18th Conf. on Radar Meteorology, Atlanta, GA, Amer.1978
    81) Houze. Cloud Dynamics. Academic Press.1993:573.
    82) Jeffrey M. Medlin. Radar and Rain Gauge Analysis of the Extreme Rainfall during Hurricane Danny's (1997) Landfall. Monthly Weather Review.2007,135:1869-1888
    83) James W. Wilson, Edward A. Brandes. Radar Measurement of rainfall ---- A summary. Bulletin American Meteorological Society.1979,60(9):1048-1058.
    84) Joe, P., Classification of radar imagery using texture analyses. Preprints,25th Int. Conf. on Radar Meteorology, Paris, France, Amer. Meteor. Soc.1991:107-110.
    85) Johnson, G. N., P. L. Smith Jr., F. E. Nathanson, and L. W. Brooks,1975:An analysis of techniques for dealing with anomalous propagation. Preprints,16th Radar Meteorology Conf.,Houston, TX, Amer. Meteor. Soc.,374-377.
    86) Jordan,P.W.,A.W. seed, and GL.Austin. Sampling errors in radar estimates rainfall. J. Geophys. Res.2000,105(D2):2247-2257.
    87) Joss, J., and H.Wessels,1990:Ground clutter suppression for weather radar data. COST Tech. Rep.73/WD/130,6pp.
    88) Joss, J. and Lee. The application of radar-gauge comparisons to operational precipitation profile corrections. J. Appl. Meteor.,1995,34:2612-2630.
    89) Kain, J. S., S. M. Goss, and M. E. Baldwin. The melting effect as a factor in precipitation-type forecasting. Wea. Forecasting,2000,15,700-714.
    90) Kedem B., Pavlopoulos H. On the threshold method for measuring area rainfall estimation, choosing the optimal threshold level. J. Amer. Stat. Assoc.,1991,86:626-633.
    91) Kessinger, C.,S. Ellis, and J. VanAndel. NEXRAD data quality:The AP clutter mitigation scheme. Preprints,30th Int. Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc.2001:707-709.
    92) Kitchen,M.,and P.M.Jackson. Weather radar performance at long range-Simulated and observed. J.Appl.Meteor.1993,32:975-985.
    93) Kitchen, M., Towards improved radar estimates of surface precipitation at long range. Quart. J.Roy. Meteor. Soc.1997,123,145-163.
    94) Kitchen, R. Brown, and A. G. Davies Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation. Quart. J. Roy. Meteor. Soc.1994,120:1231-1254.
    95) Klingle-Wilson, D., E. Mann, and R. Boldi. An algorithm to remove anomalous propagation clutter returns from ASR-9 weather channel data using pencil beam radar data. Preprints, Sixth Conf. on Aviation Weather Systems, Dallas, TX, Amer. Meteor. Soc.1995:366-371.
    96) Knupp,K.R.,J.Walters, and M. Biggerstaff. Doppler profile and radar observations boundary layer variability during the landfall of Tropical Storm Gabrielle.J.Atmos.Sci. 2006,63:234-251.
    97) Koistinen J., Puhakka T. An Improved spatial gauge-radar adjustment technique. Proc.20th conf. on radar meteorol. AMS,1981.179-186.
    98) Krajewski W.F. Co-Kriging radar-rainfall and rain gauge data. J. Geophys. Res.,1987,92(d8): 9571-9580.
    99) Lee, R., G. Della Bruna, and J. Joss. Intensity of ground clutter and of echoes of anomalous propagation and its elimination. Preprints,27th Conf. on Radar Meteorology, Vail, CO, Amer. 1995
    100) Liao, L., R. Meneghini, and T. Iguchi. Comparison of rain rate and reflectivity factor derived from the TRMM precipitation radar and the WSR-88D over the Melbourne. J.Atmos.Oceanic Technol.2001,18:1959-1974.
    101) Liu Liping, Feng Jinming, Chu Rongzhong. The Diurnal Variation of Precipitation in Monsoon Season in the Tibetan Plateau. Advance in Atmospheric Science.2002. 19(2):365-378
    102) LIU Liping, ZHUANG Wei, ZHANG Pengfei. Convective Scale Structure and Evolution of a Squall Line Observed by C-Band Dual Doppler Radar in an Arid Region of Northwestern China. Advances in Atmospheric Sciences.2010,27(5):1099-1109.
    103)Maddox, R. A., J. Zhang, J. J. Gourley, and K. W. Howard. Weather radar coverage over contiguous United States. Wea. Forecasting,2002,17:927-934
    104) Marshall, J. S., and W. McK. Palmer. The distribution of raindrops with size. J.Meteor.1948, 131-134.
    105)Marwitz, J., and J. Toth. The Front Range blizzard of 1990. Part I:Synoptic and mesoscale structure. Mon. Wea. Rev.,1993,121:402-415
    106) Matrosov, S. Y. Assement of radar signal attenuation caused by melting hydrometeor layer. IEEE Trans. Geosci.Remote Sens.,2008,46:1039-1047.
    107)Morin, E., and M. Gabella,2007:Radar-based quantitative precipitation estimation over Mediterranean and dry climate regimes. J. Geophys. Res.,112:1-13.
    108) Moszkowicz, S., G. J. Ciach, and W. F. Krajewski,1994: Statistical detection of anomalous propagation in radar reflectivity patterns. J. Atmos. Oceanic Technol.,11,1026-1034.
    109) Mueller, E. A., and A. L. Sims,1975:Statistics of high radar reflectivity gradients. Preprints, 16th Radar Meteorology Conf., Houston, TX, Amer. Meteor. Soc.,401-103.
    110)Ninomiya K., Akeyama, T. Objective analysis of heavy rainfalls based on radar and gauge measurement. J. Meteor. Soc. Japan,1978,50:206-210.
    111)Nystuen,J.A. Relative performance of automatic rain gauges under different rainfall conditions. J.Atmos.Oceanic Technol.1999,16:1025-1043.
    112)O'Bannon, T. Using a "terrain-based" hybrid scan to improve WSR-88D precipitation estimates. Preprints,28th Int. Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc. 1997:506-507.
    113) Olivier P. Prat, Ana P. Barros. Exploring the Transient Behavior of Z-R Relationships: Implications for Radar Rainfall Estimation. American Meteorological Society.2009, 2127-2143.
    114)PAO-Liang Chang, Pin-Fang Lin, Ben Jong-Dao Jou,. An Application of Reflectivity Climatology in Constructing Radar Hybrid Scans over Complex Terrain. Journal of Atmospheric and Oceanic Technology,2009,26(7):1315-1327
    115)Pellarin, T., G Delrieu, G M. Saulnier, H. Andrieu.Hydrologic visibility of weather radars operating in mountainous regions:Case study for the Ardeche catchment (France). J. Hydrometeor.2002,3:539-555.
    116) Preprints,25th Int. Conf. on Radar Meteorology, Paris, France, Amer. Meteor. Soc.,206-209.
    117) Pratte, R. Gagnon, and R. Cornelius. Ground clutter characteristics and residue mapping. Preprints,26th Int. Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc.1993: 50-52.
    118)Riley, G. F., Jr., and P. M.Austin. Some statistics of gradientsof precipitation intensity. Preprints,17th Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc.1976: 492-497.
    119)Rosenfeld D, Wolff D B, Amitai E. The window probability matching method for rainfall measurements with radar. J. Appl. Meteor.,1994,33:682-693.
    120)Rosenfeld, D., E. Amitai, and D. B. Wolff. Classification of rain regimes by the three-dimensional properties of reflectivity fields. J. Appl. Meteor.1995,34:198-211.
    121) Seo, D. J., J. Breidenbach, R. Fulton, and D. Miller. Real-time adjustment of range-dependent biases in WSR-88D rainfall estimates due to nonuniform vertical profile of reflectivity. J. Hydrometeor.2000,1:222-240.
    122) Sirluk Chumchean. An Integrated Approach to Error Correction for Real-Time Radar-Rainfall Estimation. J. Atmos. Oceanic. Technol.2006,23:67-79
    123) Smith,C.J. The reduction of errors caused by bright bands in quantitative rainfall measurements made using radar. J.Atmos.Oceanic Technol.1986,3:129-141.
    124) Smith. Precipitation measurement and hydrology:Panel report. Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc.1990:607-618.
    125)Smith,J.A., and W.F. Krajewski. Amodeling study of rainfall rate relectivity relationship. Water Resour. Res.1993,29:2505-2514.
    126) Smyth, T. J., and A. J. Illingworth. Radar estimates of rainfall rates at the ground in bright band and non-bright band events. Quart. J. Roy. Meteor. Soc.1998:124,2417-2434.
    127)Steiner M, Houze Jr R A, Yuter S E. Climatological characterization of three -dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor.,1995,34: 1978-2007
    128) Steiner, M., and J. A. Smith. Use of Three-Dimensional Reflectivity Structure for Automated Detection and Removal of Nonprecipitating Echoes in Radar Data. Journal of Atmospheric and Oceanic Technology.2002,19:673-686.
    129) Sun X., Mein R. G, Keenan T. D., et al. Flood estimation using radar and raingauge data. Journal of Hydrology,2000,239:4-18.
    130) Steiner, M., and J. A. Smith. Use of Three-Dimensional Reflectivity Structure for Automated Detection and Removal of Nonprecipitating Echoes in Radar Data. Journal of Atmospheric and Oceanic Technology.2002,19:673-686.
    131)Tabary, P. The new French operatonal radar rainfall product. Part I:Methodology. Wea. Forecasting.2007,22:393-408.
    132)Tabary. J. Desplats, K. Do Khac, F. Eideliman, C. Guegen, and J. C. Heinrich. The new French operational radar rainfall product. Part II:Validationn Wea. Forecasting.2007, 22:409-427.
    133)Takuji Kubota, Tomoo Ushio, Shoichii Shige. Verification of High-Resolution Satellite-Based Rainfall Estimations around Japan Using a Gauge-Calibrated Ground-Radar Dataset. Journal of the Meteorological Society of Japan.87A:203-222.
    134) VanAndel, J. Radar echo classifier algorithm development using Python. Preprints,30th Int. Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc.2001:704-706.
    135)Vieux,B.,and P. Bedient. Estimation of rainfall for flood prediction from WSR-88D reflectivity:A case study 17-18 October 1994. Wea.Forecasting.1998,13:407-415.
    136)Vignal, H. Andrieu, and J. D. Creutin. Identification of vertical profiles of reflectivity from volume-scan radar data. J. Appl. Meteor.1999,38:1214-1228.
    137) Vignal, G. Galli, J. Joss, and U. Germann. Three methods to determine profiles of reflectivity from volumetric radar data to correct precipitation estimates. J. Appl. Meteor.2000,39: 1715-1726.
    138) Vignal, B., and W. F. Krajewski. Large-sample evaluation of two methods to correct range-dependent error for WSR-88D rainfall estimation. J.Hydrometeor.2001,2:490-504.
    139) Westrick, K. J., C.F. Mass, and B.A.Colle. The limitations of the WSR-88D radar network for quantitative precipitation measurement over the coastal western United States. Bull.Amer.Meteor.Soc.1999,80:2289-2298.
    140)Xiaoyong Xu, Kenneth Howard, Jian Zhang. An Automated Radar Technique for the Identification of Tropical Precipitation. J.Hydrometeor.2008,9:885-902
    141)Yudong Tian, Charista D. Peters Lidard. Real-Time Bias Reduction for Satellite-Based Precipitation Estimates. J.Hydrometeor.2010,11:1275-1285.
    142)Zhang Jian, Carrie Langston, Kenneth Howard. Brightband Identification Based on Vertical Profiles of Reflectivity from the WSR-88D. Journal of Atmospheric and Oceanic Technology. 2008,25(10):1859-1872
    143) Zhang Jian, Youcun qi A Real-Time Algorithm for the Correction of Bright band Effects in Radar-Derived QPE. Journal of Hydrometeorology.2010,1157-1171
    Zhang Jian, Kenneth Howard, Carrie Langston. National mosaic and multi-sensor QPE (NMQ) system. American Meteorological Society.2011,1321-1338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700