用户名: 密码: 验证码:
铁路钢桥全寿命过程可靠性分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥梁结构设计的基本任务是以必要的可靠性,经济性来满足结构功能要求,结构生命周期是可靠性形成的过程。结构的全寿命周期,是指一个结构从设计、制造、施工到投入使用,再到使用若干年后结构性能逐步退化的整个时间历程。结构全寿命过程不同阶段相互联系,相互影响,存在相辅相成的关系,共同形成一个有机整体。因此,以可靠性理论为基础的全寿命过程研究,对于桥梁结构的经济性、耐久性以及科学管理都有非常重要的现实意义。
     本文从铁路钢桥设计方法入手,在分析国内外极限状态设计规范的应用现状基础上,对铁路钢桥设计、制造和服役全寿命过程的可靠性进行系统研究,主要研究成果如下:
     (1)整理归纳各种计算可靠度方法,分析各种计算方法的使用范围及优缺点,推荐采用一次二阶矩法即JC法进行桥梁结构可靠指标的计算。
     (2)完成桥梁常用钢材Q345qD、Q370qE和Q420qE材料性能统计特征分析、几何参数不定性和计算模式不定性分析,得到了结构构件抗力统计参数。
     (3)得到当前铁路钢桥承载能力极限状态校准目标可靠指标值:对于主要为延性破坏的铁路钢桥而言,安全等级为一级、二级、三级的目标可靠指标分别取4.7、4.2和3.7。此时,抗力分项系数取1.35,恒载和活载的分项系数分别取1.2和1.4。
     (4)采用类比法,提出安全等级为一级、二级、三级的铁路工程结构正常使用极限状态目标可靠指标分别为2.3、2.0和1.7的建议;通过对正常使用极限状态进行分析,提出在提高列车载重量和运行速度条件下,平稳性指标和舒适度是竖向刚度的主要控制因素;钢梁发生横向共振与蛇行运动波长和车速有关。
     (5)钢梁制造工艺和人为失误影响钢梁制造质量可靠性。目前我国钢桥制造质量分布函数是服从均值为1.12,标准差为0.56的对数正态分布,均值越大,制造质量越好;并得到钢桥质量影响系数Z w。通过灵敏度分析,可知人为失误的主要原因是工期、人员素质、组织管理三个因素,进而推导出人为失误率通用计算方程;对制造过程中事故引起的风险水平进行分级,将人为失误率与其对应的损失后果结合,构造风险矩阵,并提供相应风险对策。
     (6)铁路钢桥等效应力幅可以采取Weibull分布。在基于S—N曲线和基于线弹性断裂力学两种疲劳可靠性分析方法中,增加制造质量影响系数Z w,建立制造过程影响使用可靠性的联系。
     (7)完善了桥梁结构全寿命过程动态可靠度变化规律曲线,建议采用Weibull分布函数和马尔可夫链模型实现桥梁结构全寿命过程可靠度分析。
The basic task of bridge structures design is to meet the needs of structural function with requirement reliability at the most economical way and life cycle is the establishment of reliability. The whole life cycle of structure is the time history which is from design, fabrication and construction to use and insufficiency performance of structural after some years used. The different stages of the whole structural life are the process of interaction and mutual influence and complementary and an organic whole is formed. Therefore, research on the life cycle based on reliability theory has an important practical meaning for the economical efficiency and durability and scientific management of bridge structures.
     Based on the evolution history of design methods and applied conditions of limit states design codes from home and abroad, the paper gives system study on the design reliability indexes and process of manufacturing operation and reliability of whole life cycle for steel railway bridges. The main research achievements are read as follows:
     (1) All kinds of calculated methods for the reliability index with their serviceable range, merits and drawbacks are arranged and analyzed. The first order second moment method (JC method) is found to be suitable for the bridge structures.
     (2) Material properties uncertainty of different materials like Q345qD、Q370qE and Q420qE are derived from the analysis. With the geometric uncertainty and calculation mode uncertainty, the statistical parameters for the resistance of structural member are obtained.
     (3) The target reliability indexes of ultimate limit states are proposed according to the calibration. For the steel railway bridges with ductile fracture, the target reliability index of the first-level, second-level, third-level of safety classes are separately 4.7、4.2 and 3.7. At the meantime, the partial factors of dead load and live load and resistance are suggested as 1.35、1.2 and 1.4.
     (4) Based on analogism, 2.3、2.0 and 1.7 are proposed to be the target reliability indexes of serviceability limit states for first-level, second-level, third-level of safety classes. According to analysis of serviceability limit states, vehicle ride comfort and stability are the governing factors under the condition of increasing train load and running speed. Whether the lateral resonance occurs or not has something with the wavelength of hunting motion and running speed of locomotive.
     (5) Manufacture quality reliability of steel bridge is depended on the reliability of workmanship and human’s operation. At the moment, the cumulative function of manufacturing quality in our country is lognormal distribution, of which the mean is 1.12 and the standard deviation is 0.56, the larger of the mean value, the better of the fabrication quality. Most of all, quality impact factor Z w is proposed. According to sensitivity analysis, it is found that time and disposition and management are the main impact factors on human error. As a result, the general function of human error is deduced. Meanwhile, risk levels provoked by accidents from manufacturing are classified. At last, the paper combines human error and its loss, constitutes risk matrix and supplies countermeasures in the face of risk.
     (6) The equivalent stress range of steel railway bridges can be analyzed by Weibull distribution. During the fatigue reliability analysis with S-N curve and linear elastic fracture mechanics, the relation between manufacture and serviceability is established with the quality impact factor Z w.
     (7) Lifetime variation curve of the time-dependent reliability is completed in the paper and Weibull distribution function and the Markov chain model can be used to realize the reliability analysis of life cycle for bridge structures.
引文
[1]赵国藩,贡金鑫,赵尚传.工程结构生命全过程可靠度[M].北京:中国铁道出版社,2004
    [2]董锡明.现代高速列车技术[M].北京:中国铁道出版社,2006.11
    [3]常大民,江克斌.桥梁结构可靠性分析与设计[M].北京:中国铁道出版社,1995
    [4]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].中国建筑工业出版社,2000.12
    [5] GB 50153-2008,工程结构可靠度设计统一标准[S].
    [6] GB 50068-2001,建筑结构可靠度设计统一标准[S].
    [7] GB 50216-94,铁路工程结构可靠度设计统一标准[S].
    [8] GB/T 50283-1999,公路工程结构可靠度设计统一标准[S].
    [9] AASHTO,AASHTO LRFD Bridge Design Specifications [S]. 2007
    [10]张玉玲.铁路工程结构极限状态设计通用方法及专业参数处理分析研究[R].中国铁道科学研究院, 2010
    [11]武清玺.结构可靠性分析及随机有限元法[M].北京:机械工业出版社,2005.2
    [12]贡金鑫,赵国藩.国外结构可靠性理论的应用与发展[J].土木工程学报,2005,38(2):1-7
    [13]邵卓民.国际标准《结构可靠性总原则》ISO 2394的新进展,内部资料,2008.12
    [14] ISO 2394. General principles on reliability for structures[S], 1998
    [15] BS EN 1990:2002 Eurocode——Basis of structural design [S].
    [16] GB 50158-92港口工程结构可靠度设计统一标准[S].
    [17] GB 50199-94水利水电工程结构可靠度设计统一标准[S].
    [18] JTG D60-2004,公路桥涵设计通用规范[S].
    [19] TB 10003-2005,铁路隧道设计规范[S].
    [20]李扬海,鲍卫刚等.公路桥梁结构可靠度与概率极限设计[M].北京:人民交通出版社,1997
    [21] Nowak AS, Szerszen MM, Park CH. Target safety levels for bridges[J]. Proceedings of the Seventh International Conference on Structural Safety and Reliability, Kyoto, Japan, 1997:897-903.
    [22] Andrzej S. Nowak. Risk Mitigation for Highway and Railway Bridges[R]. A Cooperative Research Project sponsored by U.S. Department of Transportation Research and Innovative Technology Administration. 2009
    [23] Ghosn M, Moses F. Redundancy in highway bridge superstructures[R]. Transportation Research Board, Washington DC: National Academy Press, 1998.
    [24] D. Diamantidis. Assessment of Existing Structures[R]. Joint Committee on Structural Safety(JCSS), 2001
    [25] Joint Committee on Structural Safety,JCSS PROBABILISTIC MODEL CODE [J/OL] http://www.jcss.ethz.ch/publications/publications_pmc.html
    [26] Anders Stenlund. Load Carrying Capacity of Bridges[D]. Licentiate thesis, 2008:I8
    [27] ISO13822:2001 Bases for design of structures—Assessment of existing structures [S], 2001
    [28] CSA S6-1990. Design of Highway Bridges: Supplement No. 1-Existing Bridge Evaluation, Canadian Standards Association, Ottawa, Ontario.
    [29]潘际炎,张玉玲,张建民.铁路钢桥及其焊接接头可靠度设计研究[A].中国土木工程学会桥梁及结构工程学会结构可靠度委员会.工程结构可靠性—全国第四届学术交流会议论文集[M].北京:地震出版社,1996
    [30]张玉玲,潘际炎.铁路临时桥梁结构强度可靠度设计研究[A].中国土木工程学会桥梁及结构工程学会结构可靠度委员会.工程结构可靠性—全国第四届学术交流会议论文集[M].北京:地震出版社,1996
    [31]李铁夫.铁路桥梁可靠度设计[M].北京:中国铁道出版社,2006
    [32] R.E.MELCHERS. Structural reliability analysis and prediction [M]. ELLIS HORWOOD LIMITED, 1987
    [33]方颖.舰船建造施工过程的影响可靠性要素浅析[J].国防技术基础,2008(1):34-38
    [34]周宏,蒋志勇.基于可靠性的潜艇建造质量评价指标体系研究[J].华东船舶工业学院学报,2004 18(6),17-20
    [35]胡山.机械产品制造过程的可靠性技术与管理[J].机械科学与计术,1995(1):45-49
    [36]宋保维,李增楠.机械制造工艺过程可靠性[J].机械制造工艺,1995(1),4-7
    [37]施国洪.质量控制与可靠性工程基础[M].北京:化学工业出版社,2005
    [38]高日昇.可靠性技术—设计、制造和使用[M].北京:国防工业出版社,1980
    [39]张俊芝.服役工程结构可靠性理论及其应用[M].北京:中国水利水电出版社,2007
    [40]卜良桃,周锡全工程结构可靠性鉴定与加固[M].北京:中国建筑工业出版社,2009.7
    [41] GB 50292-1999,民用建筑可靠性鉴定标准[S].
    [42] GB 50144-2008,工业建筑可靠性鉴定标准[S].
    [43] BRIME. Bridge Management in Europe, Deliverable D1 "Review of current procedures for assessing load carrying capacity [J/OL] http://www.trl.co.uk/brime/deliver.htm
    [44] AASHTO MBE-2008 The Manual for Bridge Evaluation[M]. AASHTO Publications Staff, 2008
    [45] Dir. u. Prof. Dr. W. Rücker, Dipl.-Ing. F. Hille, Dipl.-Ing. R. Rohrmann. F08a Guideline for the Assessment of Existing Structures[R]. SAMCO Final Report 2006
    [46] EN 1993-1-9 :Eurocode 3: Design of steel structures - Part 1-9: Fatigue [S]. 2005.
    [47]日本道路協会,鋼道路橋の艪驮O計指针[M].日本东京:丸善株式会社,2002.3
    [48]中华人民共和国铁道部.铁路桥梁检定规范[S].北京:中国铁道出版社,2004
    [49]史永吉,史志强,焊接手册第3卷第18章焊接钢桥[M].北京:机械工业出版社,2001
    [50] TB/T 2820.1-1997,铁路桥隧建筑物劣化评定标准-钢梁[S].
    [51] TB/T 2820.5-1999,铁路桥隧建筑物劣化评定标准-混凝土梁[S].
    [52] Zoltán Agócs,Jerzy Zió?ko, Josef Vi?an, Ján Brodniansky. Assessment and refurbishment of steel structures[M]. Spon Press, 2005.
    [53] Joachim Scheer. Failed Bridges Case studies,Causes and Consequences[M].Wilhelm Ernst & Sohn, 2010
    [54]杨伟军,赵传智.土木工程结构可靠度理论与设计[M].北京:人民交通出版社,1998
    [55] Ing. Josef Vi?an, CSc,Reliability of Existing Bridge Structures[Z]. University of ?ilina
    [56]张明.结构可靠度分析—方法与程序[M].北京:科学出版社,2009
    [57]张建仁,刘扬等.结构可靠度理论及其在桥梁结构中应用[M].北京:人民交通出版社,2003
    [58] Seung-Kyum Choi, Ramana V. Grandhi, Robert A. Canfield .Reliability-based Structural Design [M]. Springer-Verlag London Limited, 2007
    [59] Bak K. Low, Wilson H. Tang. Reliability analysis using object-oriented constrained optimization [J]. Structural Safety, Elsevier Science Ltd., Amsterdam, Vol. 2004,26(1):69-89
    [60] Halil Karadeniz, Ton Vrouwenvelder. SAFERELNET Task 5.1 overview reliability methods [R]. TU-Delft, The Netherlands 2003.4
    [61]小飒工作室.最新经典ANSYS及Workbench教程[M].北京:电子工业出版社,2004
    [62] H.O.MADSEN, S.KRENK, N.C.LIND. METHODS OF STRUCTURAL SAFETY [M]. Prentice-Hall,Inc., Englewood Cliffs, NJ07632,1986
    [63] Rebecca Atadero,Vistasp M. Karbhari. Development of Resistance Factors for LRFD Design for FRP Strengthening of Reinforced Concrete Bridges [R]. Department of Structural Engineering School of Engineering University of California, San Diego La Jolla, California 92093-0085,2006.5
    [64]阮欣,陈艾荣,石雪飞.桥梁工程风险评估[M].北京:人民交通出版社,2008
    [65] L.Schueremans. Assessing the Safety of Existing Structures using a Reliability Based Framework: Possibilities and Limitations [J]. Restoration of building and Monuments, 2006,12(1):1~16
    [66] Rüdiger RACKWITZ, Hermann STREICHER. OPTIMIZATION AND TARGET RELIABILITIES [R]. JCSS Workshop on Reliability Based Code Calibration,2002
    [67] FHWA. Assuring Bridge Safety and Serviceability in Europe[R] International Technology Scanning Program,2010.8
    [68] M.H. Faber, J.D. S?rensen. Reliability Based Code Calibration[R]. Joint Committee on Structural Safety Paper for the Joint Committee on Structural Safety Draft, March, 2002
    [69] D. Imhof , C.R. Middleton. Life Quality Method versus Cost-Benefit Analysis for short-spanslab bridges [J]. Applications of Statistics and Probability in Civil Engineering,2003:681-688
    [70]朱劲松,肖汝诚.确定桥梁评估目标可靠指标的生活质量分析法[J].公路交通科技,2005,22(10):60-63
    [71]刘玉彬.工程结构可靠度理论研究综述[J].吉林建筑工程学院学报,2002,19(2):41-43
    [72]田越. 500MPa级高性能钢(Q500qE)在铁路钢桥中的应用研究[D].中国铁道科学研究院,2010
    [73] GB/T714-2008,桥梁用结构钢[S].
    [74] Andrzej S.Nowak, Kevin R. Collins. Reliability of structures [M]. The McGraw-Hill Company,Inc. 2000
    [75] Ang A H S & Tang W H. Probability concepts in engineering planning and design.Vol II, Decision, risk and reliability[M]. John Wiley & Sons, New York, 1984.
    [76] ISO12491:1997 Statistical methods for quality control of building materials and components [S].
    [77]中铁大桥勘测设计院有限公司等.南京大胜关长江大桥钢梁制造规则2007
    [78] TB10212-2009,铁路钢桥制造规范[S].
    [79] GB/T 709-2006,热轧钢板和钢带的尺寸、外形、重量及允许偏差[S].
    [80]刘晓光.铁路钢桥可靠度理论研究[D].中国铁道科学研究院,1992.9
    [81]杨宜谦.铁路桥梁动载试验[Z]中国铁道科学研究院铁道建筑研究所,2009
    [82] Dipl.-Ing. Manfred Zacher. Dynamics of Railway Bridges[C] 5th ADAMS/Rail Users’Conference
    [83] Gerard James. Analysis of Traffic Load Effects on Railway Bridges[D]. Royal Institute of Technology SE-100 44 Stockholm, Sweden 2003
    [84] EN 1991-2002, Eurocode 1:Actions on structures—Part2:traffic loads on bridges [S].
    [85] TB 10621-2009,高速铁路设计规范(试行) [S].
    [86] LADISLAV FRYBA. Dynamics of Railway Bridges[M]. ACADEMIA PRAHA, 1996
    [87]曹雪琴.钢桁梁桥横向振动[M].北京:中国铁道出版社,1991
    [88]华茂崑.中国铁路提速之路[M].北京:中国铁道出版社,2004
    [89]邓铁军.结构工程施工系统可靠性理论方法及其应用的研究[D].湖南大学土木工程学院,2007
    [90]赵羽习,金伟良.正常使用极限状态下混凝土结构构件可靠度的分析方法[J].浙江大学学报,2002,36(6):674-679
    [91]高速铁路技术管理与线路设计新技术标准规范,铁路技术管理规程2007.4
    [92]郑健.中国高速铁路桥梁建设关键技术[J].中国工程科学,2008,10(7):18-27
    [93] GB5599-85.铁道车辆动力学性能评定和试验鉴定规范[S].
    [94] TB/T2360一93铁道机车动力学性能试验鉴定方法及评定标准[S].
    [95]夏禾,张楠.车辆与结构动力相互作用[M].北京:科学出版社,2005
    [96]李海超,戴运良,张博庆.铁路钢桁梁竖向刚度正常使用极限状态可靠度的研究[J].石家庄铁道学院学报1997,10(2):91-95.
    [97]文雨松,徐名枢.铁路桥梁列车竖向活载的极大值估计.长沙:铁路桥梁列车竖向活载和桥梁恒载研究报告(送审稿),长沙铁道学院桥梁室,1990
    [98]张玉玲.客货共线和货运铁路桥梁活载标准研究——铁路中-活载图式修订和分级标准研究[R].中国铁道科学研究院,2005
    [99]项海帆,吴定俊.我国铁路桥梁的现状和展望[J].铁道建筑技术2001(2):1-5
    [100] R.克拉夫.结构动力学[M].北京,高等教育出版社,1981
    [101] Krishna Verma, Karl Frank etc. Steel Bridge Fabrication Technologies in Europe and Japan[R]. 2001.3
    [102]张陕锋,郭正兴.当代日本钢桥梁制造技术介绍[J].世界桥梁2006(1):4-8
    [103]陈伯蠡.中国焊接钢桥的发展[J]. 2006年钢结构焊接国际论坛论文集:5-12
    [104]史永吉.中国钢桥的发展及制造现状[Z].中国铁道科学研究院,2006.6
    [105]史永吉,王辉,方兴,我国钢桥制造业的发展之路:钢桥制造计算机信息处理系统[C]2006钢结构焊接国际论坛论文集,北京:机械工业出版社,2006
    [106] Katarina Ljungquist. A Probabilistic Approach to Risk Analysis A comparison between undesirable indoor events and human sensitivity [D]. Lule? University of Technology,2005
    [107]党志杰.钢桥构造的疲劳开裂分析[J].桥梁建设.2009年增刊2:23-25
    [108]赵欣欣.正交异性钢桥面板疲劳设计参数和构造细节研究[D].中国铁道科学研究院,2010
    [109]宋圣扬,吕强.船舶十字接头错边量对疲劳强度影响的研究[J].华东船舶工业学院学报(自然科学版), 1993, (01)
    [110]铁路钢桥疲劳问题[R].铁路桥梁钢结构疲劳及稳定试验小组,1973.6,北京
    [111]张玉玲.南京大胜关长江大桥结构构造疲劳性能试验研究[R].中国铁道科学研究院, 2007.2
    [112] Tom Lassen,Naman Récho. Fatigue Life Analyses of Welded Structures[M]. ISTE Ltd,2006
    [113] Takeshi. Mori Improvement of Steel Bridge Durability[J]. STEEL CONSTRUCTION TODAY & TOMORROW 2006, 15:7-8
    [114]曾春华,邹十践.疲劳分析方法及应用[M].北京:国防工业出版社,1991
    [115]张玉玲,赵欣欣.桥梁钢冬季低温焊接构造疲劳试验研究[R].中国铁道科学研究院, 2011.6
    [116] DNV-RP-C203. Faigue design of offshore steel structures[S].2010
    [117] M.Copper. Fatigue and Longevity Model Deliverable No. D3.2.4[R]. Document ID Code: S103.24.13.051.001A, S@S project,2002.12
    [118]阳富强,吴超,汪发松,马树宝. 1998-2008年人因可靠性研究进展[J].科技导报2009,27(8):87-94
    [119] D.I. Gertman & H.S. Blackman. Human Reliability & Safety Analysis Data Handbook[M]. Wiley-Interscience, 1994.
    [120]魏红州.煤矿事故人因失误因素的灰色模糊分析与研究[D].太原理工大学安全技术及工程,2007
    [121] Federal Railroad Administration Office of Safety Analysis [EB/OL] http://safetydata.fra.dot.gov
    [122]方兴.钢桥典型裂纹成因及整治措施的研究[R].博士后出站报告,2010.5
    [123]巩春领.大跨度斜拉桥施工风险分析与对策研究[D].同济大学土木工程学院,2006
    [124]何旭洪,童节娟,黄祥瑞.低功率和停堆工况下人员可靠性分析[J].中国安全科学学报2005,15(4):93-96
    [125] U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Washington, DC The SPAR-H Human Reliability Analysis Method[R]. 2005.8
    [126]郭伏,杨学涵.人因工程学[M].沈阳:东北大学出版社,2001
    [127]张喜刚.公路桥隧工程风险评估[Z].中交公路规划设计院有限公司,2010
    [128]中华人民共和国行业标准,铁路隧道风险评估与管理暂行规定(报批稿)[M].北京:中国铁道出版社,2007
    [129]陈艾荣.基于给定结构寿命的桥梁设计过程[M].北京:人民交通出版社,2009.5
    [130]史永吉.钢桥与涂装[Z].中国铁道科学研究院,2010.8
    [131]陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社,2002
    [132] TB10002.2-2005,铁路桥梁钢结构设计规范[S].
    [133]潘际炎.铁路钢桥可靠度疲劳设计规范(建议稿)[R].中国铁道科学研究院1991
    [134]曾志斌.既有铁路钢桥疲劳评估[Z].中国铁道科学研究院,2009
    [135] Hiroyuki YOKOTA, Kengo ANAMI. Local Stress Approach for Fatigue Assessment of Welded Joint [J/OL]. http://management.kochi-tech.ac.jp/PDF/COEReport_2007/2.2-1/
    [136] John Dalsgaard S?rensen. Notes in Structural Reliability Theory And Risk Analysis [J/OL]. http://www.kstr.lth.se/fileadmin/kstr/pdf_files/STforsk_kurs-10/John_D-S_lecture_notes.pdf
    [137] Hsin-Yang Chung. Fatigue Reliability And Optimal Inspection Strategies For Steel Bridges[D]. The University of Texas at Austin 2004.5
    [138]任伟平.焊接钢桥结构细节疲劳行为分析及寿命评估[D].西南交通大学2008
    [139]王春生.铆接钢桥剩余寿命与使用安全评估[M].上海:同济大学出版社,2007.10
    [140] B. M. Imam, T. D. Righiniotis & M. K. Chryssanthopoulos. Fatigue Reliability Of Riveted Connections In Railway Bridges[C].3rd international ASRANE colloquium 10-12th July 2006,Glasgow,UK
    [141] Paul H. Wirsching,Y.-N. Chen. Considerations of Probability-Based Fatigue Design for Marine Structures[J]. Marine Structures,1988:23-45
    [142]潘际炎.铁路钢桥疲劳可靠度设计及铁路桥梁疲劳荷载谱研究[R].中国铁道科学研究院1990
    [143] C. Cremona. Probability-Based Optimization of Inspection Intervals for Steel Bridges in: Evaluation of Existing Steel and Composite Bridges, Lausanne, 1997.
    [144] V. Tomica, J. Slavák. Fatigue Reliability of Existing Steel Structures[C]: Studies of University of Transport and Communications in ?ilina’96, Civil Engineering Series, 1996, 20:19–28
    [145] Z. Kala. Sensitivity Analysis of Fatigue Behaviour of Steel Structure under In-Plane Bending [J]. Nonlinear Analysis: Modelling and Control, 2006, 11(1):33–45
    [146] Z. Zhao, A. Haldar. F. L. Breen, Fatigue-Reliability Evaluation of Steel Bridges [J]. Journal of Structural Engineering, 1994,120(5) :1608–1623
    [147] A.G. Tallin, M. Ceare. Inspection Based Reliability Updating for Fatigue of Steel Bridges[C]. Proc. of Bridge Management, London, 1990.
    [148] J. K. Paik,R. E. Melchers. Condition assessment of aged structures[M]. CRC Press,2008
    [149]王剑,刘西拉.结构生命周期的可靠性管理[J].岩石力学与工程学报,2005,24(7),3125-3130
    [150] Thomas B. Messervey. Integration of Structural Health Monitoring into the Design, Assessment, and Management of Civil Infrastructure [D]. University of Pavia, 2007.
    [151] Wojciech Radomski. Bridge Rehabilitation[M]Imperial College Press, 2002
    [152] Aarseth, L. I. And Hovde, P. J., A stochastic approach to the factor method for estimating service life, Proceedings of the 8th International Conference on Durability of Building Materials and Components, 1999, 1247-1256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700