用户名: 密码: 验证码:
氧化石墨烯/环氧树脂复合材料的界面改性与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯是目前已知强度最高的材料,只有单原子层厚度的石墨烯具有许多优异的性能,他的出现在21世纪初期的科学界掀起了一股研究的热潮。其中,以石墨烯作为增强体制备石墨烯/树脂纳米复合材料是十分引人注目的研究焦点之一,因为石墨烯的引入赋予了树脂基复合材料以出色的力学、热学性能以及光学、电学等功能性。然而,石墨烯的批量制备及其与树脂的亲和性却一直制约着石墨烯在树脂基复合材料中的应用。另一方面,作为继承了石墨烯大部分力学性能的一种重要衍生物,氧化石墨烯凭借着片层表面丰富的含氧官能团和批量制备的简单可操作性,在树脂基复合材料领域引起了极大关注。随着研究的深入,氧化石墨烯的表面状态越来越难以适应日益增长的应用需求,为了进一步获得更高性能的氧化石墨烯/树脂复合材料,需要对氧化石墨烯进行表面修饰以得到更好的界面性能,而官能团的大量存在也为其表面修饰提供了可能。
     本文首先制备了氧化石墨烯,并以原始氧化石墨烯(aGO)为起点,使用“清洗-重建”过程制备了碱洗氧化石墨烯(bwGO)和两种不同端基的硅烷化氧化石墨烯,分别为端氨基的APTS-GO和端环氧基的GPTS-GO,然后使针棒状的凹凸棒土粘土颗粒吸附在氧化石墨烯表面得到了一种一维-二维复合物ATP-GO。这五种不同表面状态的氧化石墨烯被分别用作增强体材料掺入环氧树脂中制备了多种组分的氧化石墨烯/环氧树脂复合材料,并且研究了复合材料的拉伸力学性能、断裂韧性、动态力学性能和热稳定性。
     多官能团的aGO比少官能团的bwGO表现出更高的力学性能增强,aGO的含量为1wt%时,aGO/epoxy复合材料的杨氏模量和拉伸强度达到最高,为3.1GPa和79.7Mpa,比纯环氧树脂分别增加了24%和14%;复合材料的临界应力强度因子KIC和临界能量释放率GIC在0.5wt%aGO/epoxy中达到最高,分别为1.27MPam1/2和0.45kJ/m2,均较环氧树脂增加了25%;而玻璃化转变温度(Tg)达最高时复合材料中含有0.2wt%的aGO,其值为133℃,比环氧树脂提高了5.1℃;由于含有更多的含氧官能团,aGO使环氧树脂复合材料的热稳定性下降,较少官能团的bwGO却能提高复合材料的热性能。
     硅烷化氧化石墨烯增强的环氧树脂复合材料比aGO和bwGO增强的复合材料拥有更好的力学性能,尤其是断裂韧性。表面官能团的不同也使两种硅烷化氧化石墨烯对环氧树脂的增强行为有所不同:端氨基的APTS-GO对复合材料杨氏模量和拉伸强度的增强效率更高,0.2wt%APTS-GO/epoxy复合材料的杨氏模量和拉伸强度最高,为3.3GPa和81.2MPa,比纯环氧树脂分别提高了32%和16%;而端环氧基的GPTS-GO则对复合材料的韧性增强更明显,0.2wt%GPTS-GO/epoxy复合材料的KIC和GIC值最大,为1.46MPam1/2和0.62kJ/m2,与纯环氧树脂相比分别增加了43%和72%。
     ATP-GO复合增强体对复合材料力学性能的增强幅度高于单独使用ATP或GO作为增强材料,并且只有在复合增强体的两种组分达到最优质量配比时才能使复合材料获得最高的力学性能,1wt%ATP+0.2wt%GO便是最优的配比,此时的A1G02/epoxy复合材料拥有最高的杨氏模量、拉伸强度、KIC和GIC,分别为3.4GPa、80.8Mpa、1.29MPa·m1/2和0.43kJ/m2,比纯环氧树脂增加了36%、16%、27%和19%。得益于ATP的加入,ATP-GO/epoxy复合材料的热性能也高于aGO增强的复合材料。
     本文继而使用拉曼(Raman)光谱实验方法研究了五种氧化石墨烯在环氧树脂中的分散状态和两相间的界面相互作用,并以此为基础讨论了不同表面状态氧化石墨烯在复合材料中的微观作用机制。官能团数量的变化使bwGO在基体中的分散性和界面载荷传递效率劣于aGO;氨基硅烷化的APTS-GO的分散性不如GPTS-GO,却能更好地与基体间进行载荷传递,但是APTS-GO的载荷传递效率却低于aGO,这是因为硅烷偶联剂的修饰在氧化石墨烯片层的附近引入了柔性界面层吸收了部分应变能;ATP-GO复合物在基体中的分散性略低于aGO,却具有更高的界面相互作用。
     由此可见,对氧化石墨烯采用不同手段进行表面修饰能够改变其在复合材料中的行为,是获得高性能树脂基复合材料的有效方法和途径。
As the toughest material in the world, the one-atom-thick graphene is becoming more and more popular in the research field since the beginning of21st century, because of its excellent properties. Among a large number of researches regarding the exciting material, graphene/polymer nanocomposite is considered as one of the hottest research objectives since it always shows outstanding mechanical, thermal, optical, electrical and other functional properties. However, the mass production of graphene and its poor compatibility with the polymer matrix have limited the application of graphene in such promising field. On the other hand, graphene oxide (GO), as one of the derivatives of graphene which possesses abundant functional groups and the feasibility of mass production, has attracted great attention in the research field of polymer based nanocomposites. In order to meet the growing demands for applications, it is necessary to further improve the performances of GO/polymer composites. One common way is conducting surface modification on GO sheet to achieve better interfacial interaction between GO and the matrix, and the plenty of functional groups on its surface could be used as active sites to perform the modification.
     In this thesis, GO was firstly prepared and then employed as the initiating material for the “wash-and-rebuild” process in which base wash GO (bwGO) and two other modified GO with different end groups were synthesized successively. These two modified GOs were recognized as the amino groups terminated APTS-GO and the epoxy groups terminated GPTS-GO, respectively. Finally, a novel ATP-GO hybrid was also obtained by attaching the needle-like attapulgite (ATP) particle onto the surface of GO platelet. The above five GOs with different surface states were introduced into epoxy resin separately to prepare GO/epoxy nanocomposites. The tensile properties, fracture toughness, dynamic mechanical properties and thermal properties of the composites were investigated in the study.
     The as-prepared GO (aGO) with more functional groups could act better reinforcement on the mechanical properties of the composites than the base wash GO (bwGO) with less functional groups. When the content of aGO was1wt%, the Young’s modulus and tensile strength of the aGO/epoxy composites reached their highest value of3.1GPa and79.7MPa, which were24%and14%higher than the pure epoxy. The highest critical stress intensity factor (KIC) and critical energy release rate (GIC) was1.27MPam1/2and0.45kJ/m2respectively for the0.5wt%aGO/epoxy composites, they were both25%higher than the values for the pure epoxy. The0.2wt%aGO/epoxy composites have the highest glass transition temperature (Tg) of133℃,5.1℃higher than the neat epoxy. However, the thermal stability of the GO/epoxy composites was only enhanced by introducing less functionalized bwGO. aGO may decrease the thermal stability of the epoxy composites because the active functional groups on its surface were instable to heat.
     The silane functionalized GOs were found to be superior to both aGO and bwGO in reinforcing mechanical properties of the GO/epoxy composites, especially for fracture toughness. Meanwhile, the reinforcing behavior of these two functionalized GOs may vary depending on the different functional groups they possessed. The addition of0.2wt%amino-functionalized GO (APTS-GO) yielded a32%increase in Young’s modulus (3.3GPa) and16%increase in tensile strength (81.2MPa). Less reinforcement was observed with the epoxy-functionalized GO (GPTS-GO) but there was a more significant increase in ductility for GPTS-GO/epoxy, with the fracture toughness (KIC) and fracture energy (GIC) increased43%(1.46MPam1/2) and72%(0.62kJ/m2) respectively at0.2wt%loading.
     Remarkable enhancements on mechanical properties were achieved by using ATP-GO hybrids as the reinforcing fillers, much greater than that of the composites reinforced individually by ATP or GO. The best performance was obtained only when the composition of the hybrids was optimized. The optimum composition was1wt%ATP+0.2wt%GO in the composite, which resulted in the highest Young’s modulus, tensile strength, KIC and GIC, increased by36%(3.4GPa),16%(80.8MPa),27%(1.29MPam1/2) and19%(0.43kJ/m2), correspondingly. Moreover, the thermal properties were increased in ATP-GO/epoxy composites as well, owing to the introduction of the heat-stable ATP.
     Furthermore, Raman spectroscopy methods were utilized to investigate the dispersion of GOs and the interfacial stress transfer between the two phases, based upon which the mechanism for the interaction between epoxy and GO with different surface states was discussed. The reduction of functional groups led to a poorer distribution of bwGO than aGO and a lower efficiency of stress transfer in the bwGO/epoxy composites. The dispersion of APTS-GO was less uniform than GPTS-GO, while the interaction between APTS-GO and the matrix was stronger. However, the stress transfer in APTS-GO/epoxy was found to be weaker than that in aGO/epoxy composites, which was because the mobility of graphene sheets was increased as a result of the formation of soft interphase around the GO sheets caused by the modification of silane coupling agent. Thus the strain energy was partly consumed by the soft interphase. In case of ATP-GO hybrid, the dispersion of the hybrid was a little poorer than aGO, whereas the interfacial interaction was much higher.
     It is obvious that the modification on GO has changed its reinforcing behavior in the composites, thus could be considered as an effective way to achieve high
     performance polymer nanocomposites.
引文
[1] Paul D R, Robeson L M. Polymer nanotechnology: Nanocomposites [J].Polymer,2008,49(15):3187-204.
    [2] Sanchez C, Julian B, Belleville P, et al. Applications of hybrid organic-inorganicnanocomposites [J]. Journal of Materials Chemistry,2005,15(35-36):3559-92.
    [3] Coleman J N, Khan U, Gun'ko Y K. Mechanical Reinforcement of PolymersUsing Carbon Nanotubes [J]. Advanced Materials,2006,18(6):689-706.
    [4] Balazs A C, Emrick T, Russell T P. Nanoparticle Polymer Composites: WhereTwo Small Worlds Meet [J]. Science,2006,314(5802):1107-10.
    [5] Novoselov K S, Geim A K, Morozov S V, et al. Electric Field Effect inAtomically Thin Carbon Films [J]. Science,2004,306(5696):666-9.
    [6] Cai D, Song M. Recent advance in functionalized graphene/polymernanocomposites [J]. Journal of Materials Chemistry,2010,20(37):7906-15.
    [7] Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals [J].Proceedings of the National Academy of Sciences of the United States of America,2005,102(30):10451-3.
    [8] Li D, Kaner R B. Graphene-Based Materials [J]. Science,2008,320(5880):1170-1.
    [9] Geim A K, Novoselov K S. The rise of graphene [J]. Nat Mater,2007,6(3):183-91.
    [10] Stoller M D, Park S, Zhu Y, et al. Graphene-Based Ultracapacitors [J]. NanoLetters,2008,8(10):3498-502.
    [11] Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspendedgraphene [J]. Solid State Communications,2008,146(9–10):351-5.
    [12] Balandin A A, Ghosh S, Bao W, et al. Superior Thermal Conductivity ofSingle-Layer Graphene [J]. Nano Letters,2008,8(3):902-7.
    [13] Zhang Y, Tan Y-W, Stormer H L, et al. Experimental observation of the quantumHall effect and Berry's phase in graphene [J]. Nature,2005,438(7065):201-4.
    [14] R. R. Nair, H. A. Wu, P. N. Jayaram, et al. Unimpeded Permeation of WaterThrough Helium-Leak–Tight Graphene-Based Membranes [J]. Science,2012,335(442-3.
    [15] Lee C, Wei X, Kysar J W, et al. Measurement of the Elastic Properties andIntrinsic Strength of Monolayer Graphene [J]. Science,2008,321(5887):385-8.
    [16] Novoselov K S, Fal[Prime]Ko V I, Colombo L, et al. A roadmap for graphene[J]. Nature,2012,490(7419):192-200.
    [17] Geim A K. Graphene: Status and Prospects [J]. Science,2009,324(5934):1530-4.
    [18] Zhu Y, Murali S, Cai W, et al. Graphene and Graphene Oxide: Synthesis,Properties, and Applications [J]. Advanced Materials,2010,22(35):3906-24.
    [19] Park S, Ruoff R S. Chemical methods for the production of graphenes [J]. NatNano,2009,4(4):217-24.
    [20] Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide [J].Chemical Society Reviews,2010,39(1):228-40.
    [21] Pei S, Cheng H-M. The reduction of graphene oxide [J]. carbon,2011,0):
    [22] Lerf A, He H, Riedl T, et al.13C and1H MAS NMR studies of graphite oxideand its chemically modified derivatives [J]. Solid State Ionics,1997,101-103, Part2(0):857-62.
    [23] He H, Klinowski J, Forster M, et al. A new structural model for graphite oxide[J]. Chemical Physics Letters,1998,287(1-2):53-6.
    [24] Lerf A, He H, Forster M, et al. Structure of Graphite Oxide Revisited [J]. TheJournal of Physical Chemistry B,1998,102(23):4477-82.
    [25] Rourke J P, Pandey P A, Moore J J, et al. The Real Graphene Oxide Revealed:Stripping the Oxidative Debris from the Graphene-like Sheets [J]. AngewandteChemie International Edition,2011,50(14):3173-7.
    [26] Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-basednanosheets via chemical reduction of exfoliated graphite oxide [J]. carbon,2007,45(7):1558-65.
    [27] Pei S, Cheng H-M. The reduction of graphene oxide [J]. carbon,2012,50(9):3210-28.
    [28] Paredes J I, Villar-Rodil S, MartíNez-Alonso A, et al. Graphene OxideDispersions in Organic Solvents [J]. Langmuir,2008,24(19):10560-4.
    [29] Hummers W S, Offeman R E. Preparation of Graphitic Oxide [J]. Journal of theAmerican Chemical Society,1958,80(6):1339-.
    [30] Stankovich S, Piner R D, Chen X, et al. Stable aqueous dispersions of graphiticnanoplatelets via the reduction of exfoliated graphite oxide in the presence ofpoly(sodium4-styrenesulfonate)[J]. Journal of Materials Chemistry,2006,16(2):155-8.
    [31] Li D, Muller M B, Gilje S, et al. Processable aqueous dispersions of graphenenanosheets [J]. Nat Nano,2008,3(2):101-5.
    [32] Stankovich S, Piner R D, Nguyen S T, et al. Synthesis and exfoliation ofisocyanate-treated graphene oxide nanoplatelets [J]. carbon,2006,44(15):3342-7.
    [33] Cai D, Song M. Preparation of fully exfoliated graphite oxide nanoplatelets inorganic solvents [J]. Journal of Materials Chemistry,2007,17(35):3678-80.
    [34] Ganguli S, Roy A K, Anderson D P. Improved thermal conductivity forchemically functionalized exfoliated graphite/epoxy composites [J]. carbon,2008,46(5):806-17.
    [35] Bao C, Guo Y, Song L, et al. In situ preparation of functionalized grapheneoxide/epoxy nanocomposites with effective reinforcements [J]. Journal of MaterialsChemistry,2011,21(35):13290-8.
    [36] Zhou Y, Xu F, Jiang G, et al. Superhydrophobic and high adhesive performanceof functionalized graphene films [J]. Powder Technology,2012,230(0):247-51.
    [37] Yan J-L, Qi G-Q, Cao J, et al. Study on Amino-functionalized GrapheneOxide/Poly(methyl methacrylate) Nanocomposites [J]. Chemistry Letters,2012,41(7):683-5.
    [38] Chang L, Wu S, Chen S, et al. Preparation of graphene oxide–molecularlyimprinted polymer composites via atom transfer radical polymerization [J]. Journalof Materials Science,2011,46(7):2024-9.
    [39] Zhuang Q, Liu X, Wang Q, et al. Synthesis of acid-soluble graphene and its usein producing a reduced graphene oxide-poly(benzobisoxazole) composite [J].Journal of Materials Chemistry,2012,22(24):12381-8.
    [40] Xu Y, Liu Z, Zhang X, et al. A Graphene Hybrid Material CovalentlyFunctionalized with Porphyrin: Synthesis and Optical Limiting Property [J].Advanced Materials,2009,21(12):1275-9.
    [41] Liu Z-B, Xu Y-F, Zhang X-Y, et al. Porphyrin and Fullerene CovalentlyFunctionalized Graphene Hybrid Materials with Large Nonlinear Optical Properties[J]. The Journal of Physical Chemistry B,2009,113(29):9681-6.
    [42] Zhang X, Huang Y, Wang Y, et al. Synthesis and characterization of agraphene–C60hybrid material [J]. carbon,2009,47(1):334-7.
    [43] Hu Y, Shen J, Li N, et al. Amino-functionalization of graphene sheets and thefabrication of their nanocomposites [J]. Polymer Composites,2010,31(12):1987-94.
    [44] Goncalves G, Marques P a a P, Barros-Timmons A, et al. Graphene oxidemodified with PMMA via ATRP as a reinforcement filler [J]. Journal of MaterialsChemistry,2010,20(44):
    [45] Veca L M, Lu F, Meziani M J, et al. Polymer functionalization and solubilizationof carbon nanosheets [J]. Chemical Communications,2009,0(18):2565-7.
    [46] Ye Y-S, Chen Y-N, Wang J-S, et al. Versatile Grafting Approaches toFunctionalizing Individually Dispersed Graphene Nanosheets Using RAFTPolymerization and Click Chemistry [J]. Chemistry of Materials,2012,24(15):2987-97.
    [47] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based compositematerials [J]. Nature,2006,442(7100):282-6.
    [48] Zhang L-B, Wang J-Q, Wang H-G, et al. Preparation, mechanical and thermalproperties of functionalized graphene/polyimide nanocomposites [J]. CompositesPart A: Applied Science and Manufacturing,2012,43(9):1537-45.
    [49] Wang G, Wang B, Park J, et al. Synthesis of enhanced hydrophilic andhydrophobic graphene oxide nanosheets by a solvothermal method [J]. carbon,2009,47(1):68-72.
    [50] Wang S, Chia P-J, Chua L-L, et al. Band-like Transport inSurface-Functionalized Highly Solution-Processable Graphene Nanosheets [J].Advanced Materials,2008,20(18):3440-6.
    [51] Che J, Shen L, Xiao Y. A new approach to fabricate graphene nanosheets inorganic medium: combination of reduction and dispersion [J]. Journal of MaterialsChemistry,2010,20(9):1722-7.
    [52] Yang H, Shan C, Li F, et al. Covalent functionalization of polydispersechemically-converted graphene sheets with amine-terminated ionic liquid [J].Chemical Communications,2009,26):3880-2.
    [53] Yang H, Li F, Shan C, et al. Covalent functionalization of chemically convertedgraphene sheets via silane and its reinforcement [J]. Journal of Materials Chemistry,2009,19(26):4632-8.
    [54] Wang X, Song L, Yang H, et al. Simultaneous reduction and surfacefunctionalization of graphene oxide with POSS for reducing fire hazards in epoxycomposites [J]. Journal of Materials Chemistry,2012,22(41):22037-43.
    [55] Su Q, Pang S, Alijani V, et al. Composites of Graphene with Large AromaticMolecules [J]. Advanced Materials,2009,21(31):3191-5.
    [56] An X, Simmons T, Shah R, et al. Stable Aqueous Dispersions of NoncovalentlyFunctionalized Graphene from Graphite and their MultifunctionalHigh-Performance Applications [J]. Nano Letters,2010,10(11):4295-301.
    [57] Fernández-Merino M J, Paredes J I, Villar-Rodil S, et al. Investigating theinfluence of surfactants on the stabilization of aqueous reduced graphene oxidedispersions and the characteristics of their composite films [J]. carbon,2012,50(9):3184-94.
    [58] Parviz D, Das S, Ahmed H S T, et al. Dispersions of Non-CovalentlyFunctionalized Graphene with Minimal Stabilizer [J]. Acs Nano,2012,
    [59] Teng C-C, Ma C-C M, Lu C-H, et al. Thermal conductivity and structure ofnon-covalent functionalized graphene/epoxy composites [J]. carbon,2011,49(15):5107-16.
    [60] Fan J, Shi Z, Zhang L, et al. Aramid nanofiber-functionalized graphenenanosheets for polymer reinforcement [J]. Nanoscale,2012,4(22):7046-55.
    [61] Pu J, Wan S, Lu Z, et al. Controlled water adhesion and electrowetting ofconducting hydrophobic graphene/carbon nanotubes composite films on engineeringmaterials [J]. Journal of Materials Chemistry A,2013,1(4):1254-60.
    [62] Huang Z-D, Zhang B, Oh S-W, et al. Self-assembled reduced grapheneoxide/carbon nanotube thin films as electrodes for supercapacitors [J]. Journal ofMaterials Chemistry,2012,
    [63] Ren P-G, Di Y-Y, Zhang Q, et al. Composites of Ultrahigh-Molecular-WeightPolyethylene with Graphene Sheets and/or MWCNTs with Segregated NetworkStructure: Preparation and Properties [J]. Macromolecular Materials andEngineering,2012,297(5):437-43.
    [64] Yu A, Ramesh P, Sun X, et al. Enhanced Thermal Conductivity in a HybridGraphite Nanoplatelet–Carbon Nanotube Filler for Epoxy Composites [J].Advanced Materials,2008,20(24):4740-4.
    [65] Li W, Dichiara A, Bai J. Carbon nanotube–graphene nanoplatelet hybrids ashigh-performance multifunctional reinforcements in epoxy composites [J].Composites Science and Technology,2013,74(0):221-7.
    [66] Yan D, Xu L, Chen C, et al. Enhanced mechanical and thermal properties ofrigid polyurethane foam composites containing graphene nanosheets and carbonnanotubes [J]. Polymer International,2012,61(7):1107-14.
    [67] Qian X, Song L, Tai Q, et al. Graphite oxide/polyurea and graphene/polyureananocomposites: A comparative investigation on properties reinforcements andmechanism [J]. Composites Science and Technology,2013,74(0):228-34.
    [68] Ramanathant, Abdala A A, Stankovichs, et al. Functionalized graphene sheetsfor polymer nanocomposites [J]. Nat Nano,2008,3(6):327-31.
    [69] Song H, Li N, Li Y, et al. Preparation and tribological properties ofgraphene/poly(ether ether ketone) nanocomposites [J]. Journal of Materials Science,2012,47(17):6436-43.
    [70] Huang X, Qi X, Boey F, et al. Graphene-based composites [J]. Chemical SocietyReviews,2012,41(2):
    [71] Potts J R, Dreyer D R, Bielawski C W, et al. Graphene-based polymernanocomposites [J]. Polymer,2011,52(1):5-25.
    [72] Chen Z, Lu H. Constructing sacrificial bonds and hidden lengths for ductilegraphene/polyurethane elastomers with improved strength and toughness [J].Journal of Materials Chemistry,2012,22(25):12479-90.
    [73] Yousefi N, Gudarzi M M, Zheng Q, et al. Self-alignment and high electricalconductivity of ultralarge graphene oxide-polyurethane nanocomposites [J]. Journalof Materials Chemistry,2012,22(25):12709-17.
    [74] Tang Q, Cai H, Yuan S, et al. Percolation effect and thermoplasticity ofconducting [poly(acrylic acid)/C16TAB-modified graphene oxide]n multilayer films[J]. Journal of Materials Science,2013,48(4):1843-51.
    [75] Zeng X, Yang J, Yuan W. Preparation of a poly(methyl methacrylate)-reducedgraphene oxide composite with enhanced properties by a solution blending method[J]. European Polymer Journal,2012,48(10):1674-82.
    [76] Tseng I H, Liao Y-F, Chiang J-C, et al. Transparent polyimide/graphene oxidenanocomposite with improved moisture barrier property [J]. Materials Chemistryand Physics,2012,136(1):247-53.
    [77] Eswaraiah V, Balasubramaniam K, Ramaprabhu S. Functionalized graphenereinforced thermoplastic nanocomposites as strain sensors in structural healthmonitoring [J]. Journal of Materials Chemistry,2011,21(34):
    [78] Wu S-D, Lv W, Xu J, et al. A graphene/poly(vinyl alcohol) hybrid membraneself-assembled at the liquid/air interface: enhanced mechanical performance andpromising saturable absorber [J]. Journal of Materials Chemistry,2012,22(33):17204-9.
    [79] May P, Khan U, O'neill A, et al. Approaching the theoretical limit forreinforcing polymers with graphene [J]. Journal of Materials Chemistry,2012,22(4):1278-82.
    [80] Potts J R, Murali S, Zhu Y, et al. Microwave-Exfoliated GraphiteOxide/Polycarbonate Composites [J]. Macromolecules,2011,44(16):6488-95.
    [81] Steurer P, Wissert R, Thomann R, et al. Functionalized Graphenes andThermoplastic Nanocomposites Based upon Expanded Graphite Oxide [J].Macromolecular Rapid Communications,2009,30(4-5):316-27.
    [82] Shen X-J, Liu Y, Xiao H-M, et al. The reinforcing effect of graphene nanosheetson the cryogenic mechanical properties of epoxy resins [J]. Composites Science andTechnology,2012,72(13):1581-7.
    [83] Liu W, Koh K L, Lu J, et al. Simultaneous catalyzing and reinforcing effects ofimidazole-functionalized graphene in anhydride-cured epoxies [J]. Journal ofMaterials Chemistry,2012,22(35):18395-402.
    [84] Liang J, Wang Y, Huang Y, et al. Electromagnetic interference shielding ofgraphene/epoxy composites [J]. carbon,2009,47(3):922-5.
    [85] Wu F, Lu Y, Shao G, et al. Preparation of polyacrylonitrile/graphene oxide by insitu polymerization [J]. Polymer International,2012,61(9):1394-9.
    [86] Liu H, Hou L, Peng W, et al. Fabrication and characterization of polyamide6-functionalized graphene nanocomposite fiber [J]. Journal of Materials Science,2012,47(23):8052-60.
    [87] Wang X W, Zhang C A, Wang P L, et al. Enhanced Performance ofBiodegradable Poly(butylene succinate)/Graphene Oxide Nanocomposites via inSitu Polymerization [J]. Langmuir,2012,28(18):7091-5.
    [88] Gómez-Navarro C, Burghard M, Kern K. Elastic Properties of ChemicallyDerived Single Graphene Sheets [J]. Nano Letters,2008,8(7):2045-9.
    [89] Kim H, Abdala A A, Macosko C W. Graphene/Polymer Nanocomposites [J].Macromolecules,2010,43(16):6515-30.
    [90] Rafiee M A, Rafiee J, Wang Z, et al. Enhanced Mechanical Properties ofNanocomposites at Low Graphene Content [J]. Acs Nano,2009,3(12):3884-90.
    [91] Chatterjee S, Wang J W, Kuo W S, et al. Mechanical reinforcement and thermalconductivity in expanded graphene nanoplatelets reinforced epoxy composites [J].Chemical Physics Letters,2012,531(0):6-10.
    [92] Cai D, Yusoh K, Song M. The mechanical properties and morphology of agraphite oxide nanoplatelet/polyurethane composite [J]. Nanotechnology,2009,20(85712.
    [93] Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation,properties and uses of a new class of materials [J]. Materials Science andEngineering: R: Reports,2000,28(1–2):1-63.
    [94] Fornes T D, Paul D R. Modeling properties of nylon6/clay nanocompositesusing composite theories [J]. Polymer,2003,44(17):4993-5013.
    [95] Kimura T, Ago H, Tobita M, et al. Polymer Composites of Carbon NanotubesAligned by a Magnetic Field [J]. Advanced Materials,2002,14(19):1380-3.
    [96] Ding N, Chen X, Wu C-M L, et al. Computational Investigation on the Effect ofGraphene Oxide Sheets as Nanofillers in Poly(vinyl alcohol)/Graphene OxideComposites [J]. The Journal of Physical Chemistry C,2012,116(42):22532-8.
    [97] Fang M, Wang K, Lu H, et al. Covalent polymer functionalization of graphenenanosheets and mechanical properties of composites [J]. Journal of MaterialsChemistry,2009,19(38):
    [98] Akcora P, Kumar S K, García Sakai V, et al. Segmental Dynamics inPMMA-Grafted Nanoparticle Composites [J]. Macromolecules,2010,43(19):8275-81.
    [99] Li C, Browning A R, Christensen S, et al. Atomistic simulations on multilayergraphene reinforced epoxy composites [J]. Composites Part A: Applied Science andManufacturing,2012,43(8):1293-300.
    [100]Rafiee M A, Rafiee J, Srivastava I, et al. Fracture and Fatigue in GrapheneNanocomposites [J]. Small,2010,6(2):179-83.
    [101]Bortz D R, Heras E G, Martin-Gullon I. Impressive Fatigue Life and FractureToughness Improvements in Graphene Oxide/Epoxy Composites [J].Macromolecules,2011,45(1):238-45.
    [102]Fang M, Zhang Z, Li J, et al. Constructing hierarchically structured interphasesfor strong and tough epoxy nanocomposites by amine-rich graphene surfaces [J].Journal of Materials Chemistry,2010,20(43):9635-43.
    [103]Kashiwagi T, Du F, Douglas J F, et al. Nanoparticle networks reduce theflammability of polymer nanocomposites [J]. Nat Mater,2005,4(12):928-33.
    [104]Bao Q, Zhang H, Yang J-X, et al. Graphene–Polymer Nanofiber Membrane forUltrafast Photonics [J]. Advanced Functional Materials,2010,20(5):782-91.
    [105]Ansari S, Giannelis E P. Functionalized graphene sheet—Poly(vinylidenefluoride) conductive nanocomposites [J]. Journal of Polymer Science Part B:Polymer Physics,2009,47(9):888-97.
    [106]Kim S, Do I, Drzal L T. Thermal stability and dynamic mechanical behavior ofexfoliated graphite nanoplatelets-LLDPE nanocomposites [J]. Polymer Composites,2010,31(5):755-61.
    [107]Jeong H-K, Lee Y P, Jin M H, et al. Thermal stability of graphite oxide [J].Chemical Physics Letters,2009,470(4–6):255-8.
    [108]Qiu S L, Wang C S, Wang Y T, et al. Effects of graphene oxides on the curebehaviors of a tetrafunctional epoxy resin [J]. Express Polymer Letters,2011,5(9):809-18.
    [109]Guo Y, Bao C, Song L, et al. In Situ Polymerization of Graphene, GraphiteOxide, and Functionalized Graphite Oxide into Epoxy Resin and Comparison Studyof On-the-Flame Behavior [J]. Industrial&Engineering Chemistry Research,2011,50(13):7772-83.
    [110]Xu Z, Gao C. In situ Polymerization Approach to Graphene-ReinforcedNylon-6Composites [J]. Macromolecules,2010,43(16):6716-23.
    [111]Zhang W L, Park B J, Choi H J. Colloidal graphene oxide/polyanilinenanocomposite and its electrorheology [J]. Chemical Communications,2010,46(30):5596-8.
    [112]Wang Z, Tang X-Z, Yu Z-Z, et al. Dispersion of graphene oxide and its flameretardancy effect on epoxy nanocomposites [J]. Chinese Journal of Polymer Science,2011,29(3):368-76.
    [113]Park J-H, Choudhury A, Farmer B L, et al. Chemically modified grapheneoxide/polybenzimidazobenzophenanthroline nanocomposites with improvedelectrical conductivity [J]. Polymer,2012,53(18):3937-45.
    [114]Song W-L, Veca L M, Kong C Y, et al. Polymeric nanocomposites withgraphene sheets–Materials and device for superior thermal transport properties [J].Polymer,2012,53(18):3910-6.
    [115]Yu A, Ramesh P, Itkis M E, et al. Graphite Nanopla teEleptoxy CompositeThermal Interface Materials [J]. The Journal of Physical Chemistry C,2007,111(21):7565-9.
    [116]Moniruzzaman M, Winey K I. Polymer Nanocomposites Containing CarbonNanotubes [J]. Macromolecules,2006,39(16):5194-205.
    [117]Bauhofer W, Kovacs J Z. A review and analysis of electrical percolation incarbon nanotube polymer composites [J]. Composites Science and Technology,2009,69(10):1486-98.
    [118]Liao K-H, Qian Y, Macosko C W. Ultralow percolation graphene/polyurethaneacrylate nanocomposites [J]. Polymer,2012,53(17):3756-61.
    [119]Zaman I, Kuan H-C, Meng Q, et al. A Facile Approach to Chemically ModifiedGraphene and its Polymer Nanocomposites [J]. Advanced Functional Materials,2012,22(13):2735-43.
    [120]Luan V H, Tien H N, Cuong T V, et al. Novel conductive epoxy compositescomposed of2-D chemically reduced graphene and1-D silver nanowire hybridfillers [J]. Journal of Materials Chemistry,2012,22(17):8649-53.
    [121]Guo F, Silverberg G, Bowers S, et al. Graphene-Based Environmental Barriers[J]. Environmental Science&Technology,2012,46(14):7717-24.
    [122]Liu H, Kuila T, Kim N H, et al. In situ synthesis of the reduced grapheneoxide-polyethyleneimine composite and its gas barrier properties [J]. Journal ofMaterials Chemistry A,2013,1(11):3739-46.
    [123]Huang H-D, Ren P-G, Chen J, et al. High barrier graphene oxidenanosheet/poly(vinyl alcohol) nanocomposite films [J]. Journal of MembraneScience,2012,409–410(0):156-63.
    [124]Chen Y, Qi Y, Tai Z, et al. Preparation, mechanical properties andbiocompatibility of graphene oxide/ultrahigh molecular weight polyethylenecomposites [J]. European Polymer Journal,2012,48(6):1026-33.
    [125]Zhang W, Yi M, Shen Z, et al. Graphene-reinforced epoxy resin with enhancedatomic oxygen erosion resistance [J]. Journal of Materials Science,2013,48(6):2416-23.
    [126]Loomis J, King B, Panchapakesan B. Layer dependent mechanical responses ofgraphene composites to near-infrared light [J]. Applied Physics Letters,2012,100(7):073108-4.
    [127]Pang H, Zhong G-J, Wang Y, et al. In-situ synchrotron x-ray scattering studyon isothermal crystallization of ethylene-vinyl acetate copolymers containing a highweight fraction of carbon nanotubes and graphene nanosheets [J]. Journal ofPolymer Research,2012,19(3):1-5.
    [128]Chiu F-C, Huang I N. Phase morphology and enhanced thermal/mechanicalproperties of polyamide46/graphene oxide nanocomposites [J]. Polymer Testing,2012,31(7):953-62.
    [129]Ning N, Zhang W, Yan J, et al. Largely enhanced crystallization ofsemi-crystalline polymer on the surface of glass fiber by using graphene oxide as amodifier [J]. Polymer,2013,54(1):303-9.
    [130]Qiu J, Wang S. Enhancing polymer performance through graphene sheets [J].Journal of Applied Polymer Science,2011,119(6):3670-4.
    [131]Zandiatashbar A, Picu C R, Koratkar N. Control of Epoxy Creep UsingGraphene [J]. Small,2012,8(11):1676-82.
    [132]Pinto A M, Cabral J, Tanaka D a P, et al. Effect of incorporation of grapheneoxide and graphene nanoplatelets on mechanical and gas permeability properties ofpoly(lactic acid) films [J]. Polymer International,2013,62(1):33-40.
    [133]Liao S-H, Liu P-L, Hsiao M-C, et al. One-Step Reduction andFunctionalization of Graphene Oxide with Phosphorus-Based Compound to ProduceFlame-Retardant Epoxy Nanocomposite [J]. Industrial&Engineering ChemistryResearch,2012,51(12):4573-81.
    [134]Eda G, Chhowalla M. Graphene-based Composite Thin Films for Electronics[J]. Nano Letters,2009,9(2):814-8.
    [135]Spitsina N G, Lobach A S, Kaplunov M G. Polymer/nanocarbon compositematerials for photonics [J]. High Energy Chemistry,2009,43(7):552-6.
    [136]Tien C-P, Teng H. Polymer/graphite oxide composites as high-performancematerials for electric double layer capacitors [J]. Journal of Power Sources,2010,195(8):2414-8.
    [137]Zhu Y, Stoller M D, Cai W, et al. Exfoliation of Graphite Oxide in PropyleneCarbonate and Thermal Reduction of the Resulting Graphene Oxide Platelets [J].Acs Nano,2010,4(2):1227-33.
    [138]Lin Z, Yao Y, Li Z, et al. Solvent-Assisted Thermal Reduction of GraphiteOxide [J]. The Journal of Physical Chemistry C,2010,114(35):14819-25.
    [139]Kim G Y, Choi M-C, Lee D, et al.2D-Aligned Graphene Sheets in TransparentPolyimide/Graphene Nanocomposite Films Based on Noncovalent InteractionsBetween Poly(amic acid) and Graphene Carboxylic Acid [J]. MacromolecularMaterials and Engineering,2012,297(4):303-11.
    [140]Zhu C, Zhai J, Wen D, et al. Graphene oxide/polypyrrole nanocomposites:one-step electrochemical doping, coating and synergistic effect for energy storage[J]. Journal of Materials Chemistry,2012,22(13):6300-6.
    [141]Kudin K N, Ozbas B, Schniepp H C, et al. Raman Spectra of Graphite Oxideand Functionalized Graphene Sheets [J]. Nano Letters,2007,8(1):36-41.
    [142]Lu Y, Jiang Y, Wei W, et al. Novel blue light emitting graphene oxidenanosheets fabricated by surface functionalization [J]. Journal of MaterialsChemistry,2012,22(7):
    [143]Kao C C, Young R J. A Raman spectroscopic investigation of heating effectsand the deformation behaviour of epoxy/SWNT composites [J]. Composites Scienceand Technology,2004,64(15):2291-5.
    [144]Gong L, Young R J, Kinloch I A, et al. Optimizing the Reinforcement ofPolymer-Based Nanocomposites by Graphene [J]. Acs Nano,2012,6(3):2086-95.
    [145]Gao Y, Liu L-Q, Zu S-Z, et al. The Effect of Interlayer Adhesion on theMechanical Behaviors of Macroscopic Graphene Oxide Papers [J]. Acs Nano,2011,5(3):2134-41.
    [146]Sureeyatanapas P, Young R J. SWNT composite coatings as a strain sensor onglass fibres in model epoxy composites [J]. Composites Science and Technology,2009,69(10):1547-52.
    [147]Cooper C A, Young R J, Halsall M. Investigation into the deformation ofcarbon nanotubes and their composites through the use of Raman spectroscopy [J].Composites Part A: Applied Science and Manufacturing,2001,32(3–4):401-11.
    [148]Deng L, Young R J, Van Der Zwaag S, et al. Characterization of the adhesionof single-walled carbon nanotubes in poly(p-phenylene terephthalamide) compositefibres [J]. Polymer,2010,51(9):2033-9.
    [149]Shao G, Lu Y, Wu F, et al. Graphene oxide: the mechanisms of oxidation andexfoliation [J]. Journal of Materials Science,2012,47(10):4400-9.
    [150]Shen B, Zhai W, Tao M, et al. Chemical functionalization of graphene oxidetoward the tailoring of the interface in polymer composites [J]. Composites Scienceand Technology,2013,77(0):87-94.
    [151]Tessonnier J-P, Barteau M A. Dispersion of Alkyl-Chain-FunctionalizedReduced Graphene Oxide Sheets in Nonpolar Solvents [J]. Langmuir,2012,28(16):6691-7.
    [152]Zhao X, Zhang Q, Chen D, et al. Enhanced Mechanical Properties ofGraphene-Based Poly(vinyl alcohol) Composites [J]. Macromolecules,2010,43(5):2357-63.
    [153]Du F, Scogna R C, Zhou W, et al. Nanotube Networks in PolymerNanocomposites: Rheology and Electrical Conductivity [J]. Macromolecules,2004,37(24):9048-55.
    [154]Shin H, Yang S, Chang S, et al. Multiscale homogenization modeling forthermal transport properties of polymer nanocomposites with Kapitza thermalresistance [J]. Polymer,2013,54(5):1543-54.
    [155]Chen Y, Chia J Y H, Su Z C, et al. Mechanical characterization of interfaces inepoxy-clay nanocomposites by molecular simulations [J]. Polymer,2013,54(2):766-73.
    [156]Martinez-Rubi Y, Ashrafi B, Guan J, et al. Toughening of Epoxy Matrices withReduced Single-Walled Carbon Nanotubes [J]. Acs Applied Materials&Interfaces,2011,3(7):2309-17.
    [157]Bradley W F. The structural scheme of attapulgite [J]. Am Mineral,1940,25(6):405-10.
    [158]Galan E, Carretero I. A new approach to compositional limits for sepiolite andpalygorskite [J]. Clays and Clay Minerals,1999,47(4):399-409.
    [159]Subramani C, Jamnik V S, Mhaske S T. Effect of attapulgite filler on theproperties of Nylon-6[J]. Polymer Composites,2008,29(8):890-3.
    [160]Li A, Wang A, Chen J. Studies on poly(acrylic acid)/attapulgite superabsorbentcomposite. I. Synthesis and characterization [J]. Journal of Applied Polymer Science,2004,92(3):1596-603.
    [161]Li A, Wang A. Synthesis and properties of clay-based superabsorbentcomposite [J]. European Polymer Journal,2005,41(7):1630-7.
    [162]Huang D, Wang W, Xu J, et al. Mechanical and water resistance properties ofchitosan/poly(vinyl alcohol) films reinforced with attapulgite dispersed byhigh-pressure homogenization [J]. Chemical Engineering Journal,2012,210(0):166-72.
    [163]Xue S, Reinholdt M, Pinnavaia T J. Palygorskite as an epoxy polymerreinforcement agent [J]. Polymer,2006,47(10):3344-50.
    [164]Wang C-H, Shieh Y-T, Guo G, et al. Effects of Organophilic-ModifedAttapulgite Nanorods on Thermal and Mechanical Behavior of SegmentedPolyurethane Elastomers [J]. Polymer Composites,2010,31(11):1890-8.
    [165]Wang R, Li Z, Wang Y, et al. Effects of modified attapulgite on the propertiesof attapulgite/epoxy nanocomposites [J]. Polymer Composites,2013,34(1):22-31.
    [166]Wang L, Sheng J. Preparation and properties of polypropylene/org-attapulgitenanocomposites [J]. Polymer,2005,46(16):6243-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700