用户名: 密码: 验证码:
600MW超临界循环流化床锅炉设计关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
节能和环保是我国能源开发和利用中的两大主题。我国能源结构决定了今后相当长的一段时间内,燃煤发电始终是电力生产中的主要部分。超临界机组已成为我国发电行业主力机组,超临界参数具有高效、节能和环保的优点。循环流化床(CFB)是近二十年来在国际上快速发展起来的新一代高效低污染清洁燃烧技术,不仅能实现的脱硫效率、低排放和与煤粉炉相近的燃烧效率,而且还具有燃料适应性广、负荷调节性能好和灰渣易于综合利用等众多优点,因此在国际上得到迅速的商业推广。为了进一步调整产业结构,优化能源利用技术,促进节能和环保,发展600MW等级的超临界循环流化床锅炉发电技术就成为洁净煤发电技术的一个新的方向和趋势。超临界汽水技术和流化床燃烧技术相结合,能够充分发挥二者的优势,并且技术风险不大。
     设计开发了具有中质量流速的一次中间再热600MW超临界循环流化床锅炉。设计燃料为四川白马无烟煤,锅炉主蒸汽/再热蒸汽压力为25.4/4.45MPa,主蒸汽/再热蒸汽温度为571/569℃,炉膛尺寸为25.736×16.952米,炉膛高度为58米(布风板至顶棚)。锅炉主要由单炉膛、6个高效绝热旋风分离器、6个回料阀、6个外置式换热器、尾部对流烟道、8台滚筒冷渣器和2个回转式空预器等部分组成。炉膛采用裤衩腿、双布风板结构,炉膛内蒸发受热面采用膜式水冷壁结构。采用水冷布风板,大直径钟罩式风帽。炉膛上部左右两侧各布置有3个内径为9.3米的绝热分离器。每个分离器回料腿下布置一个回料阀和一个外置换热器。采用回料点给煤方案,锅炉共有六个高温和六个低温给煤点。共有6个石灰石给料点,布置在6个高温返料管上。
     采用Eulerian-Eulerian两流体模型对600MW超临界流化床内的气固两相流动进行数值模拟。建立了高温回路内气固两相流动三维数学模型。控制方程采用有限体积方法离散,质量和动量方程用欧拉方法。通过计算,得到了分离器入口通道中心截面颗粒浓度与速度矢量分布、分离器入口通道中心截面不同粒径颗粒浓度分布、炉膛中心截面不同粒径颗粒浓度分布、二次风对床内颗粒内循环特性的影响规律、炉膛中心沿宽度方向纵截面布风板区域颗粒浓度与速度矢量分布、回料系统内颗粒浓度的分布以及二次风穿透能力等高温循环回路内气固两相流动特性。
     在高温高压汽水两相试验台上对超临界CFB锅炉水冷壁流动传热特性进行了试验研究。试验参数范围为:压力10-30MPa,质量流速300-1450kg/(m2s),热负荷60-380kW/m2。得到了亚临界、近临界、超临界区宽广参数范围内换热系数及摩擦系数的关联式,以及偏离核态沸腾(DNB)、蒸干(DRYOUT)发生的边界条件及蒸干后传热规律。针对垂直管圈结构和炉内热负荷分布特点,将水冷壁划分为由流量回路、压力节点和连接管组成的流动网络系统。根据质量守恒、动量守恒和能量守恒方程,建立了超临界锅炉水冷壁流量和壁温计算的数学模型,并开发了计算程序。以A电厂1000MW超超临界锅炉为校核对象,全面比较了不同负荷下的上炉膛与下炉膛各回路流量分配、压降、出口汽温、壁温与鳍端温度等参数,结果表明计算值与电厂提供值符合的非常一致,程序是正确可靠的。在此基础上,对所开发的600MW超临界CFB锅炉水动力特性进行了计算分析。根据水冷壁和中隔墙在炉膛内的受热情况,炉膛及中隔墙共划分为110个回路,每一回路划分为29个计算管段,管段划分原则是确保同一管段长度内管子热负荷沿高度方向变化较小。计算中共求解184个非线性方程,其中动量守恒方程158个,流量守恒方程26个。对BMCR、75%BMCR、30%BMVR负荷下的流量分配特性和壁温分布特性进行了计算,并对水冷壁运行安全特性进行了分析。另外,还对吸热偏差对水动力特性的影响进行了分析。
     开发了CFB锅炉屏式过(再)热器计算程序。程序由Microsoft Visual Basic6.0中文版开发完成,采用模块化方式。计算模块是程序的核心模块,与此模块相连接的还有用户参数输入模块、水蒸气热力性质数据库模块、画图模块和结果输出模块(包括WORD文档输出和BMP格式文件输出模块)。
Energy conservation and environmental protection are the two key factors in energy development and application of China. The energy structure has determined that in a certain long time, the coal-fired power plant will still be the main part in electricity production. The supercritical pressure unit has become dominant in our country. The supercritical parameters have the merits of high efficiency, energy conservation, and environmental protection. Circulating fluidized bed is the new generation clean combustion technology developed at recent 20 years in the world. This technology not only achieves high desulfurizing efficiency, low emissions, and combustion efficiency equal to pulverized coal boiler, but also it has the advantages of fuel flexibility, good load regulation, and ash integrating application. Therefore, CFB technology has spread fast in the world. In order to adjust industry structure, optimize the technology of energy application, and promote energy conservation and environmental protection further, it becomes a new direction and trend of clean coal generating electricity technology for the development of 600MW supercritical CFB boiler. The combination of supercritical technology and CFB can make use of the virtues of the two with low technical risk.
     A 600MW supercritical CFB boiler is developed and designed in this paper with a single reheat supercritical cycle and moderate mass flux at water wall. The design fuel is Sichuan Baima anthracite. The boiler main steam and reheat steam pressures are 25.4 and 4.45MPa, respectively. The main steam and reheat steam temperatures are 571 and 569℃, respectively. The furnace dimension is 25.736×16.952m, and the height is 58m (from air distributor to boiler roof). The boiler is mainly composed of single furnace,6 insulated high efficiency cyclones,6 loopseals,6 external heat exchangers, rear convective pass,8 rolling ash coolers, and 2 regenerative air preheaters. The pant-leg and double air distributors are used in the furnace, membrane wall is adopted for the evaporation heating surface. The water cooled air distributor and large diameter bell-jar funnel caps are chosen for the boiler. At the top of the boiler,3 cyclones with 9.3m diameter are arranged in each side, respectively. One loopseal and one external heat exchanger are arranged under each cyclone return dip-leg. The way of feeding coal adopts return leg method. There are total 6 high temperature and 6 low temperature feeding coal points. There are total 6 feeding limestone points which are located in high temperature return tubes.
     The Eulerian-Eulerian two-fluid model is applied to simulate gas-solid two phase flow in the furnace of 600MW supercritical CFB boiler. The three-dimensional mathematical model is established for the simulation of gas-solid two-phase flow in high temperature loop. The control equations are discretized by finite volume methods, the mass and momentum equations are described by Eulerian approach. The characteristics of gas-solid two phase flow in high temperature loop, including the different solids concentrations and velocity vectors in the cyclone inlet, the different solids concentrations in furnace centerline section, the effect of secondary air jets on solids circulating characteristics, solid concentration distribution in return system, and the characteristics of secondary air jets penetration, are obtained through numerical simulation.
     The heat transfer and flow characteristics of the 600MW supercritical CFB water wall were experimentally investigated in a high temperature and pressure loop. The experimental parameters ranges are:Pressure10~30MPa, mass flux300~1450kg/(m2 s), heat flux60~380kW/m2。The correlations of heat transfer and flow, the boundary of DNB and DRYOUT, and the heat transfer characteristics after DRYOUT have been obtained through the analysis of experimental data. The water wall system can be equivalent to a network consisting of circuits, pressure grids, and connecting pipes according to boiler configuration and heat flux distribution. The mathematical model for predicting the profile of water wall flow rate and temperature is established on account of mass, momentum and energy conservations, and the corresponding program is developed. The program is verified through comparisons between the calculated values and those of power plant. It is showed that there is a good agreement between the present results of flow rate distribution in lower and upper furnace, pressure drop, outlet fluid temperature, metal wall and fin temperature, and those of plant. On the basis of verification, the hydrodynamic characteristics of the 600MW supercritical CFB boiler are obtained. The furnace and water wall screen are partitioned into 110 circuts, and one circuit is partitioned into 29 sections. There is a little change for heat flux in one section.184 nonlinear equations, including 158 momentum equations and 26 mass equations, were solved in the analysis. The characteristics of flow rate distribution and metal temperature at BMCR load, 75%BMCR load, and 30%BMCR load are calculated, and the operation safety are analyzed. In addition, the effect of heat absorption deviation on the hydraulic characteristics is discussed.
     The computer program for the calculation of superheater (reheater) metal temperature is developed. The program is written by Microsoft Visual Basic 6.0, and module is applied. The computation module is the key, which is connected by input module, water/steam properties calculation module, graphic module, and output module (including Word input document and BMP file output).
引文
[1]于龙,吕俊复,王智微.循环流化床燃烧技术的研究展望[J].热能动力工程,2004,19(4):336-342.
    [2]杨立洲.超临界压力火力发电技术[M].上海:上海交通大学出版社,1990:21-22.
    [3]Scheffknecht G. Niederaussem Power Station, Unit K, Cologne, Germany[J]. Power,2003,147 (6):78-89.
    [4]Bendixen K. Experiences with coal fired USC boilers in Denmark[R].2008, BWE Co., Ltd.
    [5]陈听宽.超临界与超超临界锅炉技术的发展与研究[J].世界科技研究与发展,2005,27(6):42-48.
    [6]Markel K. Coal Power Program Roadmap[C]. CCPI Round 2 Planning Workshop, Pittsburgh, PA, August 23,2003.
    [7]樊险峰,张志伦,吴少华.国产首台百万千瓦超超临界锅炉的启动调试和运行[J].动力工程,2008,28(4):497-501.
    [8]骆仲泱,何宏舟,王勤辉等.循环流化床锅炉技术的现状及发展前景[J].动力工程,2004,24(6):761-767.
    [9]王树荣,方梦祥,骆仲泱等.循环流化床锅炉大型化关键设计问题研究[J].热力发电,2000(4):2-5.
    [10]刘静,王勤辉,骆仲泱,等.600MWe超临界循环流化床锅炉的设计研究[J].动力工程,2003,23(1):2179-2184.
    [11]Rajaram S. Next generation CFBC[J]. Chemical Engineering Science,1999,54 (22):5565-5571.
    [12]程乐鸣,周星龙,郑成航,等.大型循环流化床锅炉的发展[J].动力工程,2008,28(6):817-826.
    [13]Nowak W, Bis Z, Laskawiec J, et al. Design and operation experience of 230MW CFB boilers at Turow Power Plant in Poland[C]. In. Robert B R Ed. Proceedings of the 15th Int. Conf. on FBC. Savannah:ASME,1999:No.0122
    [14]Goidich S J, Wu S, Fan Z. Design aspect s of the ultra-supercritical CFB boiler[C]. Inter. Pittsburgh Coal Conference. Pittsburgh, USA,2005.
    [15]Goidich SJ, Fan Z, Sippu O. Integration of ultra-supercritical OTU and CFB boiler technologies[C].19th International Conference on FBC. Vienna, Austria,2006.
    [16]刘昀,刘德昌.阿尔斯通循环流化床锅炉的大型化发展[J].电力设备,2006,7(12):18-21.
    [17]Stamatelopoulds G N. Advancement in CFB technology-A combination of excellent environmental performance and high efficiency[C].18th International Conference on FBC, Toronto, Canada,2005.
    [18]吕俊复,岳光溪,张建胜,等.超临界循环流化床锅炉的可行性[J].锅炉制造,2002,4:23-26.
    [19]吕俊复.超临界循环流化床锅炉水冷壁热负荷及水动力研究[D].清华大学博士学位论文,2004.
    [20]雍玉梅.循环流化床锅炉大型化的数值模拟[D].中国科学院工程热物理研究所博士学位论文,2004.
    [21]Wang Q H, Luo Z Y, Li X T. A mathematical model for a circulating fluidized bed (CFB) boiler[J]. Energy,1999,24 (7):633-653.
    [22 Mathiesen V, Solberg T, Hjertager B H. An experimental and computational study of multiphase flow behavior in a circulating fluidized bed[J]. International Journal of Multiphase Flow,2000,26 (3):387-419.
    [23]Senior R C, Brereton C. Modelling of circulating fluidized bed so lids flow and distribution. Chem. Eng. Science,1992,47 (2):281-296.
    [24]Zhou J, Grace, S O, Brereton C M. Voidage profiles in a circulating fluidized Bed of square cross-section[J]. Chem. Eng. Science,1994,49 (19):3217-3226.
    [25]Gidaspow D R, Bezburuah, J D. Hydrodynamics of Circulating Fluidized Beds:Kinetic Theory Approach, in Fluidization Ⅶ, O. E. Potter O E and Nickin D J, Eds., Engineering Foundation, New York,1992, pp.75-82.
    [26]王勤辉,高琼,石惠娴,等.循环流化床中的颗粒团形成、结构及其运动[J].浙江大学学报,2006,40(1):118-122.
    [27]岑可法,倪明江,骆仲泱,等.循环流化床锅炉理论设计与运行[M].北京:中国电力出版社,1998
    [28]Papadikis K, Gu S, Bridgwater A V. CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors. Part B:Heat, momentum and mass transport in bubbling fluidised beds[J].Chem. Eng. Science,2009,64 (5):1036-1045.
    [29]Grace J, Bi H, Goloriz M. Circulating fluidized beds. In:Yang W C (Ed.), Handbook of Fluidization and Fluid-particle Systems.2003, Marcel Dekker, New York.
    [30]Li J. Euler-Lagrange simulation of flow structure and evolution in dense gas-fluidized beds[D]. Ph.D. Thesis, University of Twente, Enschede,2003.
    [31]樊建人,姚军,张新育.气固两相流中颗粒-颗粒随机碰撞新模型[J].工程物理学报,2001,22(5):629-632.
    [32]陆慧林,刘文铁,赵广播.管内稠密气固两相流数值模拟计算:颗粒动力学方法[J].化工学报,2000,51(1):31-37.
    [33]Li Y, Kwauk M. The dynamics of fast fluidization. In:Grace, J., Masten J (Eds.),1980, Fluidization. Plenum Press, New York, pp.537-544.
    [34]Kunii D, Levenspiel O. Effect of exit geometry on the vertical distribution of solids in circulating fluidized beds[J]. Powder Technology,1995,84 (1):83-90.
    [35]白丁荣,金涌.The two-channel model for fast fluidization[C]. FLUIDIZATION'88. ed. by Kwauk M, Kunh D. Beijing:Science Press,1988,155-164.
    [36]Pugsley T.The hydrodynamics of circulating fluidized beds[D]. Ph.D. Dissertation,1995, University of Calgary, Alberta.
    [37]Berruti F, Chaouki J, Godfroy L, et al. Hydrodynamics of circulating fluidized bed risers:a review[J]. Canadian Journal of Chemical Engineering,1995,73,579-602.
    [38]张永哲,徐向东.循环流化床锅炉动态模型与仿真[J].清华大学学报,2000,40(6):76-79
    [39]王勤辉,骆仲泱,李绚天,等.循环流化床锅炉炉内流动和燃烧特性的理论模型[J].动力工程,1999,19(4):269-274
    [40]Tsuo Y P, Gidaspow D. Computation of flow patterns in circulating fluidized beds[J]. AIChE Journal,1990,36 (6):885-896.
    [41]Chen C P. Studies in Two-Phase Turbulence Closure Modeling[D]. Ph.D thesis, Michigan State University,1983.
    [42]Elghobashi S E, Abou-Arab T W, A two-equation turbulence model for two-phase flows[J]. Physics of Fluids,1983,26 (4):931-938.
    [43]Zhou L X, Huang X Q. Prediction of confined turbulent gas-particle jet by an energy equation model of particle turbulence[J]. Science China, Ser. A,1990,33(1):52-59.
    [44]Chapman S, Cowling T G. The Mathematical Theory of Non-Uniform Gases (3rd ed.)[M]. Cambridge University Press,1970.
    [45]Chan C K, Guo Y C, Lau Y S. Numerical modeling of gas-particle flow using a comprehensive kinetic theory with turbulence modulation[J]. Powder Technology,2005, 150(1):42-55
    [46]Jenkins J T, Savage S B. A theory for the rapid flow of identical, smooth, nearly elastic spherical particles[J].J. Fluid Mech..1983,130:187-202
    [47]Lun C K K, Savage S B, Jerey D J, et al. Kinetic theories for granular flow:inelastic particles in Couette flow and slightly inelastic particles in a general flow field[J]. J. Fluid Mech., 1984,140(3):223-256.
    [48]Ding J, Gidaspow D. A bubbling fluidization model using kinetic theory of granular flow[J]. AIChE Journal,1990,36 (4):523-538
    [49]Gidaspow D. Multiphase flow and fluidization[M]. Academic Press,1994
    [50]Enwald H, Peirano E, Almstedt A E. Eulerian two-phase flow theory applied to fluidization[J]. Int. J. Multiphase Flow,1996,22 (12):21-66.
    [51]Jackson R. The mechanics of fluidized beds-the stability of the state of uniform fluidization[J]. Trans. Inst. Chem. Engs..1963,41(1):13-21
    [52]Soo S L. Fluid Dynamics of Multiphase Systems[M]. Blaisdell Press, New York,1967
    [53]Gera D, Gautam M, Tsuji Y, et al. Computer simulation of bubbles in large-particle fluidized beds[J]. Powder Technology,1998,98 (1):38-47
    [54]Gidaspow D. Hydrodynamics of fluidization and heat transfer:super computer modeling[J]. App. Mech. Review,1986,39(1):1-23
    [55]Kuipers J A M, van Duin K J, van Beckum F P H, et al. A numerical model of gas-fluidized beds[J]. Chemical Engineering Science,1992,47 (8):1913-1924
    [56]Kuipers J A M, Prins W, van Swaaij W P M. Numerical calculation of wall to bed heat ransfer coefficients in gas-fluidised beds[J]. AIChE Journal,1992,38 (7):1079-1091
    [57]Lyczkowski R W, Gamwo I K, Dorban V, et al. Validation of computed solids hydrodynamics and pressure oscillations in a bubbling atmospheric fluidized bed[J]. Powder Technology, 1993,76(1):65-77
    [58]Dasgupta S, Jackson R, Sundaresan S. Turbulent gas-particle flow in vertical risers[J]. AIChE Journal,1994,40 (2):215-223
    [59]Balzer G, Boelle A, Simonin O. Eulerian gas-sold flow modeling of dense fluidized bed. VII. Tours,1995:1125-1134
    [60]Nieuwland J J, Veenendaal M L, Kuipers J A M, et al. Bubble formation at a single orifice in gas-fluidized beds[J]. Chem. Eng. Science,1996,51 (17):4087-4102
    [61]Boemer A, Qi H, Renz U. Eularian simulation of bubble formation at a jet in a two-dimensional fluidized bed[J]. Int. J. Multiphase Flow,1997,23 (5):927-44
    [62]张政,谢灼利.流体-固体两相流的数值模拟[J].化工学报,2001,52(1):1-12
    [63]谢灼利,张政.气力输送的数值模拟[J].北京化工大学学报,2001,28(1):22-27
    [64]王勤辉,骆仲泱,倪明江,等.循环流化床锅炉炉内颗粒分布平衡模型[J].中国电机工程学报,2001,21(9):110-115.
    [65]刘向军,徐旭常.循环流化床内稠密气固两相流动的数值模拟[J].中国电机工程学报,2003,23(5):161-165
    [66]李淑强,冉景煜,张力,等.CFBC旋风分离器气固两相流[J].重庆建工学院学报,2007,21(9):83-86.
    [67]苏虎,曾先茂,霍锁善,等.循环流化床锅炉旋风分离器内气固两相流动的数值模拟[J].东方电气评论,2004,18(4):179-184
    [68]蔡杰,凡凤仙,袁竹林.循环流化床气固两相流颗粒分布的数值模拟[J].中国电机工程学报,2007,27(20):71-75.
    [69]王淑彦,赵云华,姜健刘,等.数值模拟颗粒旋转对流化床内气固两相流动特性的影响[J].工程热物理学报,2007,28(2):262-264.
    [70]向文国,徐祥,肖云汉.循环流化床上升段流体动力特性数值模拟[J].东南大学学报,2005,35(5):752-756.
    [71]于勇,蔡飞鹏,周力行.下降管中稠密两相湍流的数值模拟[J].工程热物理学报,2005,26(12):117-120.
    [72]骆仲泱,吴学成,王勤辉,等.循环流化床中颗粒旋转特性[J].化工学报,2005,56(10):1869-1874.
    [73]Petersen I, Werther J. Three-dimensional modeling of a circulating fluidized bed gasifier for sewage sludge[J]. Chemical Engineering Science,2005,60 (16):4469-4484.
    [74]Hua Y, Flamant G, Lu J.3D modeling of radiative heat transfer in circulating fluidized bed combustors:influence of the particulate composition[J]. International Journal of Heat Mass Transfer,2005,48 ():1145-1154.
    [75]Hansen K, Solberg T, Hjertager B. A three-dimensional simulation of gas/particle flow and ozone decomposition in the riser of a circulating fluidized bed[J]. Chemical Engineering Science,2004,59 (22):5217-5224.
    [76]Neri A, Gidaspow D. Riser hydrodynamics:simulation using kinetic theory[J]. AIChE Journal,2000,46(1):52-67.
    [77]Zheng Y, Wan X, Qian, Z. Numerical simulation of the gas-particle turbulent flow in risers reactor based on k-ε-kp-εp-θtwo-fluid model[J]. Chemical Engineering Science,2001,56 (24): 6813-6822.
    [78]Almuttahar A, Taghipour F. Computational fluid dynamics of a circulating fluidized bed under various fluidization conditions[J]. Chemical Engineering Science,2008,63 (6): 1696-1709
    [79]张彦军,高翔,骆仲泱,等.超临界循环流化床锅炉设计关键技术问题的探讨[J].已投于《动力工程》,2009
    [80]张彦军,杨冬,于辉,等.600 MW超临界循环流化床锅炉水冷壁的选型及水动力研究[J].动力工程,2008,28(3):339-344.
    [81]马本锋.国产300MW机组UP型直流锅炉调峰技术改造研究[J].中国电力,2003,36(3):5-9.
    [82]Laffont P, Barthelemy J, Scarlin B. A clean and efficient supercritical circulating fluidised bed power plant[R]. Alstom Co., Ltd.,2009
    [83]Kastner W, Kefer V, Koehler W, et al. BENSON Boilers for Maximum Cost-Effectiveness in Power Plants[R]. Siemens Co., Ltd.,2005.
    [84]Beer J M. High efficiency electric power generation:The environmental role[J]. Progress in Energy and Combustion Science,2007,33 (1):107-134.
    [85]Lee S K, Chang S H. Experimental study of post-dryout with R-134a upward flow in smooth tube and rifled tubes[J]. International Journal of Heat and Mass Transfer,2008,51 (11): 3153-3163
    [86]Kim CH, Bang I C, Chang S H.Critical heat flux performance for flow boiling of R-134a in vertical uniformly heated smooth tube and rifled tubes[J]. International Journal of Heat and Mass Transfer,2005,48 (14):2868-2877
    [87]Iwabushi M. Heat transfer characteristics of rifled tubes in near critical pressure region[C]. Proc.7th Int. Heat Transfer Conf., Munich,1982,5:313-318.
    [88]Nishikawa K, Fujii T, Yoshida S. Investigation into burnout in grooved evaporator tubes [J]. Trans. JSME,1972,75 (6):700-707.
    [89]Kohler W, Kastner W. Heat transfer and pressure loss in rifled tubes [C]. Proc.8th Int. Heat Transfer Conf., San Francisco, USA,1986,5:2861-2865.
    [90]J. B. Kitto, M. Wiener, Effect of nonuniform circumferential heating and inclination on critical heat flux in smooth and ribbed bore tubes[C]. Proc.7th Int. Heat Transfer Conf., Munich, Paper FB21,1982:297-302.
    [91]Swenson H S, Carver J R, Kakarala C R. Heat transfer to supercritical water in smooth-bore tubes[C]. ASME J. of Heat Transfer,1965,87 (4):477-484.
    [92]Acherman J W. Pseudoboiling heat transfer to supercritical pressure water in smooth and ribbed tubes [J]. ASME J. of Heat Transfer,1970,23(4):490-498.
    [93]孙丹,陈听宽,罗毓珊.内螺纹管临界压力区内水的传热特性研究[J].西安交通大学学报.2001,35(3):234-238.
    [94]尹飞,陈听宽,罗毓珊.亚临界及近临界压力区倾斜管与垂直管中汽水沸腾传热特性比较[J].中国电机工程学报,2005,25(1):137-141.
    [95]杨冬,朱晓静,毕勤成,等.超临界循环流化床水冷壁流动传热的实验研究[J].2008,35(3):127-131.
    [96]冯俊凯,沈幼庭,杨瑞昌.锅炉原理及计算(第三版)[M].北京:科学出版社,2003.
    [97]Tucakovic D R, Stevanovic V D, Zivanovic T, et al. Thermal-hydraulic analysis of a steam boiler with rifled evaporating tubes[J]. Applied Thermal Engineering,2007,27 (3):509-519.
    [98]Adam E J, Marchetti J L. Dynamic simulation of large boilers with natural recirculation [J]. Computers and Chemical Engineering,1999,23 (8):1031-1040.
    [99]Kim H, Choi S. A model on water level dynamics in natural circulation drum-type boilers[J]. International Communications in Heat and Mass Transfer,2005,32 (6):786-796.
    [100]董芃,徐艳英,兰日华.自然循环锅炉水动力回路分析法[J].哈尔滨工业大学学报,2007,39(3):462-466.
    [101]赵振宁.水动力计算的通用模型[J].华北电力技术,2004,12:1-4.
    [102]杨冬,于辉,华洪渊,等.超(超)临界垂直管圈锅炉水冷壁流量分配及壁温计算[J].中国电机工程学报,2008,28(17):32-38.
    [103]李燕,李文凯,吴玉新,等.带隔墙的600 MW超临界循环流化床锅炉水冷壁水动力特性[J].中国电机工程学报,2008,28(29):1-5.
    [104]李志伟,孙献斌,时正海.600MW超临界CFB锅护的水动力计算[J].热力发电,2006,12:7-9.
    [105]刘青,吕俊复,辛健,等.600MWe超临界循环流化床锅炉水冷壁温度[J].锅炉技术,2003,34(3):34-38.
    [106]岑可法,周昊,池作合.大型电站锅炉安全及优化运行技术[M].北京:中国电力出版社,2002.
    [107]Yin C, Caillat S, Harion J C. Investigation of the flow, combustion, heat-transfer and emissions from a 609 MW utility tangentially fired pulverized-coal boilerFuel [J].2002,81 (8):997-1006.
    [108]Othman H, Purbolaksono J, Ahmad B. Failure investigation on deformed superheater tubes[J]. Engineering Failure Analysis,2009,16 (1):329-339.
    [109]Gomez A, Fueyo N. Modelling and simulation of fluid flow and heat transfer in the convective zone of a power-generation boiler[J]. Applied Thermal Engineering,2008,28 (5):532-546.
    [110]李彦军,张国磊,曹民侠.增压锅炉过热器三维数值模拟及热偏差分析[J].工程热物理学报,2008,29(12):2115-2118.
    [111]初云涛,周怀春,梁倩.两类过热器壁温分布特性的仿真研究[J].工程热物理学报,2008,28(1):40-44.
    [112]阎维平,陈华桂,叶学民.电站锅炉高温对流受热面管壁温度的校核算法[J].动力工程,2002,22(3):1768-1771.
    [113]阎维平,杜海玲,朱予东.WGZ670/13.7-7型锅炉对流受热面壁温计算及安全性分析[J].电力科学与工程,2007,23(4):42-45.
    [114]北京锅炉厂译.锅炉机组热力计算标准方法[M].北京:机械工业出版社,1976.
    [115]周一工.循环流化床锅炉屏式过热器的设计问题探讨[J].电力设备,2007,8(1):41-43.
    [116]郑昌浩,徐旭常.电站锅炉对流过热器和再热器壁温数值计算方法的研究[J].动力工程,2000,20(4):730-734.
    [117]刘林华,王孟浩,杨宗煊.电站锅炉过热器和再热器管壁温度计算的一种新方法[J].动力工程,1995,15(2):1-4.
    [118]Kalle Nuortimo.采用超临界参数的循环流化床[J].电力建设,2006,27(3):22-23,32
    [119]高新宇,李振宇.600MWe超临界循环流化床锅炉国产化可行性分析[J].锅炉制造,2007,(1):28-30
    [120]阿尔斯通电力.阿尔斯通超临界循环流化床电厂概念设计[J].东方锅炉,2005,(2):22-35
    [121]张彦军,李振宇,王凤君等.300MW循环流化床锅炉的设计和运行实践[J].动力工程,2007,27(4):507-510
    [122]刘恒宇,于德亭,薛凤东.300MW循环流化床锅炉简述[J].电站系统工程,2005,21(2):
    [123]杨旭中.300MW CFB锅炉现况与选择[J].中国勘测设计,2008,(3):25-28
    [124]岑可法.工程气固多相流动的理论及计算[M].杭州:浙江大学出版社,1990.
    [125]刘大有.二相流体动力学[M].北京:高等教育出版社,1993
    [126]杨小明.流化床气固两相流动的冷态实验及数值计算[D].昆明理工大学硕士学位论文,2004.
    [127]徐祥,向文国,秦成虎.流化床密相区流动特性的数值模拟[J].热能动力工程,2004,19(2):131-133.
    [128]贾琦月.循环流化床流场分析与研究[D].天津大学硕士论文,2003.
    [129]赵涛,高鹃,程中虎.射流流化床内流体力学行为的模拟研究[J].煤炭转化.2004,27(1):31-35.
    [130]王康健,张丹娅,金军.75t/h电站循环流化床锅炉燃烧和污染物排放的数值模拟[J].能源工程.2004,(1):36-42.
    [131]Arastoopour H. Numerical simulation and experimental analysis of gas/solid flow systems: 1999 Fluor-Daniel Plenary lecture[J]. Powder Technology,2001,119 (1):59-67.
    [132]Cruz F E, Steward R, Pugsley T. Modelling CFB riser hydrodynamics using FLUENT, Circulating Fluidized Bed Technology, Ⅶ, John R, Grace M, Eds., Ontario, Canada,2002: 435-442.
    [133]Benyahia S, Arastoopour H, Knowlton T M. Numerical simulation of a large-scale circulating fluidized bed, Circulating Fluidized Bed Technology,Ⅶ, John R, Grace M, Eds., Ontario, Canada,2002:451-458.
    [134]Guenther G, Syamlal M. The effect of numerical diffusion on simulation of isolated bubbles in a gas-solid fluidized bed[J]. Powder Technology.2001,116 (1):142-154.
    [135]Loth E, O'Brien T, Syamlal M. Effective diameter for group motion of poly disperse particle mixtures[J]. Powder Technology.2004,142 (1):209-218.
    [136]Benyahia S, Arastoopour H, Knowlton T M. Simulation of particles and gas flow behavior in the riser section of a circulating fluidized bed using the kinetic theory approach for the particulate phase[J]. Powder Technology,2000,112 (1):24-33.
    [137]Gera D, Syamlal M, Thomas J. Hydrodynamics of particle segregation in fluidized beds[J]. International Journal of Multiphase Flow.2004,30 (1):419-428.
    [138]Cizmas P G, Palacios A, O'Brien T, et al. Proper-orthogonal composition of spatio-temporal patterns in fluidized beds [J]. Chemical Engineering Science,2003,58 (19):4417-4427.
    [139]Syamlal M, O'Brien T J. Computer simulation of bubbles in a fluidized bed[J]. AIChE Symp. Series,1989,85 (1):22-31.
    [140]Ogawa S, A. Umemura A. On the equation of fully fluidized granular materials[J]. J. Appl. Math. Phys.,1980,31 (4):483-493.
    [141]Dalla Valle J M. Micromeritics:the Technology of Fine Particles[M]:London:Pitman Press, 1948.
    [142]费祥麟,胡庆康,景思睿.高等流体力学[M].西安:西安交通大学出版社,1989.
    [143]Spalding D B. Computer simulation of two-phase flows, with special reference to nuclear-reactor systems. In:Computational Techniques in Heat Transfer. Swansea: Prineridge Press,1985:1-44.
    [144]吕俊复.超临界循环流化床锅炉水冷壁热负荷及水动力研究[D].清华大学博士学位论文,2004
    [145]冯俊凯,沈幼庭,杨瑞昌.锅炉原理及计算(第三版)[M].北京:科学出版社,2003
    [146]电站锅炉水动力计算方法.JB/Z.201-83[S].上海:上海发电设备成套研究所,1980.
    [147]徐济鋆.沸腾传热和汽液两相流[M].北京:原子能出版社,2001.
    [148]肖莜南.现代数值计算方法[M].北京:北京大学出版社,2003.
    [149]杨世铭,陶文铨.传热学(第三版)[M].北京:高等教育出版社,1998.
    [150]周一工.膜式水冷壁表面热流密度分布的精确解[J].锅炉技术.1991,(1):1-5.
    [151]居怀明,徐元辉,李怀萱.载热质热物性计算程序及数据手册[M].北京:原子能出版社,1990.
    [152]周一工.循环流化床锅炉屏式过热器的设计问题探讨[J].电力设备,2007,8(1):41-43.
    [153]卢友艳.循环流化床锅炉屏式过热器设计问题探讨[J].锅炉技术,2004,35(5):29-32
    [154]吴斐,唐必光,余艳芝等.神经网络在过热器、再热器管壁温度计算中的应用[J].发电设备,2005,(2):108-111
    [155]柯波,李争起.1025t/h锅炉启动时再热器管壁温度的分析研究[J].中国电力,2004,37(11):43-46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700