用户名: 密码: 验证码:
多源遥感数据在活动构造信息提取中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活动构造是了解环境演变和灾害发生机理的地学基础,与自然灾害有着密切的关(陈颙等,2001)。最近一列的大地震再一次表明了研究活动构造的紧迫性和重要性。遥感具有宏观性和直观性等特点,是进行活动构造分析的有效手段。目前遥感正朝着多源化方向发展,不同传感器,不同分辨率,不同特征遥感可以相互补充,相互验证,获得活动构造不同尺度的详细信息,为地震灾害防御、风险评估、工程建筑等提供科学依据。
     不同区域、不同类型的活动构造表现特征不同。为了充分利用多源遥感的优势,有效获得活动构造的相关信息,本文在国家973项目“中亚大三角地震域活断层解释”专题的支持下,在大量调研国内外现状的基础之上,统地开展了基于中等分辨率光学影像和DEM的活动断裂信息提取方法研究,初步总结了活动断裂的遥感解译标志。基于此方法对富蕴断裂、甘孜玉树断裂以及岷江断裂进行了详细的分析研究,揭示断裂的几何和运动特征。对断裂的重点地区利用高分辨率遥感影像如SPOT影像、ALOS PRISM影像进一步获取了活动断裂更加详细的信息,并验证了中分辨率遥感影像活动断裂宏观解译的正确性和方法的可行性。表明基于中等分辨率的活动断裂提取方法是有效的,为同等构造环境区域的活动断裂解译提供了重要参考。
     结合高分辨率的航空遥感影像,本文研究了玉树地震地表破裂的图像特征,详细提取了该次地震地表破裂的空间展布。地表破裂的分布结果进一步证明了甘孜—玉树断裂的继承性活动特征,原断裂控制了该次地表破裂的分布。研究表明,震后快速获取的高分辨率遥感数据提供了及时有效的地震构造信息,为地面的详细调查提供了指导。
     为了研究地震地表破裂的细部特征,采用地面激光三维扫描仪获取的禅古寺附近地震地表破裂三维点云数据和纹理(照片),进行了地表破裂分布的三维建模分析,获取了定量的破裂特征,确定了玉树地震地表破裂在禅古寺附近表现为左旋逆断层性质,平均水平位错10cm,垂直位错74cm。表明激光三维扫描技术是活动构造精细与定量研究的有效手段。为活动断裂的活动性、动力学特征研究,以及区域地震危险性评价和工程建设提供重要的依据。
Active tectonics is the fundamentals to understand environmental evolution and disaster forming mechanism of the Earth. It is strongly related to natural disaster (Chen et al., 2001). A series of recent large earthquakes are once again stressed the urgency and importance of research of active tectonics. With the characters of broad perspectives and intuition, remote sensing is an effective tool to analyze the active tectonics. Nowadays, multi-source remote sensing is the important developing direction. Remote sensing images with different sensors, different resolutions and different properties can complement and validate each other. And they provide different scales of information of active tectonics for earthquake disaster prevention, risk assessment and so on.
     Active tectonics in different areas and types appears different features. In order to get much more information related active tectonics, advantages of multi-source remote sensing were used. In support of the project of seismic active fault interpretation in the large triangle area of central Asian, which is a national 973 programme,sponsored by MOST, this paper investigated the current active tectonics and carried out the systematic research of methods of active fault extraction from optical imageries and DEMs. Then, the image features for interpretation of active faults were also researched. On the basis of these methods, Fuyun fault, Ganzi-Yushu fault and Minjiang fault in the west of China were analyzed in detail. In the same time, their geometric and dynamic features were disclosed. For some important segments, high resolution remote sensing images such as SPOT images and ALOS PRISM images were used for validating the correctness of interpretation results and feasibility using these methods for further study. It is indicated that these methods based on medium resolution images are effective for active fault identification. Also, these methods can be applied to the region which has similar natural environment and geological setting for active fault information extraction.
     Combining with high-resolution aerial remote sensing images of Yushu, in this paper, the image characteristics of the earthquake surface rupture was studied, and the spatial distribution of the earthquake surface rupture was extracted in detail. The distribution results of surface rupture further confirmed the inherited activity characteristics of the Ganzi-Yushu fault,which the distribution characteristics of the original fault controlled the distribution characteristics of surface rupture caused by the Yushu earthquake. The study showed that high-resolution remote sensing data acquired rapidly after earthquake provided timely and effective seismotectonic information and guidance for detailed ground investigation.
     In order to study the more detail feature of surface rupture caused by earthquake, the Trimble GX 3D laser scanner was used to acquire the fine points cloud data of seismic surface rupture of Yushu fault, which is located near Changu temple, south of the Yushu city. Then, combing with high resolution texture photos obtained on site and precisely matched with the point cloud data, the 3D model of the surface rupture was created based on the no projection mode. Integrating the 3D model and fine cloud points, the quantitative and qualitative characters of surface rupture were obtained, which the surface rupture here was characterized by mainly vertical displacement with minor left-lateral movement. The mean horizontal movement was about 10cm and vertical displacement was about 74cm. The result showed that terrestrial LIDAR technology is a powerful, effective and promising tool to be applied to the research of seismic tectonics in detail and quantitatively. It can not only retrieve the actual morphology of tectonics in field, but also provide series of high-precision and quantitative parameters of active fault for further analysis.
引文
Abellán A, Vilaplana J M, Martínez J.2006. Application of a long-range Terrestrial Laser Scanner to a detailed rockfall study at Vall de Núria (Eastern Pyrenees, Spain)[J]. Engineering Geology, 88(3-4): 136-148.
    ASTER GDEM Readme File-ASETER GDEM Version 1. [EB/OL]https://lpdaac.usgs.gov/ Baran R, Guest B, Friedrich A M. 2010. High-resolution spatial rupture pattern of a multiphase flower structure, Rex Hills, Nevada: New insights on scarp evolution in complex topography based on 3-D laser scanning[J]. Geological Society of America Bulletin, 122(5-6): 897-914.
    Beraldin J A, Blais F, Boulanger P, et al. 2000. Real world modeling through high resolution digital 3D imaging of objects and structures[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 55(4): 230-250.
    Bitelli G, Dubbini M, Zanutta A. 2004. Terrestrial Laser Scanning And Digital Photogrammetry Techniques To Monitor Landslide Bodies[C]. Proceedings of the XXth ISPRS congress, Istanbul, Turkey. Commission V, WG V/2.
    Buckley S J, Howell J A, Enge H D, et al. 2008. Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations[J]. Journal of the Geological Society, London, 165(3): 625-638.
    Fu B., LIN A.. 2003. Spatial distribution of the surface rupture zone associated with the 2001 Ms8.1 central Kunlun earthquake, northern Tibet, revealed by satellite remote sensing data[J] INT.J. REMOTE SENSING, 24(10):2191-2198.
    Ganas A, Pavlides S, Karastathis V. DEM-based morphometry of range-front escarpments in Attica, central Greece, and its relation to fault slip rates, [J]. Geomorphology. 2005, 65(3-4): 301-319.
    Ganas A., G. Papadopoulos, S.B. Pavlides. 2001. The 7th September 1999 Athens 5.9Ms earthquake: remote sensing and digital elevation model inputs towards identifying the seismic fault. INT. J. Remote Sensing, 22(1),191-196.
    Ganas A., Papadopoulos G., Pavlides S.B. 2001. The 7 Sepetember 1999 Athens 5.9Ms earthquake:remote sensing and digital elevation models inputs towards indentifying the seismic fault[J]. INT.J. REMOTE SENSING, 22(1):191-196.
    Hunter G, Pinkerton H, Airey R, et al. 2003. The application of a long-range laser scanner for monitoring volcanic activity on Mount Etna[J]. Journal of Volcanology and Geothermal Research., 123(1-2): 203-210.
    Igor V, Florinsky. 1996. Quantitative topographic method of fault morphology recognition[J]. geomorphology, 16:103-119.
    Jones L.m., Weibin han, Hauksson E. 1984. Focal mechanisms and aftershock locations of the songpan earthquake of August 1976 in SiChuan, China[J].J.Geophys, 89(B9):7697-7707.
    Jones R R, Kokkalas S, Mccaffrey K J W. 2009. Quantitative analysis and visualization of nonplanar fault surfaces using terrestrial laser scanning (LIDAR)—The Arkitsa fault, central Greece, as a case study [J]. Geosphere, 5(6): 465-482.
    Kaya S., Muftuoglu O., Tuysuz O. et al. 2004. Tracing the geometry of an active fault using remote sensing and digital elevation model:Ganos segment, North Anatolian Fault zone, Turkey[J]. INT.J. REMOTE SENSING, 25(19):3843-3855.
    Lattman, L.H. 1958. Techinque of mapping geologic fracture traces and lineaments on aerialphotographs. Photogrammetric Engineering, 24:568-576.
    Matsuoka M., Fumio Yamazaki. Identification of damaged area due to the 1995 Hyogoken-Nanbu Earthquake using satellite optical images[A] Proceeding of 19th Asian conference on remote sensing, Q9[C], 1998:1-6.
    Matsuoka M., Fumio Yamazaki.Use of SAR Intensity imagery for earthquake detection [A] 2nd workshop on application of remote sensing technologies for disaster response[C]. 2004,Newport Beach, CA, USA:1-5.
    McNeillS.J., Belliss, S. E.2009.Assessment of digital elevation model accuracy using ALOS-PRISM stereo imagery[C].Image and Vision Computing New Zealand, 2009.IVCNZ '09. 24th International Conference, 29-34.
    Mitoni Y., Takeushi S. Analysis of spectral feature of the damaged areas by building damage due to recent earthquakes using aerial television images[A] Proceeding of the 21st Asian Conference on Remote sensing[C], 1995:117-118.
    Molnar Peter, Tapponinier Paul.1975. Cenozoic Tectonics of Asia: Effects of a ContinetalCollision[J] Science,189[4201]:419-426.
    Muller R., SchneiderM., Radhadevi, P. V., et al.2009.Stereo evaluation of ALOS PRISM and IKONOS in Yemen[C]. Geoscience and Remote Sensing Symposium,2009 IEEE International,IGARSS 2009,2:II-1-II-2.
    OGC(OpenGIS Consortium). 1999. The OpenGIS Abstract Specification, Topic7: The Earth Imagery Case, http://www.opengis.org/public /abstract/99-107.pdf
    Philip G.. 2007. Remote sensing data analysis for mapping active faults in the northwestern part of Kangra Valley, NW Himalaya, India[J]. International Journal of Remote Sensing, 28(21):4745-4761.
    Rathje E.M., Kyn Seok Woo. Crawford M, et al. 2005. Earthquake damage identification using multitemporal high-resolution optical satellite imagery[A] 2005IEEE International[C]. 7:5045-5048.
    Schulz T, Ingensand H. 2004.Terrestrial laser scanning-investigations and applications for high precision scanning[C].www.fig.net/pub/athens/papers/ts26/TS26_1_Schulz_Ingensand.pdf.
    Sequeira V, Fiocco M, Bostrom G, et al. 2003.3D Verification of Plant Design. 25th ESARDA
    Symposium on Safeguards and Nuclear Material Management, Stockholm, Sweden[R]. http:// mortimer.jrc.it/sir/Publications/040130-DIV-paper%20ESARDA.pdf.
    Takashi Oguchi,Tatsuto Aoki,Nobuhisa Matsuta. 2003.Identification of an active fault in the Japanese Alps from DEM-based hillshading[J].Computers& Geosciences. 29:885-891.
    Tapponinier Paul, Molnar Peter. 1977. Active faulting and tectonics in China[J]. Journal of Geophsical Research, 82(20):2905-2930.
    Tian Y.F, J.F. Zhang, A.X Dou, et al. 2003. Remote sensing digital image processing techiniques in active faults survey[C], Geoscience and Remote Sensing Symposium, 2003. IGARSS '03.Proceedings. 2003 IEEE International,4:2392-2394.
    Walker R T. 2006. A remote sensing study of active folding and faulting in southern Kerman province, S.E. Iran[J]. Journal of Structural Geology, 39(1): 85-106.
    Wehr A, Lohr U. 1999.Airborne laser scanning--an introduction and overview[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3): 68-82.
    Wilson J.T.. 1941. Structural features in the Northwest Territories [J]. American Journal of Science, 239:493-502.
    Zumsprekel H, Prinz T. 2000. Computer-enhanced multispectral remote sensing data: a useful tool for the geological mapping of Archean terrains in (semi)arid environments[J]. Computers & Geosciences., 26(1): 87-100.
    柏美祥,尹光华,郭恒祖,等. 1991.二台断裂南段的第四纪活动[J].内陆地震,5(4):290‐295
    陈立春,陈桂华,陈立泽,等. 2006.柯坪塔格推覆活动构造的ETM影像特征解译[J].地震地质,28(2): 289‐298
    陈文凯,张景发,姜文亮,等. 2007.基于TM和DEM的茅山地区断裂构造解译[J].地壳构造与地壳应力文集,19:67‐75
    陈鑫连. 1982.地震灾害的航空遥感信息快速评估与救灾决策[M].北京:地震出版社
    陈颙,陈棋福,李娟. 2001.活动构造研究的一些进展[J].中国地震,17(2):103‐109
    单新建,叶红,陈国光.等.1999.数字遥感图像处理的多源数据融合方法在地质学中的一些应用[J].地震地质, 21(4):465‐472
    邓起东. 1996.中国活动构造研究[J].地质评论, 42(4):295‐299
    邓起东. 2002.中国活动构造研究的进展与展望[J].地质评论,48(2):168‐177
    丁国瑜. 1982.活动走滑断裂带的断错水与地震[J].地震. 1(1): 3‐8.
    丁国瑜等. 1989.中国活断层图集[M].地震出版社,西安地图出版社
    董彦芳,袁小祥,王晓青,等. 2010年青海玉树Ms7.1级地震地表破裂特征的高分辨遥感分析(待发表)
    窦爱霞,王晓青,王栋梁,等. 2010.基于多源数据的活动断裂遥感图像处理技术[J].地震,30(3):123‐128
    杜凤兰,田庆久,夏学齐,等. 2004.面向对象的地物分类法分析与评价[J].遥感技术与应用,19(1):20‐23
    范湘涛等.2000.柯坪地区构造弱信息提取及左行走滑断层证据[J]高校地质学报,6(1): 289‐298
    方洪宾,等. 1:25万遥感地质填图方法和技术[M].北京:地质出版社:58‐59
    冯万鹏,张景发,田云峰,等. 2004.基于ETM+遥感影像红河断裂带构造解译方法[J].地壳构造与地壳应力文集,17:161‐166
    付碧宏,时丕龙,张之武. 2008.四川汶川Ms8.0大地震地表破裂带的遥感影像解析[J].地质学报,82(12):1678‐1687
    付碧宏,张松林,谢小平.等. 2006.阿尔金断裂西段‐康西瓦断裂的第四纪构造地貌特征研究[J].第四纪研究,26(2): 228‐235
    国家地震局地质所. 1985.遥感地质文集.北京:地震出版社
    洪顺英,申旭辉,赖木收,等. 2006.阿尔泰山东缘主要活动断裂遥感影像特征分析[J].地震地质,28(1):119‐128
    洪顺英,张红英,申旭辉,等. 2007.南京市活动断层卫星遥感图像的研究[J].遥感信息,4:46‐50
    胡方秋,刘景元.1989.用遥感图象分析北天山西段活动断裂的展布特征及活动速率[J]内陆地震,3(1):27‐33
    惠凤鸣,田庆久,李应成. 2004.Aster数据的DEM生产及精度评价[J].遥感信息,(1):14‐18
    姜文亮,张景发,龚丽霞. 2007.海南岛北部地区活动断裂的遥感影像研究[J].地震地质,29(4):796‐804
    荆燕,冯希杰,戴王强等.利用Envisat‐1数据与ETM数据融合对陕西临潼‐长安断裂中断定位[J].吉林大学学报(地球科学版), 38(3):514‐520
    李建华. 1996.利用卫星图像研究华北平原北西向隐伏活动断裂[J].国土资源遥感,1(27):29‐35
    李闽峰,刑成起,蔡长星,等. 1995.玉树断裂活动性研究[J].地震地质,17(3):218‐224
    刘建民,陈柏林,董树文,等. 2009.新疆富蕴可可托海‐二台断裂带中假玄武玻璃及其围岩的年代学研究[J].地质评论,55(4):581‐589
    刘学军,龚健雅,周启鸣,等. 2004.基于DEM坡度坡向算法精度的分析研究[J].测绘学报,33(3):259‐263
    马宗晋,等.1992.活动构造基础与工程地震[M].北京:地震出版社:45‐52
    梅安新,鹏网路,秦其明,等. 2001.遥感导论[M]北京:高等教育出版社
    宁书年等. 1995.遥感图像处理与应用[M].北京:地震出版社:107‐110
    彭华,马秀敏,白嘉启,等. 2006.甘孜玉树断裂带第四纪活动特征[J].地质力学学报,12(3):295‐304
    史兴民,杨景春. 2003.河流地貌对构造活动的响应[J].水土保持研究. 1(3): 48‐51
    孙家柄等. 2003.遥感原理与应用[M].武汉:武汉大学出版社:24‐25
    孙鑫喆,徐锡伟,陈立春,等. 2010.青海玉树Ms7.1地震两个典型地点的地表破裂特征[J].地震地质,32(2): 338‐344.
    谭仁春,杜清运,杨品福,等. 2006.地形建模中不规则三角网构建的优化算法研究[J].武汉大学学报(信息科学版),31(5): 436‐439.
    汤国安,李发源,刘学军.2010.数字高程模型教程[M].北京:科学出版社:105‐107
    汤国安,刘学军,闾国年. 2005.数字高程模型及地学分析的原理与方法[M].北京:科学出版社
    唐荣昌,韩渭宾,等.1993.四川活动断裂与地震[M].北京:地震出版社
    唐荣昌,文德华,黄祖智,等. 1991.松潘‐龙门山地区主要活动断裂带第四纪活动特征[J].地震,7(3):64‐71
    唐文清,刘宇平,陈智梁,等. 2004.岷山隆起边界断裂构造活动初步研究[J].沉积与特提斯地质. 24(4):32‐34
    唐文清,孙志明. 1999.四川松潘弓嘎岭‐漳腊盆地新构造运动[J].特提斯地质,23:103‐107
    王峰,荆燕,陈志军.2004.运用Radarsat与ETM数据融合探测隐伏断裂[J].地震研究, 27(4):369‐373
    王红平,刘修国,罗红霞,等.基于RPC模型的IRS‐P5影像正射校正[J].地球科学‐中国地质大学,35(3):485‐489
    王睿博. 2008.基于DEM的川西高原构造地貌特征提取与分析[D].中国地质大学
    王润生,丁谦,张幼莹,等. 1999.遥感色调异常分析的协同优化策略[J].地球科学‐中国地质大学学报,24(5):497‐502
    王晓青,窦爱霞,丁香,等.2007.“地震遥感信息分析与处理统”技术报告[R].北京:中国地震局地震预测研究所:136
    王晓青,窦爱霞,丁香.等. 2006.高分辨率遥感信息处理与解译成果报告[R].北京:中国地震局地震预测所:8‐26
    王晓青,蒋铭,张德成.1997.航空影像震害自动识别的初步研究[A].庄逢甘,中国地方遥感应用进展‐全国地方遥感应用协会成立五周年论文集[C].北京:宇航出版社:152‐156
    王晓青,苗崇刚,朱博勤,等. 2010.汶川地震建筑物震害遥感解译图集[M].北京:地震出版社
    王晓青,魏成阶,苗崇刚,等.2003.震害遥感快速提取研究—以2003年2月24日巴楚-伽师6.8级地震为例[J].地学前缘,10(增刊):285‐291.
    王岩. 2009.面向对象图像处理方法在遥感震害提取中的应用研究[D].地震预测研究所
    魏永明,蔺启忠,王学潮,等. 2005.南水北调西线工程区活动断裂构造遥感研究[J].遥感学报,9(5):616‐622
    魏占玉. 2010.高精度断层面形貌学定量研究[D].中国地震局地质研究所
    闻学泽,黄圣睦,江在雄,等. 1985.甘孜‐玉树断裂带的新构造特征与地震危险性估计[J].地震地质,7(3):23‐32
    闻学泽,徐锡伟,郑荣章,等.甘孜‐玉树断裂的平均滑动速率与近代大地震破裂[J].中国科学(D辑),33(增刊):199‐208
    吴小平,胡建中. 2009.岷江源地区新构造运动特征[J].现代地质,23(3):431‐439
    谢广林. 2000.中国活动断裂遥感信息分析.北京:地震出版社
    许志琴,候立玮,王宗秀. 1991.松潘—甘孜造山带构造研究新进展[J].中国地质,12:14‐16.
    杨景春,李有利.2001.地貌学原理[J].北京大学出版社:195‐198
    杨喆,程家喻. 1993.澜沧—耿马地震灾情的航空遥感调查[J].国土资源遥感,5(1):17‐23
    张德成. 1993.建筑物震害航空照片目视判读标志的初步研究[J].地震, 13(1):26‐30
    张国民,马宏生,王辉,等. 2005.中国大陆活动地块边界带与强震活动[J].地球物理学报,48(3):602‐610.
    张过. 2005.缺少控制点的高分辨率卫星遥感影像几何纠正[D].武汉大学
    张景发,陶夏新,田云峰,等. 2004.城市周边活断层探测中遥感技术应用[J].自然灾害学报,13(1):137‐145
    张景发,王四龙,侯孝强.1996.活动断裂带中遥感数字图像处理技术——以鲜水河活动断裂带为例[J].地震地质, 18(1):2‐16
    张景发,谢礼立,陶夏新. 2002.建筑物震害遥感图像的变化监测与震害评估[J].自然灾害学报,11(2):59‐64
    张微,陈汉林,李启敏,等. 2007.高分辨率遥感在杭州活断层探测中的应用[J].煤田地质与勘探,35(3):10‐14
    张永双,马寅生,胡道功,等.2010.玉树地震地表破裂调查与灾后重建避让选址研究[J].地质学报,84(5):593‐605
    张玉明,白朝军,方怀宾.2002.TM数据在西藏活动构造解译中的应用[J].国土资源遥感, 54:37‐39
    赵秋艳. 2000. Landsat‐7卫星的有效载荷ETM+[J].航天返回与遥感, 21(4):25‐32
    赵小麟,邓起东,陈社发. 1994.岷山隆起的构造地貌学研究.地震地质,16(4):429‐439.
    周荣军,马声浩,蔡长星. 1996.甘孜‐玉树断裂带的晚第四纪活动特征[J].中国地震,12(3):250‐260
    周荣军,蒲晓虹,何玉林,等. 2000.四川岷江断裂带北段的新活动、岷山断块的隆起及其与地震活动的关[J]. 22(3):285‐294
    周荣军,李勇,Alexander L Densmore,等.2006.青藏高原东缘活动构造[J].矿物岩石,26(2):40‐51
    朱亮璞. 1994.遥感地质学[M].地质出版社:135‐136
    朱亮璞,包献华. 1996.浙江武义萤石矿床遥感找矿预测[J].环境遥感,11(4): 267‐272
    邹谨敞,邵顺妹.1995.活动断裂的遥感影像研究[J].环境遥感,10(3):183‐187
    张军龙,陈长云,胡朝忠,等. 2010.玉树MS7.1地震地表破裂带及其同震位移分布[J].地震, 30(3): 1‐12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700