用户名: 密码: 验证码:
不同光暗周期下野牛草相连克隆分株间生物节律同步化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物钟作为植物的内源性调节机制,驱动植物体的生命活动与昼夜交替相互协调,维持近24h的节律性振荡,进而增强其适应性和生存能力。因此,生物钟的生理与分子调控机制成为近年来的研究热点之一。野牛草(Buchloe dactyloides (Nutt.)Engelm.)作为匍匐茎型克隆植物,其相连克隆分株间通过节间子连接,实现水分,矿质元素及光合产物的传递和共享。本文在研究不同光暗周期下野牛草分株活性氧清除系统及内源激素日变化规律的基础上,通过转录组测序鉴定了野牛草的节律表达基因,并从转录水平解析其表达模式,最终明确不同光暗周期下野牛草相连克隆分株间节律协调机制。主要结论如下:
     (1)野牛草植株活性氧清除系统活性和内源激素含量都具有节律性变化规律,野牛草相连分株在不同光暗周期下其活性氧清除系统的节律性变化与内源激素含量的节律性变化均趋于同步。本研究以野牛草分株为材料,在光/暗周期(12h光照/12h黑暗)和暗/光暗周期(12h黑暗/12h光照)条件下,野牛草断开分株中超氧化物歧化酶(SOD),过氧化物酶(POD),过氧化氢酶(CAT),抗坏血酸过氧化物酶(APX)的活性以及丙二醛(MDA)的含量节律性变化趋势基本相反,而野牛草相连分株中SOD,POD,CAT,APX活性以及MDA含量的节律性变化趋于同步;同时,在上述两种光照条件下,野牛草断开分株中生长素(IAA)、赤霉素(GA)、脱落酸(ABA)、玉米素核苷(ZR)含量的节律性变化趋势基本相反,野牛草相连分株在不同光暗周期下的IAA、GA、ABA、及ZR含量的节律性变化趋于同步。
     (2)从野牛草日变化转录组中鉴定了121个节律转录本,分别代表已知的16个节律基因。本研究对一个光/暗周期内(ZT0至ZT0′,4h间隔)的7份野牛草植株样本进行转录组测序,得到平均约5G的高质量数据。通过对7份转录组数据进行从头拼接(De novo),共组装产生196,010条转录本,转录本的平均长度和N50分别为1302bp和2116bp。野牛草转录组与公共蛋白数据BLASTx显示,分别有129,554(66.1%),93,386(47.6%),40,904(20.87%)和50,592(25.81%)条转录本分别注释到Nr,Swiss-Prot,GO和COG蛋白数据库,且GO分类表明绝大多数转录本与结合功能、代谢过程、催化活性等功能相关;KEGG分析显示,共有127818(65.2%)条转录本参与到127条不同的代谢通路,其中起重要调控作用的信号通路为氧化磷酸化,糖酵解/糖异生,植物激素信号转导等;将野牛草转录组数据与拟南芥TAIR数据库比对,共有25,881(13.2%)条转录本与拟南芥基因相似,其中包括121个节律转录本,分别代表了CCA1(生物钟相关蛋白1),LHY(晚期下胚轴蛋白),GI(GIGANTEA),ZTL(Zeitlupe),PHYA(光敏色素A),PHYB(光敏色素B),CRY2(隐花色素2),COP1(光形态建成蛋白1),CHS(查尔酮合成酶);PIF3(光敏色素互作因子3),HY5(下胚轴伸长蛋白5),CDF1(Cycling dof factor1),UVR8(紫外线B受体蛋白8),PAP1(光敏色素关联蛋白1),CKIIα(酪蛋白激酶2α多肽)和CKIIβ(酪蛋白激酶2β多肽)等16个节律基因。
     (3)野牛草节律转录本的表达呈现节律性变化,野牛草相连分株在不同光暗周期下节律转录本的节律性表达存在同步化趋势。利用qRT-PCR对不同的处理条件下(16h光照/8h黑暗,8h光照/16h黑暗,24h光照,24h黑暗,以及盐,干旱,冷,热等)51份野牛草样品中的10个候选内参基因的表达量进行了分析,对内参基因的表达稳定性分析(GeNorm,NormFinder和Bestkeeper)表明,β-ACT,DNAJ和PP2A是不同光暗周期下野牛草样品中表达最稳定的内参基因,而GAPDH,β-ACTIN,DNAJ和PP2A是不同逆境条件下最合适的内参基因;根据野牛草转录组测序结果,选取节律转录本CCA1,LHY,GI,PHYA,CKIIα,CKIIβ等,利用qRT-PCR对RNA-seq中这几个转录本的表达量进行验证,结果发现,6个节律转录本的qRT-PCR数据和RNA-seq结果基本吻合,且各自呈现不同趋势的节律性变化,只是在表达量上略有差异。其中,LHY与CCA1的表达呈现近余弦的变化趋势,两个调节基因CKIIα/β的表达呈现近正弦的变化趋势,GI的表达也呈现近正弦的变化趋势,PHYA的表达呈现“倒V形”的变化趋势。此外,野牛草断开分株中HY5的表达在光/暗周期下呈现节律性变化,而其在暗/光暗周期下的表达呈现紊乱模式,同时,野牛草相连分株中HY5在不同光暗周期下其节律性表达趋于同步。
     综上所述,野牛草植株活性氧清除系统的活性变化、内源激素的含量变化以及节律转录本的表达都具有节律性,野牛草相连克隆分株活性氧清除系统的节律性变化、内源激素含量的节律性变化与节律转录本的节律性表达在不同光暗周期下有同步化的趋势。
As an endogenous regulatory mechanisms of plants, circadian clock coordinatesday-nightcycle and life activities of plants to maintain nearly24h rhythmic oscillation, thus enhancing itsadaptability and survivability. Thus, physiological and molecular mechanisms of the circadianclock become one of the research focus in recent years. As stolon clonal plants, Buchloedactyloides (Nutt.) Engelm. connected ramets, which is connected by setsuko, sharing andtransmitting water, mineral elements and photosynthetic products. In this paper, Buchloedactyloides (Nutt.) Engelm. ramets were used as the experiment material, diurnal variation ofreactive oxygen scavenging system and endogenous hormones of Buchloe dactyloides (Nutt.)Engelm. were tested under differences photoperiod,based on the transcriptome sequencingofBuchloe dactyloides (Nutt.) Engelm., the circadian rhythm transcripts were identified, andexpression patterns of circadian rhythm transcripts were tested, finally, coordinationmechanisms between Buchloe dactyloides (Nutt.) Engelm. connected ramets under differencephotoperiod. The main conclusions are as follows:
     (1) Reactive oxygen species scavenging system activity and endogenous hormone contentof Buchloe dactyloides (Nutt.) Engelm. both have a circadian rhythm variation, and reactiveoxygen species scavenging system activity and endogenous hormone content of Buchloedactyloides (Nutt.) Engelm.connected ramets tend to synchronize under differencesphotoperiod. In this study, superoxide superoxide dismutase (SOD), peroxidase (POD),catalase (CAT), ascorbate peroxidase (APX) activity and malondialdehyde (MDA) contentinBuchloe dactyloides (Nutt.) Engelm. disconnected ramets had a opposite variation trend inthe light/dark cycle (12h light/12h dark) and dark/light cycle (12h dark/12h light) conditions,however, varation of SOD, POD, CAT, APX activity and MDA content inBuchloe dactyloides(Nutt.) Engelm.connected ramets tend to synchronize; In addition, auxin (IAA), gibberellic acid (GA), abscisic acid (ABA), zeatin nuclear glycosides (ZR) content changes of Buchloedactyloides (Nutt.) Engelm. have a circadian rhythm variation, and IAA, GA, ABA, ZR contentchanges of Buchloe dactyloides (Nutt.) Engelm. connected ramets tend to synchronize underdifferences photoperiods.
     (2)121transcripts were identified from Buchloe dactyloides (Nutt.) Engelm. circadianrhythm transcriptome, which represented16known circadian rhythm genes. In this study,seven samples of Buchloe dactyloides (Nutt.) Engelm. transcriptome in a light/dark cycle (ZT0to ZT0',4h interval) were sequencing, and a high-quality data was obtainedwith an average ofabout5G.7transcriptomesdatas were assembledde novo, and196,010transcripts wereobtained in total, the average length and N50were1302bp and2116bp, respectively.BLASTx were conducted betweenBuchloe dactyloides (Nutt.) Engelm. transcriptome andpublic protein data, there were129,554(66.1%),93,386(47.6%),40,904(20.87%) and50,592(25.81%)of the transcripts were annotated to Nr, Swiss-Prot, GO and COG proteindatabase, respectively.and GO classification indicates that majority of transcripts belong tobinding function, metabolic processes, and other functions related to the catalytic activitycategories; KEGG analysis showed a total of127,818(65.2%) of127transcripts which wasinvolved in different metabolic pathways, from which signaling pathway is important for theregulation of oxidative phosphorylation, glycolysis/gluconeogenesis, plant hormone signaltransduction; BLASTN was conducted betweenBuchloe dactyloides (Nutt.) Engelm.transcriptome and TAIR database, a total of25,881(13.2%) of the transcripts were similar withArabidopsis genes, including121circadian rhythm transcripts, representing CCA1(Circadianclock-associated protein1), LHY (Late next hypocotyl protein), GI (GIGANTEA), ZTL(Zeitlupe), PHYA (Phytochrome a), PHYB (Phytochrome B), CRY2(cryptochrome2), COP1(Constitutivelyphotomorphogenic protein1), CHS (Chalcone synthase); PIF3(Phytochromeinteracting factor3), HY5(hypocotyl elongation protein5), CDF1(Cycling dof factor1),UVR8(UV-B receptor protein8), PAP1(Phytochrome-associated protein1), CKIIα (Caseinkinase2α) and CKIIβ (Casein kinase2β) etc.16circadian rhythm genes.
     (3) Buchloe dactyloides (Nutt.) Engelm. circadian rhythm transcripts showed rhythmicexpression patterns,expression levels of Buchloe dactyloides (Nutt.) Engelm. connectedrametscircadian rhythm transcripts tend to synchronize under different light/dark cycles.qRT-PCRwas used to test expression levels of ten candidate reference genes in51Buchloe dactyloides(Nutt.) Engelm. samples under different processing conditions (16h light/8h dark,8h light/16hdark,24h light,24h dark, as well as salt, drought, cold, heat, etc.).Stability of ten candidatereference genes were analyzed by three softwares(GeNorm, NormFinder and Bestkeeper). Theresults indicate that, β-ACT, DNAJ and PP2Awere the most stable reference gene underdifferent photoperiod samples, and GAPDH, β-ACTIN, DNAJ and PP2Awere the most suitableunder different stress conditions; According Buchloe dactyloides (Nutt.) Engelm.transcriptomesequencing results, the expression levels of circadian rhythm transcripts CCA1, LHY, GI, PHYA,CKIIα, CKIIβwere evaluated using qRT-PCR and RNA-seq, the result indicated that had aconsistent circadian rhythm changes of transcripts between qRT-PCR data and RNA-seq results,and each presents different variation trends, but a slight differenceson expression levels.Among them, the expression of LHY and CCA1presents a trend closed to cosine curve, and theexpression of two regulatory genes CKIIα/β rendered a nearly sinusoidal curve trend, theexpression of GI also showed a change in nearly sinusoidal trend, PHYA presents "inverted V-shaped" expression trends. In addition, HY5expression ofBuchloedactyloides (Nutt.) Engelm.disconnected ramets showed rhythmic changes in light/dark cycle, whreas its expression wasdisorder in the dark/light cycle, while the expression levels ofHY5in Buchloe dactyloides (Nutt.)Engelm.connected ramets tends to be rhythmic expression synchronic.in a different light/darkcycles.
     In summary, the activity of reactive oxygen scavenging system, changesof endogenoushormone levels and expression of circdian rhythmic transcripts of Buchloe dactyloides (Nutt.)Engelm. plants have circadian rhythmic, and changes ofreactive oxygen scavenging system,changes of endogenous hormone levels and the expression levels of circadian rhythm transcripts of Buchloe dactyloides (Nutt.) Engelm. connectedramets are all synchronized underdifferent light/dark cycles.
引文
王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系[J].植物生理学通讯,1990,26(6):55-57.
    陈尚,李自珍,王刚.克隆植物生长型的研究进展[J].生态学杂志,1997,16(4):59-63.
    Ahmad M., Cashmore A. R. HY4gene of A. thaliana encodes a protein with characteristics of a blue-lightphotoreceptor[J].1993,
    Alabadí D., Gallego‐Bartolomé J., Orlando L. et al. Gibberellins modulate light signaling pathways toprevent Arabidopsis seedling de‐etiolation in darkness[J]. The Plant Journal,2008,53(2):324-335.
    Alabadí D., Gil J., Blázquez M. A., García-Martínez J. L. Gibberellins repress photomorphogenesis indarkness[J]. Plant physiology,2004,134(3):1050-1057.
    Alabadi D., Oyama T., Yanovsky M. J., Harmon F. G., Mas P., Kay S. A. Reciprocal regulation betweenTOC1and LHY/CCA1within the Arabidopsis circadian clock[J]. Science Signalling,2001,293(5531):880.
    Alabad D., Oyama T., Yanovsky M. J., Harmon F. G., Mas P., Kay S. A. Reciprocal regulation betweenTOC1and LHY/CCA1within the Arabidopsis circadian clock[J]. Science,2001,293(5531):880-883.
    Alabad D., Yanovsky M. J., Más P., Harmer S. L., Kay S. A. Critical Role for CCA1and LHY inMaintaining Circadian Rhythmicity in Arabidopsis[J]. Current Biology,2002,12(9):757-761.
    Alonso J. M., Salomé P. A., Hannah J. Y. et al. Enhanced Fitness Conferred by Naturally OccurringVariationin the Circadian Clock[J]. Science,2003,302(5647):1049-1053.
    Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool[J]. Journalof molecular biology,1990,215(3):403-410.
    Altschul S. F., Madden T. L., Sch ffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLASTand PSI-BLAST: a new generation of protein database search programs[J]. Nucleic acids research,1997,25(17):3389-3402.
    Andersen C. L., Jensen J. L., rntoft T. F. Normalization of real-time quantitative reverse transcription-PCRdata: a model-based variance estimation approach to identify genes suited for normalization, appliedto bladder and colon cancer data sets[J]. Cancer research,2004,64(15):5245-5250.
    Ang L.-H., Deng X.-W. Regulatory hierarchy of photomorphogenic loci: allele-specific and light-dependentinteraction between the HY5and COP1loci[J]. The Plant Cell Online,1994,6(5):613-628.
    Araki T., Komeda Y. Analysis of the role of the late‐flowering locus, GI, in the flowering of Arabidopsisthaliana[J]. The Plant Journal,1993,3(2):231-239.
    Arana M. V., Marín-de la Rosa N., Maloof J. N., Blázquez M. A., Alabadí D. Circadian oscillation ofgibberellin signaling in Arabidopsis[J]. Proceedings of the National Academy of Sciences,2011,108(22):9292-9297.
    Artico S., Nardeli S., Brilhante O., Grossi-de-Sa M., Alves-Ferreira M. Identification and evaluation of newreference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCRdata[J]. BMC plant biology,2010,10(1):49.
    Baudry A., Ito S., Song Y. H. et al. F-box proteins FKF1and LKP2act in concert with ZEITLUPE to controlArabidopsis clock progression[J]. The Plant Cell Online,2010,22(3):606-622.
    Beard J., Kim K. Low-water-use turfgrasses[J]. USGA Green Section Record,1989,27(
    Beck E. Quantification of the daily cytokinin transport from the root to the shoot of Urtica dioica L[J].Botanica Acta,1994,107(342-348.
    Bell-Pedersen D., Cassone V. M., Earnest D. J., Golden S. S., Hardin P. E., Thomas T. L., Zoran M. J.Circadian rhythms from multiple oscillators: lessons from diverse organisms[J]. Nature ReviewsGenetics,2005,6(7):544-556.
    Borevitz J. O., Xia Y., Blount J., Dixon R. A., Lamb C. Activation Tagging Identifies a Conserved MYBRegulator of Phenylpropanoid Biosynthesis[J]. The Plant cell,2000,12(12):2383.
    Brown B. A., Cloix C., Jiang G. H., Kaiserli E., Herzyk P., Kliebenstein D. J., Jenkins G. I. A UV-B-specificsignaling component orchestrates plant UV protection[J]. Proceedings of the National Academy ofSciences of the United States of America,2005,102(50):18225-18230.
    Buege J. A. Microsomal lipid peroxidation[J]. Methods Enzymol,1978,52(302-310.
    Cameron M., Williams H. E., Cannane A. Improved gapped alignment in BLAST[J]. Computational Biologyand Bioinformatics, IEEE/ACM Transactions on,2004,1(3):116-129.
    Casal J. J., Yanovsky M. J. Regulation of gene expression by light[J]. International Journal of DevelopmentalBiology,2005,49(5/6):501.
    Chang E., Shi S., Liu J. et al. Selection of reference genes for quantitative gene expression studies inPlatycladus orientalis (Cupressaceae) using real-time PCR[J]. PloS one,2012,7(3):e33278.
    Chen L., Zhong H.-y., Kuang J.-f., Li J.-g., Lu W.-j., Chen J.-y. Validation of reference genes for RT-qPCRstudies of gene expression in banana fruit under different experimental conditions[J]. Planta,2011,234(2):377-390.
    Cheng H. Y. M., Papp J. W., Varlamova O. et al. microRNA modulation of circadian-clock period andentrainment[J]. Neuron,2007,54(5):813-829.
    Chory J., Peto C. A. Mutations in the DET1gene affect cell-type-specific expression of light-regulated genesand chloroplast development in Arabidopsis[J]. Proceedings of the National Academy of Sciences,1990,87(22):8776-8780.
    Cloonan N., Forrest A. R., Kolle G. et al. Stem cell transcriptome profiling via massive-scale mRNAsequencing[J]. Nature methods,2008,5(7):613-619.
    Coker J. S., Davies E. Selection of candidate housekeeping controls in tomato plants using EST data[J].Biotechniques,2003,35(4):740-749.
    Cominelli E., Gusmaroli G., Allegra D., Galbiati M., Wade H. K., Jenkins G. I., Tonelli C. Expressionanalysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsisthaliana[J]. Journal of plant physiology,2008,165(8):886-894.
    Covington M. F., Maloof J. N., Straume M., Kay S. A., Harmer S. L. Global transcriptome analysis revealscircadian regulation of key pathways in plant growth and development[J]. Genome biology,2008,9(8):R130.
    Cowling R. J., Harberd N. P. Gibberellins control Arabidopsis hypocotyl growth via regulation of cellularelongation[J]. Journal of experimental botany,1999,50(337):1351-1357.
    Cruz F., Kalaoun S., Nobile P. et al. Evaluation of coffee reference genes for relative expression studies byquantitative real-time RT-PCR[J]. Molecular Breeding,2009,23(4):607-616.
    Dalton D. A., Hanus F. J., Russell S. A., Evans H. J. Purification, properties, and distribution of ascorbateperoxidase in legume root nodules[J]. Plant physiology,1987,83(4):789-794.
    David K. M., Armbruster U., Tama N., Putterill J. Arabidopsis GIGANTEA protein is post-transcriptionallyregulated by light and dark[J]. FEBS letters,2006,580(5):1193-1197.
    Davidson A. J., Castanon‐Cervantes O., Leise T. L., Molyneux P. C., Harrington M. E. Visualizing jet lagin the mouse suprachiasmatic nucleus and peripheral circadian timing system[J]. European Journalof Neuroscience,2008,29(1):171-180.
    Deikman J., Hammer P. E. Induction of anthocyanin accumulation by cytokinins in Arabidopsis thaliana[J].Plant physiology,1995,108(1):47-57.
    Demidenko N. V., Logacheva M. D., Penin A. A. Selection and validation of reference genes for quantitativereal-time PCR in buckwheat (Fagopyrum esculentum) based on transcriptome sequence data[J].PloS one,2011,6(5):e19434.
    Derveaux S., Vandesompele J., Hellemans J. How to do successful gene expression analysis using real-timePCR[J]. Methods,2010,50(4):227-230.
    Devlin P. F., Kay S. A. Cryptochromes are required for phytochrome signaling to the circadian clock but notfor rhythmicity[J]. The Plant Cell Online,2000,12(12):2499-2509.
    Dodd A. N., Salathia N., Hall A. et al. Plant circadian clocks increase photosynthesis, growth, survival, andcompetitive advantage[J]. Science,2005,309(5734):630-633.
    Duc C., Cellier F., Lobréaux S., Briat J.-F., Gaymard F. Regulation of iron homeostasis in Arabidopsisthaliana by the clock regulator time for coffee[J]. Journal of Biological Chemistry,2009,284(52):36271-36281.
    Edwards K. D., Akman O. E., Knox K. et al. Quantitative analysis of regulatory flexibility under changingenvironmental conditions[J]. Molecular systems biology,2010,6(1)
    Edwards K. D., Lynn J. R., Gyula P., Nagy F., Millar A. J. Natural allelic variation in the temperature-compensation mechanisms of the Arabidopsis thaliana circadian clock[J]. Genetics,2005,170(1):387-400.
    Expósito-Rodríguez M., Borges A. A., Borges-Pérez A., Pérez J. A. Selection of internal control genes forquantitative real-time RT-PCR studies during tomato development process[J]. BMC plant biology,2008,8(1):131.
    Faccioli P., Ciceri G. P., Provero P., Stanca A. M., Morcia C., Terzi V. A combined strategy of “in silico”transcriptome analysis and web search engine optimization allows an agile identification ofreference genes suitable for normalization in gene expression studies[J]. Plant molecular biology,2007,63(5):679-688.
    Farré E. M., Harmer S. L., Harmon F. G., Yanovsky M. J., Kay S. A. Overlapping and Distinct Roles ofPRR7and PRR9in the Arabidopsis Circadian Clock[J]. Current Biology,2005,15(1):47-54.
    Favory J. J., Stec A., Gruber H. et al. Interaction of COP1and UVR8regulates UV‐B‐inducedphotomorphogenesis and stress acclimation in Arabidopsis[J]. The EMBO journal,2009,28(5):591-601.
    Fedoroff N. V. Cross-talk in abscisic acid signaling[J]. Science Signaling,2002,2002(140):re10.
    Feinbaum R. L., Storz G., Ausubel F. M. High intensity and blue light regulated expression of chimericchalcone synthase genes in transgenic Arabidopsis thaliana plants[J]. Molecular and GeneralGenetics MGG,1991,226(3):449-456.
    Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap[J]. Evolution,1985:783-791.
    Fernandez P., Di Rienzo J. A., Moschen S. et al. Comparison of predictive methods and biological validationfor qPCR reference genes in sunflower leaf senescence transcript analysis[J]. Plant cell reports,2011,30(1):63-74.
    Filby A. L., Tyler C. R. Appropriate'housekeeping'genes for use in expression profiling the effects ofenvironmental estrogens in fish[J]. BMC molecular biology,2007,8(1):10.
    Foster K. R., Morgan P. W. Genetic Regulation of Development in Sorghum bicolor (IX. The ma3R AlleleDisrupts Diurnal Control of Gibberellin Biosynthesis)[J]. Plant physiology,1995,108(1):337-343.
    Fowler S., Lee K., Onouchi H. et al. GIGANTEA: a circadian clock-controlled gene that regulatesphotoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains[J]. The EMBO journal,1999a,18(17):4679-4688.
    Fowler S., Lee K., Onouchi H. et al. GIGANTEA: a circadian clock‐controlled gene that regulatesphotoperiodic flowering in Arabidopsis and encodes a protein with several possiblemembrane‐spanning domains[J]. The EMBO journal,1999b,18(17):4679-4688.
    Fox S. E., Preece J., Kimbrel J. A. et al. Sequencing and De Novo Transcriptome Assembly ofBrachypodium sylvaticum (Poaceae)[J]. Applications in Plant Sciences,2013,1(3)
    Fuglevand G., Jackson J. A., Jenkins G. I. UV-B, UV-A, and blue light signal transduction pathways interactsynergistically to regulate chalcone synthase gene expression in Arabidopsis[J]. The Plant CellOnline,1996,8(12):2347-2357.
    Gahlan P., Singh H. R., Shankar R. et al. De novo sequencing and characterization of Picrorhiza kurrooatranscriptome at two temperatures showed major transcriptome adjustments[J]. BMC genomics,2012,13(126. doi:10.1186/1471-2164-13-126
    Garg R., Patel R. K., Tyagi A. K., Jain M. De novo assembly of chickpea transcriptome using short reads forgene discovery and marker identification[J]. DNA research: an international journal for rapidpublication of reports on genes and genomes,2011,18(1):53-63. doi:10.1093/dnares/dsq028
    Garg R., Sahoo A., Tyagi A. K., Jain M. Validation of internal control genes for quantitative gene expressionstudies in chickpea ( Cicer arietinum L.)[J]. Biochemical and biophysical researchcommunications,2010,396(2):283-288.
    Gatfield D., Le Martelot G., Vejnar C. E. et al. Integration of microRNA miR-122in hepatic circadian geneexpression[J]. Genes&development,2009,23(11):1313-1326.
    Gendron J. M., Pruneda-Paz J. L., Doherty C. J., Gross A. M., Kang S. E., Kay S. A. Arabidopsis circadianclock protein, TOC1, is a DNA-binding transcription factor[J]. Proceedings of the NationalAcademy of Sciences,2012,109(8):3167-3172.
    Giannopolitis C. N., Ries S. K. Superoxide dismutases I. Occurrence in higher plants[J]. Plant physiology,1977,59(2):309-314.
    Ginzinger D. G. Gene quantification using real-time quantitative PCR: an emerging technology hits themainstream[J]. Experimental hematology,2002,30(6):503-512.
    Gould P. D., Locke J. C., Larue C. et al. The molecular basis of temperature compensation in the Arabidopsiscircadian clock[J]. The Plant Cell Online,2006,18(5):1177-1187.
    Grieb B., Sch fer F., Imani J., Nezamabadi Mashayekhi K., Arnoldt-Schmitt B., Neumann K. Changes insoluble proteins and phytohormone concentrations of cultured carrot petiole explants duringinduction of somatic embryogenesis (Daucus carota L.)[J]. Angewandte Botanik,1997,71(
    Guénin S., Mauriat M., Pelloux J., Van Wuytswinkel O., Bellini C., Gutierrez L. Normalization of qRT-PCRdata: the necessity of adopting a systematic, experimental conditions-specific, validation ofreferences[J]. Journal of Experimental Botany,2009,60(2):487-493.
    Gulsen O., Shearman R. C., Vogel K. P., Lee D. J., Baenziger P. S., Heng-Moss T. M., Budak H. Nucleargenome diversity and relationships among naturally occurring buffalograss genotypes determined bysequence-related amplified polymorphism markers[J]. HortScience,2005,40(3):537-541.
    Gutiérrez R. A., Ewing R. M., Cherry J. M., Green P. J. Identification of unstable transcripts in Arabidopsisby cDNA microarray analysis: rapid decay is associated with a group of touch-and specific clock-controlled genes[J]. Proceedings of the National Academy of Sciences,2002,99(17):11513-11518.
    Gutiérrez R. A., Stokes T. L., Thum K. et al. Systems approach identifies an organic nitrogen-responsivegene network that is regulated by the master clock control gene CCA1[J]. Proceedings of theNational Academy of Sciences,2008,105(12):4939-4944.
    Hahlbrock K., Scheel D. Physiology and molecular biology of phenylpropanoid metabolism[J]. Annualreview of plant biology,1989,40(1):347-369.
    Halliday K. J., Whitelam G. C. Changes in photoperiod or temperature alter the functional relationshipsbetween phytochromes and reveal roles for phyD and phyE[J]. Plant Physiology,2003,131(4):1913-1920.
    Hammond J. W., Cai D., Verhey K. J. Tubulin modifications and their cellular functions[J]. Current opinionin cell biology,2008,20(1):71-76.
    Han L., Mason M., Risseeuw E. P., Crosby W. L., Somers D. E. Formation of an SCFZTL complex isrequired for proper regulation of circadian timing[J]. The Plant Journal,2004,40(2):291-301.
    Han X., Lu M., Chen Y., Zhan Z., Cui Q., Wang Y. Selection of reliable reference genes for gene expressionstudies using real-time PCR in tung tree during seed development[J]. PloS one,2012,7(8):e43084.
    Hardtke C. S., Gohda K., Osterlund M. T., Oyama T., Okada K., Deng X. W. HY5stability and activity inArabidopsis is regulated by phosphorylation in its COP1binding domain[J]. The EMBO journal,2000,19(18):4997-5006.
    Hare P., Van Staden J. The molecular basis of cytokinin action[J]. Plant growth regulation,1997,23(1-2):41-78.
    Harmer S. L., Hogenesch J. B., Straume M. et al. Orchestrated transcription of key pathways in Arabidopsisby the circadian clock[J]. Science,2000,290(5499):2110-2113.
    Harmer S. L., Kay S. A. Positive and negative factors confer phase-specific circadian regulation oftranscription in Arabidopsis[J]. The Plant Cell Online,2005,17(7):1926-1940.
    Hassidim M., Yakir E., Fradkin D. et al. Mutations in CHLOROPLAST RNA BINDING provide evidencefor the involvement of the chloroplast in the regulation of the circadian clock in Arabidopsis[J]. ThePlant Journal,2007,51(4):551-562.
    Hayama R., Coupland G. The molecular basis of diversity in the photoperiodic flowering responses ofArabidopsis and rice[J]. Plant physiology,2004,135(2):677-684.
    Hazen S. P., Naef F., Quisel T. et al. Exploring the transcriptional landscape of plant circadian rhythms usinggenome tiling arrays[J]. Genome Biol,2009,10(2):R17.
    Hoffmann R., Valencia A. A gene network for navigating the literature[J]. Nature genetics,2004,36(7):664-664.
    Hoffmann R., Valencia A. Implementing the iHOP concept for navigation of biomedical literature[J].Bioinformatics,2005,21(suppl2):ii252-ii258.
    Hong S.-Y., Seo P. J., Yang M.-S., Xiang F., Park C.-M. Exploring valid reference genes for gene expressionstudies in Brachypodium distachyon by real-time PCR[J]. BMC plant biology,2008,8(1):112.
    Hotta C. T., Gardner M. J., Hubbard K. E. et al. Modulation of environmental responses of plants bycircadian clocks[J]. Plant, cell&environment,2007a,30(3):333-349.
    Hotta C. T., Gardner M. J., Hubbard K. E. et al. Modulation of environmental responses of plants bycircadian clocks[J]. Plant, cell&environment,2007b,30(3):333-349.
    Hu R., Fan C., Li H., Zhang Q., Fu Y.-F. Evaluation of putative reference genes for gene expressionnormalization in soybean by quantitative real-time RT-PCR[J]. BMC molecular biology,2009,10(1):93.
    Huq E., Tepperman J. M., Quail P. H. GIGANTEA is a nuclear protein involved in phytochrome signaling inArabidopsis[J]. Proceedings of the National Academy of Sciences,2000,97(17):9789-9794.
    Imaizumi T. Arabidopsis circadian clock and photoperiodism: time to think about location[J]. Currentopinion in plant biology,2010,13(1):83-89.
    Imaizumi T., Schultz T. F., Harmon F. G., Ho L. A., Kay S. A. FKF1F-box protein mediates cyclicdegradation of a repressor of CONSTANS in Arabidopsis[J]. Science,2005,309(5732):293-297.
    Iorizzo M., Senalik D. A., Grzebelus D. et al. De novo assembly and characterization of the carrottranscriptome reveals novel genes, new markers, and genetic diversity[J]. BMC genomics,2011,12(389. doi:10.1186/1471-2164-12-389
    Iskandar H. M., Simpson R. S., Casu R. E., Bonnett G. D., Maclean D. J., Manners J. M. Comparison ofreference genes for quantitative real-time polymerase chain reaction analysis of gene expression insugarcane[J]. Plant Molecular Biology Reporter,2004,22(4):325-337.
    Jackson J. A., Jenkins G. I. Extension-growth responses and expression of flavonoid biosynthesis genes inthe Arabidopsis hy4mutant[J]. Planta,1995,197(2):233-239.
    Jain M., Nijhawan A., Tyagi A. K., Khurana J. P. Validation of housekeeping genes as internal control forstudying gene expression in rice by quantitative real-time PCR[J]. Biochemical and biophysicalresearch communications,2006,345(2):646-651.
    James A. B., Monreal J. A., Nimmo G. A., Kelly C. L., Herzyk P., Jenkins G. I., Nimmo H. G. The circadianclock in Arabidopsis roots is a simplified slave version of the clock in shoots[J]. Science Signalling,2008,322(5909):1832.
    Jenkins G. UV and blue light signal transduction in Arabidopsis[J]. Plant, cell&environment,1997,20(6):773-778.
    Jenkins G. I., Long J. C., Wade H. K., Shenton M. R., Bibikova T. N. UV and blue light signalling: pathwaysregulating chalcone synthase gene expression in Arabidopsis[J]. New Phytologist,2001,151(1):121-131.
    Jones D. T., Taylor W. R., Thornton J. M. The rapid generation of mutation data matrices from proteinsequences[J]. Computer applications in the biosciences: CABIOS,1992,8(3):275-282.
    Jouve L., Gaspar T., Kevers C., Greppin H., Degli Agosti R. Involvement of indole-3-acetic acid in thecircadian growth of the first internode of Arabidopsis[J]. Planta,1999,209(1):136-142.
    Kaiser T., Emmler K., Kretsch T., Weisshaar B., Sch fer E., Batschauer A. Promoter elements of the mustardCHS1gene are sufficient for light regulation in transgenic plants[J]. Plant molecular biology,1995,28(2):219-229.
    Kanehisa M., Goto S., Hattori M. et al. From genomics to chemical genomics: new developments inKEGG[J]. Nucleic acids research,2006,34(suppl1):D354-D357.
    Kanehisa M., Goto S., Kawashima S., Okuno Y., Hattori M. The KEGG resource for deciphering thegenome[J]. Nucleic acids research,2004,32(suppl1):D277-D280.
    Kardailsky I., Shukla V. K., Ahn J. H. et al. Activation tagging of the floral inducer FT[J]. Science,1999,286(5446):1962-1965.
    Kevei E., Gyula P., Fehér B. et al. Arabidopsis thaliana Circadian Clock Is Regulated by the Small GTPaseLIP1[J]. Current Biology,2007,17(17):1456-1464.
    Khan S., Rowe S., Harmon F. Coordination of the maize transcriptome by a conserved circadian clock[J].BMC plant biology,2010,10(1):126.
    Kim J. Y., Song H. R., Taylor B. L., Carré I. A. Light-regulated translation mediates gated induction of theArabidopsis clock protein LHY[J]. The EMBO journal,2003,22(4):935-944.
    Kiriakidou M., Nelson P. T., Kouranov A., Fitziev P., Bouyioukos C., Mourelatos Z., Hatzigeorgiou A. Acombined computational-experimental approach predicts human microRNA targets[J]. Genes&development,2004,18(10):1165-1178.
    Klie M., Debener T. Identification of superior reference genes for data normalisation of expression studiesvia quantitative PCR in hybrid roses (Rosa hybrida)[J]. BMC research notes,2011,4(1):518.
    Kliebenstein D. J., Lim J. E., Landry L. G., Last R. L. Arabidopsis UVR8regulates ultraviolet-B signaltransduction and tolerance and contains sequence similarity to human regulator of chromatincondensation1[J]. Plant physiology,2002,130(1):234-243.
    Kobayashi Y., Kaya H., Goto K., Iwabuchi M., Araki T. A pair of related genes with antagonistic roles inmediating flowering signals[J]. Science,1999,286(5446):1960-1962.
    Kojima S., Gatfield D., Esau C. C., Green C. B. MicroRNA-122modulates the rhythmic expression profileof the circadian deadenylase Nocturnin in mouse liver[J]. PloS one,2010,5(6):e11264.
    Koornneef M., Hanhart C., Van der Veen J. A genetic and physiological analysis of late flowering mutants inArabidopsis thaliana[J]. Molecular and General Genetics MGG,1991,229(1):57-66.
    Kraepiel Y., Marree K., Sotta B., Caboche M., Miginiac E. In vitro morphogenic characteristics ofphytochrome mutants in Nicotiana plumbaginifolia are modified and correlated to high indole-3-acetic acid levels[J]. Planta,1995,197(1):142-146.
    Kraepiel Y., Rousselin P., Sotta B., Kerhoas L., Einhorn J., Caboche M., Miginiac E. Analysis ofphytochrome‐and ABA‐deficient mutants suggests that ABA degradation is controlled by light inNicotiana plumbaginifolia[J]. The Plant Journal,1994,6(5):665-672.
    Kraus T. E., Fletcher R. A. Paclobutrazol protects wheat seedlings from heat and paraquat injury. Isdetoxification of active oxygen involved?[J]. Plant and cell physiology,1994,35(1):45-52.
    Kreps J. A., Wu Y., Chang H.-S., Zhu T., Wang X., Harper J. F. Transcriptome changes for Arabidopsis inresponse to salt, osmotic, and cold stress[J]. Plant physiology,2002,130(4):2129-2141.
    Kubasek W. L., Shirley B. W., McKillop A., Goodman H. M., Briggs W., Ausubel F. M. Regulation offlavonoid biosynthetic genes in germinating Arabidopsis seedlings[J]. The Plant Cell Online,1992,4(10):1229-1236.
    Kuijk E. W., du Puy L., van Tol H. T., Haagsman H. P., Colenbrander B., Roelen B. A. Validation ofreference genes for quantitative RT-PCR studies in porcine oocytes and preimplantation embryos[J].BMC Developmental Biology,2007,7(1):58.
    Kunihiro A., Yamashino T., Nakamichi N., Niwa Y., Nakanishi H., Mizuno T. Phytochrome-interacting factor4and5(PIF4and PIF5) activate the homeobox ATHB2and auxin-inducible IAA29genes in thecoincidence mechanism underlying photoperiodic control of plant growth of Arabidopsis thaliana[J].Plant and cell physiology,2011,52(8):1315-1329.
    Kurapov P., Skorobogatova I., Sal'nikova E., Sorkina G., Siusheva A.[Diurnal cycles of endogenousphytohormones in barley][J]. Izvestiia Akademii nauk Seriia biologicheskaia/Rossiiskaia akademiianauk,1999,1):108-114.
    Kurepa J., Smalle J., Va M., Montagu N., Inzé D. Oxidative stress tolerance and longevity in Arabidopsis:the late‐flowering mutant gigantea is tolerant to paraquat[J]. The Plant Journal,1998,14(6):759-764.
    Lai A. G., Doherty C. J., Mueller-Roeber B., Kay S. A., Schippers J. H., Dijkwel P. P. CIRCADIANCLOCK-ASSOCIATED1regulates ROS homeostasis and oxidative stress responses[J].Proceedings of the National Academy of Sciences,2012,109(42):17129-17134.
    Li B., Ruotti V., Stewart R. M., Thomson J. A., Dewey C. N. RNA-Seq gene expression estimation with readmapping uncertainty[J]. Bioinformatics,2010,26(4):493-500.
    Lia H., Qina Y., Xiaoa X., Tanga C. Screening of valid reference genes for real-time RT-PCR datanormalization in Hevea brasiliensis and expression validation of a sucrose transporter geneHbSUT3[J]. Plant Science,2011,181(132-139.
    Libault M., Thibivilliers S., Bilgin D., Radwan O., Benitez M., Clough S., Stacey G. Identification of foursoybean reference genes for gene expression normalization[J]. The Plant Genome,2008,1(1):44-54.
    Lidder P., Gutiérrez R. A., Salomé P. A., McClung C. R., Green P. J. Circadian control of messenger RNAstability. Association with a sequence-specific messenger RNA decay pathway[J]. Plant Physiology,2005,138(4):2374-2385.
    Lijavetzky D., Carbonero P., Vicente-Carbajosa J. Genome-wide comparative phylogenetic analysis of therice and Arabidopsis Dof gene families[J]. BMC Evolutionary Biology,2003,3(1):17.
    Lillo C., Lea U. S., Ruoff P. Nutrient depletion as a key factor for manipulating gene expression and productformation in different branches of the flavonoid pathway[J]. Plant, cell&environment,2008,31(5):587-601.
    Lin C., Yang H., Guo H., Mockler T., Chen J., Cashmore A. R. Enhancement of blue-light sensitivity ofArabidopsis seedlings by a blue light receptor cryptochrome2[J]. Proceedings of the NationalAcademy of Sciences,1998,95(5):2686-2690.
    Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K., Shinozaki K. Two transcriptionfactors, DREB1and DREB2, with an EREBP/AP2DNA binding domain separate two cellularsignal transduction pathways in drought-and low-temperature-responsive gene expression,respectively, in Arabidopsis[J]. The Plant Cell Online,1998,10(8):1391-1406.
    Liu T., Zhu S., Tang Q., Chen P., Yu Y., Tang S. De novo assembly and characterization of transcriptomeusing Illumina paired-end sequencing and identification of CesA gene in ramie (Boehmeria nivea L.Gaud)[J]. BMC genomics,2013,14(1):125.
    Locke J. C., Kozma‐Bognár L., Gould P. D. et al. Experimental validation of a predicted feedback loop inthe multi‐oscillator clock of Arabidopsis thaliana[J]. Molecular systems biology,2006a,2(1)
    Locke J. C., Southern M. M., Kozma‐Bognár L., Hibberd V., Brown P. E., Turner M. S., Millar A. J.Extension of a genetic network model by iterative experimentation and mathematical analysis[J].Molecular systems biology,2005a,1(1)
    Locke J. C. W., Kozma-Bognár L., Gould P. D. et al. Experimental validation of a predicted feedback loop inthe multi-oscillator clock of Arabidopsis thaliana[J]. Molecular Systems Biology,2006b,2(1)
    Locke J. C. W., Southern M. M., Kozma-Bognár L., Hibberd V., Brown P. E., Turner M. S., Millar A. J.Extension of a genetic network model by iterative experimentation and mathematical analysis[J].Molecular Systems Biology,2005b,1(1)
    Lu S. X., Knowles S. M., Andronis C., Ong M. S., Tobin E. M. CIRCADIAN CLOCK ASSOCIATED1andLATE ELONGATED HYPOCOTYL function synergistically in the circadian clock ofArabidopsis[J]. Plant Physiology,2009,150(2):834-843.
    Más P., Alabadí D., Yanovsky M. J., Oyama T., Kay S. A. Dual role of TOC1in the control of circadian andphotomorphogenic responses in Arabidopsis[J]. The Plant Cell Online,2003a,15(1):223-236.
    Más P., Kim W.-Y., Somers D. E., Kay S. A. Targeted degradation of TOC1by ZTL modulates circadianfunction in Arabidopsis thaliana[J]. Nature,2003b,426(6966):567-570.
    Ma L., Gao Y., Qu L., Chen Z., Li J., Zhao H., Deng X. W. Genomic evidence for COP1as a repressor oflight-regulated gene expression and development in Arabidopsis[J]. The Plant Cell Online,2002,14(10):2383-2398.
    Machá ková I., Eder J., Motyka V., Hanu J., Krekule J. Photoperiodic control of cytokinin transport andmetabolism in Chenopodium rubrum[J]. Physiologia Plantarum,1996,98(3):564-570.
    Makino S., Kiba T., Imamura A. et al. Genes encoding pseudo-response regulators: insight into His-to-Aspphosphorelay and circadian rhythm in Arabidopsis thaliana[J]. Plant and cell physiology,2000,41(6):791-803.
    Makino S., Matsushika A., Kojima M., Yamashino T., Mizuno T. The APRR1/TOC1quintet implicated incircadian rhythms of Arabidopsis thaliana: I. Characterization with APRR1-overexpressing plants[J].Plant and cell physiology,2002,43(1):58-69.
    Mallona I., Lischewski S., Weiss J., Hause B., Egea-Cortines M. Validation of reference genes forquantitative real-time PCR during leaf and flower development in Petunia hybrida[J]. BMC plantbiology,2010,10(1):4.
    Mardis E. R. Next-generation DNA sequencing methods[J]. Annu Rev Genomics Hum Genet,2008,9(387-402.
    Maroufi A., Van Bockstaele E., De Loose M. Validation of reference genes for gene expression analysis inchicory (Cichorium intybus) using quantitative real-time PCR[J]. BMC molecular biology,2010,11(1):15.
    Marshall C. Source-sink relations of interconnected ramets[J]. Clonal growth in plants: regulation andfunction,1990:23-41.
    Marshall C., Sagar G. The distribution of assimilates in Lolium multiflorum Lam. following differentialdefoliation[J]. Annals of Botany,1968,32(4):715-719.
    Mart n ez-Garc a J. F., Huq E., Quail P. H. Direct targeting of light signals to a promoter element-boundtranscription factor[J]. Science,2000,288(5467):859-863.
    Maruta T., Tanouchi A., Tamoi M., Yabuta Y., Yoshimura K., Ishikawa T., Shigeoka S. Arabidopsischloroplastic ascorbate peroxidase isoenzymes play a dual role in photoprotection and generegulation under photooxidative stress[J]. Plant and cell physiology,2010,51(2):190-200.
    Mascia T., Santovito E., Gallitelli D., Cillo F. Evaluation of reference genes for quantitativereverse‐transcription polymerase chain reaction normalization in infected tomato plants[J].Molecular plant pathology,2010,11(6):805-816.
    Mazzella M. A., Bertero D., Casal J. J. Temperature-dependent internode elongation in vegetative plants ofArabidopsis thaliana lacking phytochrome B and cryptochrome1[J]. Planta,2000,210(3):497-501.
    McClung C. R., Gutiérrez R. A. Network news: prime time for systems biology of the plant circadian clocktruncated form of the title: Plant circadian clocks[J]. Current opinion in genetics&development,2010,20(6):588.
    Mendes N., Freitas A., Sagot M. F. Current tools for the identification of miRNA genes and their targets[J].Nucleic acids research,2009,37(8):2419-2433.
    Meng F., Henson R., Lang M. et al. Involvement of human micro-RNA in growth and response tochemotherapy in human cholangiocarcinoma cell lines[J]. Gastroenterology,2006,130(7):2113.
    Michael T. P., McClung C. R. Enhancer trapping reveals widespread circadian clock transcriptional controlin Arabidopsis[J]. Plant physiology,2003,132(2):629-639.
    Michael T. P., Mockler T. C., Breton G. et al. Network discovery pipeline elucidates conserved time-of-day–specific cis-regulatory modules[J]. PLoS Genetics,2008,4(2):e14.
    Michael T. P., Salomé P. A., McClung C. R. Two Arabidopsis circadian oscillators can be distinguished bydifferential temperature sensitivity[J]. Proceedings of the National Academy of Sciences,2003,100(11):6878-6883.
    Migocka M., Papierniak A. Identification of suitable reference genes for studying gene expression incucumber plants subjected to abiotic stress and growth regulators[J]. Molecular Breeding,2011,28(3):343-357.
    Mikkelsen M. D., Thomashow M. F. A role for circadian evening elements in cold‐regulated geneexpression in Arabidopsis[J]. The Plant Journal,2009,60(2):328-339.
    Mittler R., Vanderauwera S., Gollery M., Van Breusegem F. Reactive oxygen gene network of plants[J].Trends in plant science,2004,9(10):490-498.
    Mizoguchi T., Wheatley K., Hanzawa Y. et al. LHY and CCA1Are Partially Redundant Genes Required toMaintain Circadian Rhythms in Arabidopsis[J]. Developmental cell,2002a,2(5):629-641.
    Mizoguchi T., Wheatley K., Hanzawa Y. et al. LHY and CCA1Are Partially Redundant Genes Required toMaintain Circadian Rhythms in Arabidopsis[J]. Developmental cell,2002b,2(5):629-641.
    Mizoguchi T., Wright L., Fujiwara S. et al. Distinct roles of GIGANTEA in promoting flowering andregulating circadian rhythms in Arabidopsis[J]. The Plant Cell Online,2005,17(8):2255-2270.
    Mizrachi E., Hefer C. A., Ranik M., Joubert F., Myburg A. A. De novo assembled expressed gene catalog ofa fast-growing Eucalyptus tree produced by Illumina mRNA-Seq[J]. BMC genomics,2010,11(681.doi:10.1186/1471-2164-11-681
    Mizuno T., Yamashino T. Comparative transcriptome of diurnally oscillating genes and hormone-responsivegenes in Arabidopsis thaliana: insight into circadian clock-controlled daily responses to commonambient stresses in plants[J]. Plant and cell physiology,2008,49(3):481-487.
    Mouhu K., Hyt nen T., Folta K., Rantanen M., Paulin L., Auvinen P., Elomaa P. Identification of floweringgenes in strawberry, a perennial SD plant[J]. BMC plant biology,2009,9(1):122.
    Murakami M., Tago Y., Yamashino T., Mizuno T. Comparative Overviews of Clock-Associated Genes ofArabidopsis thaliana[J]. Plant&cell physiology,2007,48(1):110-121.
    Ness R. W., Siol M., Barrett S. C. De novo sequence assembly and characterization of the floraltranscriptome in cross-and self-fertilizing plants[J]. BMC genomics,2011,12(298.doi:10.1186/1471-2164-12-298
    Ni M., Tepperman J. M., Quail P. H. PIF3, a phytochrome-interacting factor necessary for normalphotoinduced signal transduction, is a novel basic helix-loop-helix protein[J]. Cell,1998,95(5):657-667.
    Nováková M., Motyka V., Dobrev P. I., Malbeck J., Gaudinová A., Vanková R. Diurnal variation ofcytokinin, auxin and abscisic acid levels in tobacco leaves[J]. Journal of experimental botany,2005,56(421):2877-2883.
    Nozue K., Covington M. F., Duek P. D., Lorrain S., Fankhauser C., Harmer S. L., Maloof J. N. Rhythmicgrowth explained by coincidence between internal and external cues[J]. Nature,2007,448(7151):358-361.
    Oda A., Fujiwara S., Kamada H., Coupland G., Mizoguchi T. Antisense suppression of the ArabidopsisPIF3 gene does not affect circadian rhythms but causes early flowering and increasesFTexpression[J]. FEBS letters,2004,557(1):259-264.
    Onouchi H., Ige o M. I., Périlleux C., Graves K., Coupland G. Mutagenesis of plants overexpressingCONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes[J]. The PlantCell Online,2000,12(6):885-900.
    Oravecz A., Baumann A., Máté Z. et al. CONSTITUTIVELY PHOTOMORPHOGENIC1is required for theUV-B response in Arabidopsis[J]. The Plant Cell Online,2006,18(8):1975-1990.
    Osterlund M. T., Hardtke C. S., Wei N., Deng X. W. Targeted destabilization of HY5during light-regulateddevelopment of Arabidopsis[J]. Nature,2000,405(6785):462-466.
    Paolacci A. R., Tanzarella O. A., Porceddu E., Ciaffi M. Identification and validation of reference genes forquantitative RT-PCR normalization in wheat[J]. BMC molecular biology,2009,10(1):11.
    Park D. H., Somers D. E., Kim Y. S. et al. Control of circadian rhythms and photoperiodic flowering by theArabidopsis GIGANTEA gene[J]. Science,1999,285(5433):1579-1582.
    Pavlová L., Krekule J. Fluctuation of free IAA under inductive and non-inductive photoperiods inChenopodium rubrum[J]. Plant growth regulation,1984,2(2):91-98.
    Peakall R., Smouse P. E., Huff D. Evolutionary implications of allozyme and RAPD variation in diploidpopulations of dioecious buffalograss Buchloe dactyloides[J]. Molecular Ecology,1995,4(2):135-148.
    Penfield S., Hall A. A role for multiple circadian clock genes in the response to signals that break seeddormancy in Arabidopsis[J]. The Plant Cell Online,2009,21(6):1722-1732.
    Perales M., Más P. A functional link between rhythmic changes in chromatin structure and the Arabidopsisbiological clock[J]. The Plant Cell Online,2007,19(7):2111-2123.
    Peter H.-J., Krüger-Alef C., Knogge W., Brinkmann K., Weissenb ck G. Diurnal periodicity of chalcone-synthase activity during the development of oat primary leaves[J]. Planta,1991,183(3):409-415.
    Pfaffl M. W., Tichopad A., Prgomet C., Neuvians T. P. Determination of stable housekeeping genes,differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations[J]. Biotechnology letters,2004,26(6):509-515.
    Portoles S., Mas P. The functional interplay between protein kinase CK2and CCA1transcriptional activity isessential for clock temperature compensation in Arabidopsis[J]. PLoS Genetics,2010,6(11):e1001201.
    Pourtau N., Jennings R., Pelzer E., Pallas J., Wingler A. Effect of sugar-induced senescence on geneexpression and implications for the regulation of senescence in Arabidopsis[J]. Planta,2006,224(3):556-568.
    Qian Y., Li D., Han L., Ju G., Liu J., Wu J., Sun Z. Inter-ramet physiological integration detected inbuffalograss (Buchloe dactyloides (Nutt.) Engelm.) under water stress[J]. Weed&Turfgrass Science,2009,23(2):331-343.
    Qian Y., Li D., Han L., Sun Z. Inter-ramet photosynthate translocation in buffalograss under differentialwater deficit stress[J]. Journal of the American Society for Horticultural Science,2010,135(4):310-316.
    Queval G., Issakidis-Bourguet E., Hoeberichts F. A. et al. Conditional oxidative stress responses in theArabidopsis photorespiratory mutant cat2demonstrate that redox state is a key modulator ofdaylength-dependent gene expression, and define photoperiod as a crucial factor in the regulation ofH O-induced cell death[J]. Plant journal,2007,
    Reid K. E., Olsson N., Schlosser J., Peng F., Lund S. T. An optimized grapevine RNA isolation procedureand statistical determination of reference genes for real-time RT-PCR during berry development[J].BMC plant biology,2006,6(1):27.
    Richter K., Buchner J. Hsp90: chaperoning signal transduction[J]. Journal of cellular physiology,2001,188(3):281-290.
    Rizzini L., Favory J.-J., Cloix C. et al. Perception of UV-B by the Arabidopsis UVR8protein[J]. Science,2011,332(6025):103-106.
    Robertson F. C., Skeffington A. W., Gardner M. J., Webb A. A. Interactions between circadian and hormonalsignalling in plants[J]. Plant molecular biology,2009a,69(4):419-427.
    Robertson F. C., Skeffington A. W., Gardner M. J., Webb A. A. R. Interactions between circadian andhormonal signalling in plants[J]. Plant molecular biology,2009b,69(4):419-427.
    Rozendaal D., Hurtado V., Poorter L. Plasticity in leaf traits of38tropical tree species in response to light;relationships with light demand and adult stature[J]. Functional Ecology,2006,20(2):207-216.
    Sagi M., Fluhr R. Production of reactive oxygen species by plant NADPH oxidases[J]. Plant physiology,2006,141(2):336-340.
    Saijo Y., Sullivan J. A., Wang H. et al. The COP1–SPA1interaction defines a critical step in phytochrome A-mediated regulation of HY5activity[J]. Genes&development,2003,17(21):2642-2647.
    Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees[J].Molecular biology and evolution,1987,4(4):406-425.
    Salomé P. A., McClung C. R. PSEUDO-RESPONSE REGULATOR7and9are partially redundant genesessential for the temperature responsiveness of the Arabidopsis circadian clock[J]. The Plant CellOnline,2005,17(3):791-803.
    Samach A., Onouchi H., Gold S. E., Ditta G. S., Schwarz-Sommer Z., Yanofsky M. F., Coupland G. Distinctroles of CONSTANS target genes in reproductive development of Arabidopsis[J]. Science,2000,288(5471):1613-1616.
    Schaffer R., Landgraf J., Accerbi M., Simon V., Larson M., Wisman E. Microarray analysis of diurnal andcircadian-regulated genes in Arabidopsis[J]. The Plant Cell Online,2001,13(1):113-123.
    Schaffer R., Ramsay N., Samach A., Corden S., Putterill J., Carré I. A., Coupland G. The late elongatedhypocotyl Mutation of Arabidopsis Disrupts Circadian Rhythms and the Photoperiodic Control ofFlowering[J]. Cell,1998,93(7):1219-1229.
    Seo H. S., Watanabe E., Tokutomi S., Nagatani A., Chua N.-H. Photoreceptor ubiquitination by COP1E3ligase desensitizes phytochrome A signaling[J]. Genes&development,2004,18(6):617-622.
    Sharrock R. A., Clack T. Patterns of expression and normalized levels of the five Arabidopsisphytochromes[J]. Plant physiology,2002,130(1):442-456.
    Shendure J., Ji H. Next-generation DNA sequencing[J]. Nature biotechnology,2008,26(10):1135-1145.
    Shi C.-Y., Yang H., Wei C.-L. et al. Deep sequencing of the Camellia sinensis transcriptome revealedcandidate genes for major metabolic pathways of tea-specific compounds[J]. BMC genomics,2011,12(1):131.
    Silveira é., Alves-Ferreira M., Guimar es L., da Silva F., Carneiro V. Selection of reference genes forquantitative real-time PCR expression studies in the apomictic and sexual grass Brachiariabrizantha[J]. BMC plant biology,2009,9(1):84.
    Siré C., Moreno A. B., Garcia-Chapa M., López-Moya J. J., Segundo B. S. Diurnal oscillation in theaccumulation of Arabidopsis microRNAs, miR167, miR168, miR171and miR398[J]. FEBS letters,2009,583(6):1039-1044.
    Solfanelli C., Poggi A., Loreti E., Alpi A., Perata P. Sucrose-specific induction of the anthocyaninbiosynthetic pathway in Arabidopsis[J]. Plant physiology,2006,140(2):637-646.
    Somers D. E., Devlin P. F., Kay S. A. Phytochromes and cryptochromes in the entrainment of theArabidopsis circadian clock[J]. Science,1998,282(5393):1488-1490.
    Somers D. E., Schultz T. F., Milnamow M., Kay S. A. ZEITLUPE Encodes a Novel Clock-Associated PASProtein from Arabidopsis[J]. Cell,2000,101(3):319-329.
    Srivastava L. M.(2002) Plant growth and development: hormones and environment. Academic press,
    Stephenson P. G., Fankhauser C., Terry M. J. PIF3is a repressor of chloroplast development[J]. Proceedingsof the National Academy of Sciences,2009,106(18):7654-7659.
    Strayer C., Oyama T., Schultz T. F. et al. Cloning of the Arabidopsis clock gene TOC1, an autoregulatoryresponse regulator homolog[J]. Science Signalling,2000,289(5480):768.
    Suárez-López P., Wheatley K., Robson F., Onouchi H., Valverde F., Coupland G. CONSTANS mediatesbetween the circadian clock and the control of flowering in Arabidopsis[J]. Nature,2001,410(6832):1116-1120.
    Subramanian C., Kim B.-H., Lyssenko N. N., Xu X., Johnson C. H., von Arnim A. G. The Arabidopsisrepressor of light signaling, COP1, is regulated by nuclear exclusion: mutational analysis bybioluminescence resonance energy transfer[J]. Proceedings of the National Academy of Sciences ofthe United States of America,2004,101(17):6798-6802.
    Suesslin C., Frohnmeyer H. An Arabidopsis mutant defective in UV‐B light‐mediated responses[J]. ThePlant Journal,2003,33(3):591-601.
    Sugano S., Andronis C., Green R. M., Wang Z.-Y., Tobin E. M. Protein kinase CK2interacts with andphosphorylates the Arabidopsis circadian clock-associated1protein[J]. Proceedings of the NationalAcademy of Sciences,1998,95(18):11020-11025.
    Sugano S., Andronis C., Ong M. S., Green R. M., Tobin E. M. The protein kinase CK2is involved inregulation of circadian rhythms in Arabidopsis[J]. Proceedings of the National Academy of Sciences,1999,96(22):12362-12366.
    Sun Y., Li Y., Hu X., Yang Q., Kang J., Zhang T. Molecular Cloning and Characterization of a Novel GeneEncoding DREB Protein from Buchloe dactyloides (Nutt.) Engelm[J]. Journal of AgriculturalScience,2011,4(1):p12.
    Tóth R., Kevei E., Hall A., Millar A. J., Nagy F., Kozma-Bognár L. Circadian clock-regulated expression ofphytochrome and cryptochrome genes in Arabidopsis[J]. Plant physiology,2001,127(4):1607-1616.
    Tallman G. Are diurnal patterns of stomatal movement the result of alternating metabolism of endogenousguard cell ABA and accumulation of ABA delivered to the apoplast around guard cells bytranspiration?[J]. Journal of experimental botany,2004,55(405):1963-1976.
    Tatusov R. L., Fedorova N. D., Jackson J. D. et al. The COG database: an updated version includeseukaryotes[J]. BMC bioinformatics,2003,4(1):41.
    Teng S., Keurentjes J., Bentsink L., Koornneef M., Smeekens S. Sucrose-specific induction of anthocyaninbiosynthesis in Arabidopsis requires the MYB75/PAP1gene[J]. Plant physiology,2005,139(4):1840-1852.
    Thellin O., Zorzi W., Lakaye B. et al. Housekeeping genes as internal standards: use and limits[J]. Journal ofbiotechnology,1999,75(2):291-295.
    Thomas T., Hare P., Van Staden J. Phytochrome and cytokinin responses[J]. Plant growth regulation,1997,23(1-2):105-122.
    Timperio A. M., Egidi M. G., Zolla L. Proteomics applied on plant abiotic stresses: role of heat shockproteins (HSP)[J]. Journal of Proteomics,2008,71(4):391-411.
    Tohge T., Nishiyama Y., Hirai M. Y. et al. Functional genomics by integrated analysis of metabolome andtranscriptome of Arabidopsis plants over‐expressing an MYB transcription factor[J]. The PlantJournal,2005,42(2):218-235.
    Toledo-Ortiz G., Huq E., Quail P. H. The Arabidopsis basic/helix-loop-helix transcription factor family[J].The Plant Cell Online,2003,15(8):1749-1770.
    Turgeon A. J.(1991) Turfgrass management. vol Ed.3. Prentice-Hall Inc.,
    Ulm R., Baumann A., Oravecz A. et al. Genome-wide analysis of gene expression reveals function of thebZIP transcription factor HY5in the UV-B response of Arabidopsis[J]. Proceedings of the NationalAcademy of Sciences of the United States of America,2004,101(5):1397-1402.
    Umemura Y., Ishiduka T., Yamamoto R., Esaka M. The Dof domain, a zinc finger DNA‐binding domainconserved only in higher plants, truly functions as a Cys2/Cys2Zn finger domain[J]. The PlantJournal,2004,37(5):741-749.
    Umezawa T. Systems biology approaches to abscisic acid signaling[J]. Journal of plant research,2011,124(4):539-548.
    Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accuratenormalization of real-time quantitative RT-PCR data by geometric averaging of multiple internalcontrol genes[J]. Genome biology,2002,3(7):research0034.
    Venturini L., Ferrarini A., Zenoni S. et al. De novo transcriptome characterization of Vitis vinifera cv.Corvina unveils varietal diversity[J]. BMC genomics,2013,14(1):41.
    von Arnim A. G., Deng X.-W. Light inactivation of Arabidopsis photomorphogenic repressor COP1involvesa cell-specific regulation of its nucleocytoplasmic partitioning[J]. Cell,1994,79(6):1035-1045.
    Wachholtz M., Heng-Moss T., Twigg P., Baird L., Lu G., Amundsen K. Transcriptome analysis of twobuffalograss cultivars[J]. BMC genomics,2013,14(1):613.
    Wade H. K., Bibikova T. N., Valentine W. J., Jenkins G. I. Interactions within a network of phytochrome,cryptochrome and UV‐B phototransduction pathways regulate chalcone synthase gene expressionin Arabidopsis leaf tissue[J]. The Plant Journal,2001,25(6):675-685.
    Wang H., Ma L.-G., Li J.-M., Zhao H.-Y., Deng X. W. Direct interaction of Arabidopsis cryptochromes withCOP1in light control development[J]. Science,2001,294(5540):154-158.
    Wang W., Vinocur B., Shoseyov O., Altman A. Role of plant heat-shock proteins and molecular chaperonesin the abiotic stress response[J]. Trends in plant science,2004a,9(5):244-252.
    Wang W., Vinocur B., Shoseyov O., Altman A. Role of plant heat-shock proteins and molecular chaperonesin the abiotic stress response[J]. Trends in plant science,2004b,9(5):244-252.
    Wang X., Wu L., Zhang S. et al. Robust expression and association of ZmCCA1with circadian rhythms inmaize[J]. Plant cell reports,2011,30(7):1261-1272.
    Wang Z., Fang B., Chen J. et al. De novo assembly and characterization of root transcriptome using Illuminapaired-end sequencing and development of cSSR markers in sweet potato (Ipomoea batatas)[J].BMC genomics,2010,11(726. doi:10.1186/1471-2164-11-726
    Wijnen H., Naef F., Boothroyd C., Claridge-Chang A., Young M. W. Control of daily transcript oscillationsin Drosophila by light and the circadian clock[J]. PLoS genetics,2006,2(3):e39.
    Wijnen H., Young M. W. Interplay of circadian clocks and metabolic rhythms[J]. Annu Rev Genet,2006,40(409-448.
    Wilhelm B. T., Marguerat S., Goodhead I., B hler J. Defining transcribed regions using RNA-seq[J]. Natureprotocols,2010,5(2):255-266.
    Xu X., Hotta C. T., Dodd A. N. et al. Distinct light and clock modulation of cytosolic free Ca2+oscillationsand rhythmic CHLOROPHYLL A/B BINDING PROTEIN2promoter activity in Arabidopsis[J].The Plant Cell Online,2007,19(11):3474-3490.
    Xu Z.-S., Li Z.-Y., Chen Y., Chen M., Li L.-C., Ma Y.-Z. Heat Shock Protein90in Plants: MolecularMechanisms and Roles in Stress Responses[J]. International journal of molecular sciences,2012,13(12):15706-15723.
    Yakir E., Hilman D., Harir Y., Green R. M. Regulation of output from the plant circadian clock[J]. FEBSJournal,2007,274(2):335-345.
    Yakir E., Hilman D., Kron I., Hassidim M., Melamed-Book N., Green R. M. Posttranslational regulation ofCIRCADIAN CLOCK ASSOCIATED1in the circadian oscillator of Arabidopsis[J]. PlantPhysiology,2009,150(2):844-857.
    Yamashino T., Ito S., Niwa Y., Kunihiro A., Nakamichi N., Mizuno T. Involvement of Arabidopsis clock-associated pseudo-response regulators in diurnal oscillations of gene expression in the presence ofenvironmental time cues[J]. Plant and cell physiology,2008,49(12):1839-1850.
    Yamashino T., Matsushika A., Fujimori T., Sato S., Kato T., Tabata S., Mizuno T. A link between circadian-controlled bHLH factors and the APRR1/TOC1quintet in Arabidopsis thaliana[J]. Plant and cellphysiology,2003,44(6):619-629.
    Yan B., Dai Q., Liu X., Huang S., Wang Z. Flooding-induced membrane damage, lipid oxidation andactivated oxygen generation in corn leaves[J]. Plant and soil,1996,179(2):261-268.
    Yan H., Huang J., Liao B., Lan X., Luo Q., Tang J. DOF transcription factors in developing peanut (Arachishypogaea) seeds[J]. American Journal of Molecular Biology,2011,2(60.
    Yanagisawa S. The Dof family of plant transcription factors[J]. Trends in plant science,2002,7(12):555-560.
    Yang H.-Q., Tang R.-H., Cashmore A. R. The signaling mechanism of Arabidopsis CRY1involves directinteraction with COP1[J]. The Plant Cell Online,2001,13(12):2573-2587.
    Yanovsky M. J., Kay S. A. Signaling networks in the plant circadian system[J]. Current opinion in plantbiology,2001a,4(5):429-435.
    Yanovsky M. J., Kay S. A. Signaling networks in the plant circadian system[J]. Current opinion in plantbiology,2001b,4(5):429-435.
    Ye J., Fang L., Zheng H. et al. WEGO: a web tool for plotting GO annotations[J]. Nucleic acids research,2006,34(suppl2):W293-W297.
    Yordanova R. Y., Christov K. N., Popova L. P. Antioxidative enzymes in barley plants subjected to soilflooding[J]. Environmental and Experimental Botany,2004,51(2):93-101.
    Young J. C., Moarefi I., Hartl F. U. Hsp90: a specialized but essential protein-folding tool[J]. The Journal ofcell biology,2001,154(2):267.
    Young M. W., Kay S. A. TIME ZONES: A COMPARATIVE GENETICS OF CIRCADIAN CLOCKS[J].NATURE REVIEWS|GENETICS,2001,2(703.
    Yu J.-W., Rubio V., Lee N.-Y. et al. COP1and ELF3control circadian function and photoperiodic floweringby regulating GI stability[J]. Molecular cell,2008a,32(5):617-630.
    Yu J. W., Rubio V., Lee N. Y. et al. COP1and ELF3control circadian function and photoperiodic floweringby regulating GI stability[J]. Molecular cell,2008b,32(5):617-630.
    Zeilinger M. N., Farré E. M., Taylor S. R., Kay S. A., Doyle F. J. A novel computational model of thecircadian clock in Arabidopsis that incorporates PRR7and PRR9[J]. Molecular Systems Biology,2006,2(1)
    Zerbino D. R., Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs[J].Genome research,2008,18(5):821-829.
    Zhang P., Yang P., Zhang Z. et al. Isolation and characterization of a buffalograss (Buchloe dactyloides)dehydration responsive element binding transcription factor, BdDREB2[J]. Gene,2014,536(1):123-128.
    Zhang Y., Chen D., Smith M. A., Zhang B., Pan X. Selection of reliable reference genes in Caenorhabditiselegans for analysis of nanotoxicity[J]. PloS one,2012,7(3):e31849.
    Zhong H.-Y., Chen J.-W., Li C.-Q. et al. Selection of reliable reference genes for expression studies byreverse transcription quantitative real-time PCR in litchi under different experimental conditions[J].Plant cell reports,2011,30(4):641-653.
    Zhu J., Zhang L., Li W., Han S., Yang W., Qi L. Reference gene selection for quantitative real-time PCRnormalization in Caragana intermedia under different abiotic stress conditions[J]. PloS one,2013,8(1):e53196.
    Zhu X., Li X., Chen W., Chen J., Lu W., Chen L., Fu D. Evaluation of new reference genes in papaya foraccurate transcript normalization under different experimental conditions[J]. PloS one,2012,7(8):e44405.
    Zhu Y., Tepperman J. M., Fairchild C. D., Quail P. H. Phytochrome B binds with greater apparent affinitythan phytochrome A to the basic helix–loop–helix factor PIF3in a reaction requiring the PASdomain of PIF3[J]. Proceedings of the National Academy of Sciences,2000,97(24):13419-13424.
    Zhuang J., Cai B., Peng R.-H. et al. Genome-wide analysis of the AP2/ERF gene family in Populustrichocarpa[J]. Biochemical and biophysical research communications,2008,371(3):468-474.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700