用户名: 密码: 验证码:
桑中芪类成分累积变化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芪类(Stilbenes)是具有均苯二烯母核或其聚合物的一类物质的总称。白藜芦醇、氧化白藜芦醇和桑皮苷是具有代表性的芪类成分,均存在于桑(Morus albaL.)等植物中。由于芪类在植物生理学、药物学和在人类健康中具有重要的研究和开发价值而被广泛研究和关注。但是芪类物质为植物次生代谢物,含量低,且大多不稳定,容易在提取、纯化过程中损失,给大规模的生产和应用带来了一定的影响,目前芪类化合物的价格还比较高。我国的桑资源丰富,但是对于桑中芪类的研究报道较少。本文以桑为研究对象,对不同品种、同一品种不同取材部位、不同采收季节的桑中主要芪类化合物的累积变化规律进行了研究。以桑幼苗为材料,研究了紫外照射后相关酶芪合酶STS、查尔酮合成酶CHS基因的表达水平和芪类、黄酮类的累积变化规律。主要研究结果如下:
     1.建立了HPLC-UV同时检测桑中3个芪类化合物的方法,通过梯度洗脱于21min内可完全分离,且线性关系、精密度与重复性良好,桑样品提取液在12h内稳定。方法准确、可靠、稳定,样品预处理简单,可作为桑样品中白藜芦醇、氧化白藜芦醇和桑皮苷等芪类成分的含量检测方法。
     2.不同品种、同品种不同取材部位、不同采收季节的桑中主要芪类物质含量存在差异。芪类物质含量相对较高的优势桑品种有红皮湖桑、中生火桑、黑鲁桑、塘10,小鸡冠桑等;含量高的部位为根的各个部位、皮部以及周皮痕迹;含量高的季节为秋冬与春季。芪类成分检测结果可作为筛选芪类物质含量高的桑树资源的依据。
     3.对桑树中各部位之间及与主根根皮芪类成分含量进行相关与逐步回归分析,结果显示,3个芪类成分含量大部分显著相关。按照逐步回归的方法,分别得到桑皮苷A、氧化白藜芦醇、白藜芦醇桑树各部位与主根根皮含量的回归方程,呈显著的正相关,这说明可以根据桑树其他部位芪类成分含量估测主根根皮中芪类成分含量。
     4.以桑幼苗为材料进行研究,UV胁迫增加了桑幼苗组织中的过氧化氢含量,使机体的活性氧不断增加,激发机体的胁迫应答机制:芪类含量增加,总抗氧化能力升高,GSH还原过氧化物,清除体内的白由氧。使植物体内活性氧的产生和清除之间趋于平衡状态,维持机体组织原有的平衡。
     5.以桑幼苗为研究对象,比较桑苗中对照组和紫外照射组芪类黄酮类成分的累积变化规律,以及分析紫外照射对其相关生物合成关键酶基因STS和CHS表达的影响。紫外可以诱导STS、CHS基因的表达与芪类、黄酮类化合物含量的累积,且芪类、黄酮类化合物含量与STS、CHS基因表达变化规律基本一致。说明紫外诱导后芪类、黄酮类化合物的合成与累积受到芪合酶、查尔酮合成酶基因的调控。
     6.测试了桑苗发育过程中受到UV诱导时不同部位STS、CHS基因的农达水平。结果表明,桑苗受到UV诱导时STS、CHS基因表达受到影响,根、茎、叶中的表达均增加,且在叶中表达变化最大。
     以上可知,不同品种、同一品种不同取材部位、不同采收季节的桑中主要芪类物质含量存在差异;应用相关与逐步回归分析,可以根据桑树其他部位芪类成分含量估测主根根皮中芪类成分含量。可为筛选富含芪类物质桑树资源及优势桑品种选育提供一定的实验依据。
     紫外诱导促进桑苗中芪合酶STS、查尔酮合成酶CHS基因的表达及芪类、黄酮类成分的累积;紫外诱导后桑苗根、茎、叶部位的STS、CHS基因表达均增加,且在叶中表达变化最大。从分子水平上初步研究了紫外诱导对桑苗中STS。 CHS基因表达和芪类、黄酮类合成的调控,为将来利用基因工程方法调控STS、 CHS基因表达与芪类、黄酮类的合成提供了理论依据和实验基础。
Stilbenes are a group of materials that have the benzene diene nucleus or the polymers, including resveratrol, oxyresveratrol and mulberroside A, which can be obtained from mulberry. Stilbenes have been widely studied in plant physiology, pharmacology and human health for their important value in the research and development. But stilbenes are secondary metabolites in plant; with low content and unstable nature, they are easily lost in the process of extraction and purification. This resulted in the difficulty to produce them in a large scale and hence impaired their application, and also led to a relatively high price. Tough Mulberry resources are rich in our country; the study on stilbenes in mulberry was rare. This study aimed to investigate the composition of major stilbenes in different portions of different mulberry varieties collected in different seasons. The expression patterns of STS, CHS and the content of stilbenes, flavonoids in mulberry seedlings treated with UV light were studied. The results were as follows:
     1. A simple, sensitive and specific HPLC method was developed for simultaneous determination of the three major active constituents in mulberries, namely mulberroside A, oxyresveratrol, resveratrol, which were completely separated within21min, and were stable in12h, suggesting that the method can be used to analyze the three major stilbenes in mulberry.
     2. The main contents of stilbenes varied according to different portions of different mulberry varieties collected in different seasons. It was found that mulberry varieties, Hongpihusang, Zhongshenghuosang, Heilusang, Tang10, Xiaojiguansang have high content of stilbenes; Among different positions of mulberry, the root, bark and periderm vestige have higher level of stilbenes; the same is true for autumn, winter and spring.
     3. By correlation and regression analysis of the contents of stilbenes in different parts and axial root bark, we found that the contents of mulberroside A, oxyresveratrol, resveratrol in different parts and axial root bark were positively correlated.
     4. The content of H2O2in mulberry seedlings treated with UV light was significantly higher than that in the control. The body defense systems response to stress by increasing the stilbenes and the total antioxidant capacity. The GSH reduces H2O2and clear away free oxygen from the body, maintaining in plants a balanced and dynamic state between the production and elimination of activated oxygen.
     5. The expression pattern of STS, CHS and the content of stilbenes, flavonoids in mulberry seedlings treated with UV light were studied. It was observed that the UV light induces STS, CHS expression and the accumulation of stilbenes and flavonoids in mulberry seedlings. The expression pattern of STS, CHS and that of the accumulation of stilbenes, flavonoids were basically similar, implying that stilbenes and flavonoids biosynthesis and accumulation may be regulated by STS and CHS.
     6. In the current study we also observed that the UV light treatment induces STS and CHS expression in root, stem and leaf of mulberry seedlings. This effect is more prominent in leaf.
     In conclusion, the main contents of stilbenes varied in different portions of different mulberry varieties collected in different seasons; the results of the correlation and regression analysis indicated that the contents of stilbenes in different parts could predict the content of the axial root bark. The results can be used as a reference to screen mulberry materials with higher level of stilbenes and for breeding and preserving excellent germplasm during the process of system breeding for mulberry rich in stilbenes.
     It was observed that the UV light treatment promoted STS, CHS expression and the accumulation of stilbenes and flavonoids in mulberry seedlings. It was also observed that UV light treatment promoted STS and CHS expression in root, stem and especially in leaf of mulberry. Our preliminary results demonstrated at the molecular level the regulation mechanism of the STS, CHS expression and the biosynthesis of stilbenes, flavonoids in mulberry seedlings treated with UV light. The results obtained during this research project provide a theoretical and experimental basis for the future study in the regulation of the expression of STS, CHS and the controlling of the biosynthesis of stilbenes, flavonoid by genetic engineering method.
引文
[1]斯建勇.天然芪类化合物的研究概况[J].天然产物研究与开发,1994,6(4):71-79.
    [2]Jeandet P, Delaunois B, Conreux A, et al. Biosynthesis, metabolism, molecular engineering, and biological functions of stilbene phytoalexins in plants[J]. Biofactors, 2010,36(5):331-341.
    [3]Langcake P, Pryce RJ. A new class of phytoalexins from grapevines. Experientia, 1977,33(2):151-152.
    [4]Muller K.O, Borger H. Experimentlls untersuchungen uber die Phytophthora-resistenz der kartoffel. Arbeiten aus der Biologischen Reichsanstalt fur Land-und Forstwirtschaft,1940,23,189-231.
    [5]虢小翊,周晋,李顺祥,等.氧化白藜芦醇(苷)的植物资源分布及药用价值的研究进展[J].科技导报,2011,29(30):63-67.
    [6]周晋,李顺祥,曹亮,等.白黎芦醇等芪类合成酶研究进展[J].湖南中医药大学学报,2012,32(2):76-78.
    [7]虢小翊.利用微生物转化技术制备氧化白藜芦醇的研究[D].湖南:湖南中医药大学,2012.
    [8]Aftab N, Likhitwitayawuid K, Vieira A. Comparative antioxidant activities and synergism of resveratrol and oxyresveratrol[J]. Natural Product Research,2010, 24(18):1726-1733.
    [9]王洪侠.桑不同提取物体外抗氧化活性的比较研究[J].赤峰学院学报,2008,24(1):104-107.
    [10]Sasivimolphan P, Lipipun V, Likhitwitayawuid K, et al. Inhibitory activity of oxyresveratrol on wild-type and drug-resistant varicella-zoster virus replication in vitro[J]. Antiviral Research,2009,84(1):95-97.
    [11]Andrabi SA, Spina MG, Lorenz P, et al. Oxyresveratrol (trans-2,3',4,5'-tetrahydroxystilbene) is neuroprotective and inhibits the apoptotic cell death in transient cerebral ischemia[J]. Brain Research,2004,1017(1-2):98-107.
    [12]Chuanasa T, Phromjai J, Lipipun V, et al. Anti-herpes simplex virus (HSV-1) activity of oxyresveratrol derived from Thai medicinal plant:Mechanism of action and therapeutic efficacy on cutaneous HSV-i infection in mice[J]. Antiviral Research, 2008,80(1):62-70.
    [13]Chung KO. Kim BY, Lee MH, et al. In-vitro and in-vivo anti-inflammatory effect of oxyresveratrol from Moms alba L[J]. Journal of Pharmacy and Pharmacology,2003,55(12):1695-1700.
    [14]Zhang ZF, Shi LG. Anti-inflammatory and analgesic properties of cis-mulberroside A from Ramulus mori[J]. Fitoterapia,2010,81(3):214-218.
    [15]阚启明,康宁,田海涛,等.桑皮苷的镇咳平喘作用[J].沈阳药科大学学报,2006,23(6):388-391.
    [16]Kim JK, Kim M, Cho SG, et al. Biotransformation of mulberroside A from Morus alba results in enhancement of tyrosinase inhibition[J]. Journal of Industrial Microbiology & Biotechnology,2010,37(6):631-637.
    [17]丛蓉.利用siRNA支术抑制人黑色索瘤细胞酪氨酸酶活性的研究[D].上海:华东师范大学,2007.
    [18]Li HT, Cheng KW, Cho CH, et al. Oxyresveratrol as an antibrowning agent for cloudy apple juices and fresh-cut apples[J]. Journal of Agricultural and Food Chemistry,2007,55(7):2604-2610.
    [19]Kim YM, Yun J, Lee CK. et al. Oxyresveratrol and hydroxystilbene compounds. Inhibitory effect on tyrosinase and mechanism of action[J]. The Journay of Biological Chemistry,2002,277(18):16340-16344.
    [20]Shin NH, Ryu SY, Choi EJ, et al. Oxyresveratrol as the potent inhibitor on dopa oxidase activity of mushroom tyrosinase[J]. Biochemical and Biophysical Research Communications,1998,243(3):801-803.
    [21]Tengamnuay P, Pengrungruangwong K, Likhitwitayawuid K. A potent tyrosinase inhibitor from Artocarpus lakoocha heartwood extract[C]. Proceedings of the IFSCC Conference, Seoul, Korea, September 22-24,2003,201-212.
    [22]Tengamnuay P, Pengrungruangwong K, Pheansri l, et al.Artocarpus lakoocha heartwood extract as a novel cosmetic ingredient:Evaluation of the in vitro anti-tyrosinase and in vivo skin whitening activities[J]. International Journal of Cosmetic Science,2006,28(4):269-276.
    [23]Zhang ZF, Jin J, Shi LG. Protective function of cis-mulberroside A and oxyresveratrol from Rumulus mori against ethanol-induced hepatic damage[J]. Environmental Toxicology and Pharmacology,2008,26(3):325-330.
    [24]Lorenz P, Roychowdhury S, Engelmann M, et al. Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers:effect on nitrosative and oxidative stress derived from microglial cells[J]. Nitric Oxide,2003,9(2):64-76.
    [25]Chatsumpun M, Chuanasa T, Sritularak B, et al. Oxyresveratrol protects against DNA damage induced by photosensitized riboflavin[J]. Natural Product Communication,2011,6(1):41-44.
    [26]Likhitwitayawuid K, Sornsute A, Sritularak B, et al. Chemical transformations of oxyresveratrol (trans-2,4,3',5'-tetrahydroxystilbene) into a potent tyrosinase inhibitor and a strong cytotoxic agent[J]. Bioorganic & Medicinal Chemistry Letters,2006, 16(21):5650-5653.
    [27]Huang HL, Chen GT, Lu Z, et al. Identification of seven metabolites of oxyresveratrol in rat urine and bile using liquid chromatography/tandem mass spectrometry[J]. Biomedical Chromatography,2010,24(4):426-432.
    [28]温文川,冯冰虹.泰镇咳浸膏的镇咳、祛痰、抗炎和平喘作用[J].广东药学院学报,2000,16(2):114-115.
    [29]Choe.W, Kim S, Hwang TS, et al. Expression of inducible nitric oxide synthase in thyroid neoplasms:Immunohistochemical and molecular analysis[J]. Pathology International,2003,53(7):434-439.
    [30]Sashida Y, Kubo S, Mimaki Y, et al. Steroidal saponins from smilax riparia and S.china[J]. Phytochenmistry,1992,31(7):2439-2443.
    [31]Ban JY, Jeon SY, Nquyen TTH, et al. Neuroprotective effect of oxyresveratrol from smilacis chinae rhizome on amyloid P protein (25-35)-induced neurotoxicity in cultured rat cortical neurons[J]. Biological & Pharmaceutical Bulletin,2006,29(12): 2419-2424.
    [32]Kim M, Meng X, Kim A, et al. Developing a long-lasting tyrosinase inhibitor from Morus alba L[J]. Cosmetics and Toiletries,2006,121(3):91-102.
    [33]朴淑娟.曲戈霞,邱峰.桑白皮水提物中化学成分的研究[J].中国药物化学杂志,2006,16(1):40-44.
    [34]Ferlinahayati, Syah YM, Juliawaty LD. et al. Phenolic constituents from the wood of Morus australis with cytotoxic activity[J]. Zeitschrifi Fur Naturforschung, 2008,63(1-2):35-39.
    [35]Hakim EH, Ulinnuha UZ, Syah YM, et al. Artoindonesianins N and O, new prenylated stilbene and prenylated arylbenzofuran derivatives from Artocarpus gomezianus[J]. Fitoterapia,2002,73(7-8):597-603.
    [36]Charoenlarp P, Radomyos P, Harinasuta T. Treatment of taeniasis with Puag-Haad a crude extract of Artocarpus lakoocha wood[J]. Southeast Asian Journal of Tropical Medicine & Public Health,1981,12(14):568-570.
    [37]Tsuruga T, Chun YT, Ebizuka Y, et al. Biologically active constituents of melaleuca leucadendron inhibitors of induced histamine release from rat mast cclls[J]. Chemical & Pharmaceutical Bulletin (Tokyo),1991,39(12):3276-3278.
    [38]王国平,于伟,刘焱文.菝葜化学成分的研究[J].时珍国医国药,2007,18(6):1404-1405.
    [39]Shao B, Guo HZ, Cui YJ, et al. Simultaneous determination of six major stilbenes and flavonoids in Smilax china by high performance liquid chromatography [J] Journal of Pharmaceutical and Biomedical Analysis,2007,44(3):737-742.
    [40]王国平,于伟,张莲萍,等.菝葜化学成分研究[J].湖北中医杂志,2007,29(6):61.
    [41]冯锋,柳文媛,陈优生,等.菝葜中黄酮和芪类成分的研究[J].中国药科大学学报,2003,34(2):119-121.
    [42]Kim DH, Kim JH,Baek SH. Enhancement of tyrosinase inhibition of the extract of Veratrum patulum using cellulase[J]. Biotechnoology and Bioengineering,2004, 87(7):849-854.
    [43]Huang KS, Wang YH, Li RL. Five new stilbene dimers from the lianas of Gnetum hainanense[S].Journal of Natural Products,2000,63(1):86-89.
    [44]Li XM, Lin M, Wang YH. Stilbenoids from the lianas of Gnetum pendulum[J] Journal of Asian Natural Products Research,2003,5(2):113-119.
    [45]Li XM, Lin M, Wang YI I. et al. Four new stilbenoids from the lianas of Gnetum montanum f. megalocarpum[J]. Planta Medica,2004,70(2):160-165.
    [46]中国科学院中国植物志编辑委员会.中国植物志[M].23卷.北京:科学出版社,1998.
    [47]沈以红,朱见.桑树资源综合利用研究概述[J].蚕学通讯,2007,27(1):5-9.
    [48]杨乐,陈泣.桑白皮研究进展[J].江西中医学院学报,2007,19(3):98-100.
    [49]吴志平,谈建中,顾振纶.中药桑白皮化学成分及药理活性研究进展[J].中国野生植物资源,2004,23(5):10-13.
    [50]徐立,余茂德,王茜龄,等.桑树中稀有木脂素DadaholA的分离鉴定[J].蚕业科学,2008,34(1):88-91.
    [51]郭丽,毕拥国,王志刚,等.桑树挥发物化学成分分析[J].河北林果研究,2006,21(2):192-194.
    [52]Nattapong S, Omboon L. A new source of whitening agent from a Thai Mulberry plant and its betulinic acid quantitation[J]. Natural Product Research,2008,22(9): 727-734.
    [53]Hano Y, Tsubura H, Nomura T. Two new stilbene derivatives from the cultivated mulberry tree(Morus alba L.)[J]. Heterocycles,1986,24(9):2603-2610.
    [54]Ujvtkry I, Casida JE. Partial synthesis of 3-o-vanilloylveracevine, an insecticidal .alkaloid from Schoenocaulon officinale[J].Phytochemistry,1997,44(7):1257-1260.
    [55]Kanchanapoom T, Suga K, kasai R, et al. Stilbene and 2-Arylbenzofuran glucosides from the rhizomes of Schoenocaulon officinale[J]. Chemical and Pharmaceutical Bulletin,2002,50(6):863-865.
    [56]际东生,华小黎.菝葜的研究现状[J].中药材,2006,29(1):90-93.
    [57]www.hudong.com
    [58]辛宁,瘳月葵,潘小姣.小叶买麻藤的生药鉴定[J].中草药,1998,29(11):765-767.
    [59]冯爱芬,卢宗辉,李熙灿.买麻藤属植物的化学成分研究进展[J].中药材,2006,29(9):989-993.
    [60]唐柯.紫外诱导后葡萄(Vitis v in if era L.)与花生幼苗(Arachis hypogaea L.)中 白藜芦醇合成酶变化(?)自藜芦醇信号转导作用机制初探[D].北京:中国农业大学,2009.
    [61]俸灵林,包文芳,廖矛川.白藜芦醇和白藜芦酵苷的测定方法研究进展[J].天然产物研究与开发,2005,17(6),826-830.
    [62]Breuer C, Wolf G, Andrabi SA, et al. Blood-brain barrier permeability to the neuroprotectant oxyresveratrol[J]. Neuroscience Letters,2006,393(2-3):113-118.
    [63]柴建萍,谢道燕.不同桑树品种资源多酚及黄酮类物质测定[J].蚕桑通报.2007,38(3):15-16.
    [64]Stecher G, Huck CW, Premstaller A, et al. CE and HPLC-MS methods for the determination of resveratrol and glycosides in red wine.2002,http://info.uibk.ac.at/c/c7/c725/phyto/poster/stech-balaton 1999.pdf
    [65]吴平谷,丁刚强.葡萄酒中游离白藜芦醇的气相色谱质谱测定法[J].营养学报,2003,25(2):145-148.
    [66]王娅宁,尉亚辉,郝浩永,等.白藜芦醇代谢物的研究进展[J].西北植物学报,2007,27(4):852-858.
    [67]B.B.布坎南等[美]编,翟礼嘉等译.植物生物化学与分子生物学[M].北京:科学出版社,2002:1078-1082.
    [68]孟旭辉,张评浒,张朝凤.芪类化合物及其合成酶的研究进展[J].中国野生植物资源,2010,29(3):15-20.
    [69]姬婧媛,张展鹏,张变玲,等.自藜芦醇的生物技术研究[J].贵州农业科学,2008,36(4):14-16.
    [70]Adrian M, Daire X, Jeandet P, et al. Comparisons of stilbene synthase activity (resveratrol amounts and stilbene synthase mRNAs levels) in grapevine leaves treated with biotic and abiotic phytoalexin inducers[J]. American Journal of Enology and Viticulture,1997,48(3):394-399.
    [71]Raiber S, Schroder G, Schroder J. Molecular and enzymatic characterization of two stilbene synthase from Eastern white pine (Pinus strobus) A single Arg/His difference determines the activity and the pH dependence of the enzymes[J]. Febs Letters,1995,361(2):299-302.
    [72]Schwekendiek A, Pfeffer G, Kindl H. Pine stilbene synthase cDNA, a tool for probing environme;tal stress[J]. Febs Letters,1992,301(1):41-44.
    [73]Tang K, Zhan JC, Yang HR, et al. Changes of resveratrol and antioxidant enzymes during UV-induced plant defense response in peanut seedlings[J]. Journal of Plant Physiology,2010,167(2):95-102.
    [74]何水林,郑金贵,林明,等.植物芪类次生代谢物的功能、合成调控及基因工程研究进展[J].农业生物技术学报,2004,12(1):102-108.
    [75]Deluc LG, Decendit A, Papastamoulis Y, et al. Water deficit increases stilbene metabolism in cabernet sauvignon berries[J]. Journal of Agricultural and Food Chemistry,2011,59(1):289-297.
    [76]Hain R, Reif HJ, Krause E, et al. Disease resistance results from foreign phytoalexin expression in a novel plant[J]. Nature,1993,361(6408):153-156.
    [77]Schmidlin L, Poutaraud A, Claudel P, et al. A stress inducible resveratrol O-methyltransferase involved in the biosynthesis of pterostilbene in grapevine[J]. Plant Physiology,2008,148(3):1630-1639.
    [78]Gamm M, Heloir MC, Kelloniemi J, et al. Identification of reference genes suitable for qRT-PCR in grapevine and application for the study of the expression of genes involved in pterostilbene synthesis[J]. Molecular Genetics and Genomics,2011, 285(4):273-285.
    [79]Kiselev K.V, Dubrovina AS, Bulgakov VP, et al. Phenylalanine ammonia-lyase and stilbene synthase gene expression in rolB transgenic cell cultures of Vitis amurensis[D]. Applied Microbiology and Biotechnology,2009,82(4):647-655.
    [80]Wang W, Tang K, Yang HR, et al. Distribution of resveratrol and stilbene synthase in young grape plants (Vitis vinifera L. cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation[J]. Plant Physiology and Biochemistry,2010, 48(2-3):142-152.
    [81]李景明,马丽艳,刘艳娜.葡萄采后紫外线处理(UV)对白黎芦醇的诱导作用[J].中外葡萄与葡萄酒,2004,(4):16-19.
    [82]荣瑞芬,冯双庆,戴蕴青.短波紫外线照射对葡萄采后发病率及白藜芦醇化合物的影响[J].保鲜与加工,2005,28(3):8-9.
    [83]李晓东.郑先波,闰树堂,等.水杨酸和紫外线对诱导采后葡萄果皮内白藜芦醇合成作用研究[J].果树学报,2007,24(1):30-33.
    [84]张楠,刘建利.UV-C和水杨酸对虎仗叶中白藜芦醇和虎杖苷的诱导作用[J].西北植物学报,2008,28(5):990-994.
    [85]Basset C, Rodrigues AMS. Eparvier V, et al. Secondary metabolites from Spriotropis longifolia (DC) Baill and their antifungal activity against human pathogenic fungi[J]. Phytochemistry.2012,74:166-172.
    [86]Royer M, Herbette G, Eparvier V, et al. Secondary metabolites of Bagassa guianensis Aubl.wood:a study of the chemotaxonomy of the Moraceae family[J]. Phytochemistry,2010,71(14-15):1708-1713.
    [87]Shen CC, Cheng JJ, Lay HL, et al. Cytotoxic apigenin derivatives from chrysopogon aciculatis[J]. Journal of natural products,2012,75(2):198-201.
    [88]乔欣,赵婷,王萌,等.白桂木中的黄酮类化合物[J].中国中药杂志,2011,36(21):2975-2979.
    [89]Yang ZG, Mastsuzaki K, Takamastsu S, et al. Inhibitory effects of constituents from Morus alba var. multicaulis on differentiation of 3T3-L1 cells and nitric oxide production in RAW264.7 cells[J]. Molecules,2011,16(7):6010-6022.
    [90]Zhcng ZP, Zhu Q, Fan CL, et al. Phenolic tyrosinase inhibitors from the stems of Cudrania cochinchinensis[J]. Food & Function,2011,2(5):259-264.
    [91]谭永霞,刘超,陈若芸.长穗桑茎皮中的酚类成分及其抗炎和细胞毒活性[J].中国中药杂志,2010,35(20):2700-2703.
    [92]徐立,伍春,刘峻池,等.氧化白藜芦醇的提取放法.中国.101591680[P].2009-12-2.
    [93]Park KT, Kim JK, Hwang D, et al. Inhibitory effect of mulberroside A and its derivatives on melanogenesis induced by ultraviolet B irradiation[J]. Food and Chemical Toxicology,2011,49(12):3038-3045.
    [94]Chong Y, Yan A, Yang X, et al. An optimum fermentation model established by genetic algorithm for biotransformation from crude polydatin to resveratrol[J]. Applied Biochemistry and Biotechnology,2012,166(2):446-457.
    [95]孙(?)宜,肖春芬,魏文,等.氧化白藜芦醇的合成[J].有机化学,2010,30(10):1574-1579.
    [96]黄卫文,李忠海,黎继烈,等.白藜芦醇的合成研究进展[J].中南林业科技大学学报,2010,30(10):72-77.
    [97]Pasteur N, Singre G, Gabinaud A. Est-2 and Est-3 polymorphism in Culex Pipiens L. from southern France in relation to organophosphate resistance[J]. Biochemical Genetics,1981,19(5-6):499-508.
    [98]周晋,李顺祥,龚昕,等.桑树不同品种及取材部位中的主要芪类成分含量测定[J].蚕业科学.2012,38(4):758-762.
    [99]周晋,李顺祥,颜新培,等.桑树中主要芪类成分含量动态变化研究[A].第十一届全国青年药学工作者最新科研成果交流会论文集,2012,668-672.
    [100]佟志远,颜新培,李顺祥,等.桑枝中氧化白藜芦醇的分离与鉴定[J].蚕业科学,2011,37(5):948-951.
    [101]罗隽.桑枝有效成分分离及其指纹图谱研究[D].湖南:中南大学,2011.
    [102]吴石磊,徐立,刘俊,等.桑皮苷的提取方法及工艺条件研究[J].蚕业科学,2009,35(3):671-674.
    [103]Mongolsuk. S, Robertson A, Towers R.2,4,3',5'-Tetrahydroxystilbene from Anocarpus lakoocha[S]. Journal of the Chemical Society,1957,2231-2233.
    [104]佟志远.氧化芪三酚提取分离及桑资源调查研究[D].湖南:湖南中医药大学,2010.
    [105]罗隽,刘韶,李新中.高效液相色谱法测定桑树各部位及其配方颗粒中桑皮苷A的含量[J].中南药学,2011,9(1):11-14.
    [106]Douillet-Breuil AC, Adrian M, Bessis R, et al. Changes in the phytoalexin content of various Vitis spp. in response to ultraviolet C elicitation[J]. Journal of Agricultural and Food Chemistry,1999,47(10),4456-4461.
    [107]Jones P. Glycosyltransferases in secondary plant metabolism:tranquilizers and stimulant controllers[J]. Planta,2001,213(2):164-174.
    [108]杨鸿雁,唐贞澜,莫崇友.不同时间夏伐对杂交桑生长能力的效应[J].南方农业,2009,4:28-30.
    [10]董娟娥.几种药用植物次生代谢物含量变化规律及其影响因子研究[D].陕西杨凌:中国科学院教育部水土保持与生态环境研究中心,2008.
    [110]周晋,李顺祥,颜新培,等.桑树药材各部位中芪类成分含量的比较及其相关性研究[J].中国中药杂志,2013,38(19):3261-3264.
    [111]黄璐琦,高伟,周洁,等.系统生物学方法在药用植物次生代谢产物研究中的应用[J].中国中药杂志,2010,35(1):8-12.
    [112]刘竹兰,张楠,崔哲,等.紫外光对葡萄皮中白藜芦醇的诱导作用[J].食品科学,2008,29(5):142-144.
    [113]张俊,葛林梅,房祥军,等.紫外照射对采后花生根中白藜芦醇的影响[J].中国食品学报,2009,4(9):161-164.
    [114]范崇东,王森,卫功元,等.谷胱甘肽测定方法研究进展[J].生物技术,2004,14(1):68-70.
    [115]张小莉,王鹏程,宋纯鹏,等.植物细胞过氧化氢的测定方法[J].植物学报,2009,44(1):103-106.
    [116]李景明.葡萄采后自藜芦醇的诱导与酿造工艺对葡萄酒中白藜芦醇的影响[D].北京:中国农业大学,2003.
    [117]Louise B, Accotto GP, Ulrike B, et al. Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis[J]. Plant Cell,2004,16(9):2448-2462.
    [118]Zetterstrom R, Eijkman C, Hopkins FG. The dawn of vitamins and other essential nutritional growth factors[J]. Acta Paediatrica,2006,95(11):1331-1333.
    [119]杜琳,张荃.植物谷胱甘肽与抗氧化胁迫[J].山东科学,2008,21(2):27-32.
    [120]Noctor G, Gomez L, Vanacker H, et al. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling[J]. Journal of Experimental Botany,2002,53(372):1283-1304.
    [121]May MJ, Vernoux T, Leaver C, et al. Glutathione homeostasis in plants: Implications for environmental sensing and plant development[J]. Journal of Experimental Botany,1998,49(321):649-667.
    [122]袁成福.硒茶和非硒茶对D-半乳糖致衰老小鼠总抗氧化能力的对照研究[J]. 湖北民族学院学报,2004,21(3):19-21.
    [123]左文涛,俞诗源,王昱,等.X线对仔鼠胃组织结构及总抗氧化能力、谷胱甘肽过氧化物酶和谷胱甘肽还原酶活性的影响[J].解剖学报,2011,42(4):521-526.
    [124]Austin MB, Noel JP. The chalcone synthcse superfamily of type III polyketide synthases[J]. Natural Products Report,2003,20(1):79-110.
    [125]Jeandet P, Bessis R, Sbaghi M, et al. Production of the phytoalexin resveratrol by grapes as a response to botrytis attack under natural conditions[J]. Journal of Phytopathology,1995,143(3):135-139.
    [126]Jeandet P, Sbaghi M, Bessis R, et al. The potential relationship of the stilbene (resveratrol) synthesis to anthocyanin content in grape berry skins[J]. Vitis,1995, 34(2):91-94.
    [127]Larronde F, Krisa S. Decendit A, et al. Regulation of polyphenol production in Vinifera cell suspension cultures by sugar[J]. Plant Cell Reports,1998,17(12): 946-950.
    [128]Yamaguchi T, Kurosaki F, Suh DY, et al.. Cross-reaction of chalcone synthase and stilbene synthase overexpressed in Escherichia coli[J]. Febs Letters,1999,460(3): 457-461.
    [129]田莉.葡萄果实查耳酮合成酶研究-基因克隆、表达、纯化、抗体的制备以及UV、糖对葡萄果实查耳酮合成酶的调节[D].北京:中国农业大学,2007.
    [130]Rozema O, van de Staaij J, Bjorn LO. UV-B as an environmental factor in plant life:stress and regulation[J]. Trends in Ecology and Evolution,1997,12(1):22-28.
    [131]Schubbert R, Fischer R, Haiti R, et al. An ozone-responsive region of the grapevine resveratrol synthase promoter differs from the basal pathogen responesive sequence[J]. Plant Molecular Biology,1997,34(3):417-426.
    [132]王丽娟,高鹏,李艳丽.桑叶总黄酮超声提取工艺研究[J].黑龙江医药杂志,2008,21(4):54-56.
    [133]Lanz T, Tropf S, Marner FJ, et al. The role of cysteines in polyketide synthases. Site directed mutagensis of resveratrol and chalcone synthases, two enzymes in different plant-specific pathways[J]. Journal of Biological Chemistry,1991,266 (15): 9971-9976.
    [134]Reuber S, Bornman JF, Weissenbock G. A flavonoid mutant of barley (Hordeum vulgare L.) exhibits encreased sensitity to UV-B radiation in the primary leaf[J]. Plant Cell and Environment,1996,19(5):593-601.
    [135]Stafford HA. Flavonoid envolution:an enzymic approach[J]. Plant Physiology, 1991,96(3):680-685.
    [136]Strid A. Alteration in expression of defence genes in Pisum sativum after exposure to supplementary ultraviolet-B-radiation[J]. Plant and Cell Physiology,1993, 34(6):949-953.
    [137]Byung CK, Tenessen DJ, Last RL. UV-B-induced photomorphogenesis in Arabbidopsis thaliana[J]. The Plant Journal,1998,15(5):667-674.
    [138]Ballare CL. Stress under the sun:spotlight on ultrabiolet-B-responses[J]. Plant Physiology,2003,132(4):1725-1727.
    [139]Logemann E, Tavernaro A, Schulz W, et al. UV light selectively coinduces supply pathways from primary metabolism and flavonoid secondary product formation in parsley[J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97(4):1903-1907.
    [140]Peng RH, Yao QH, Xiong AS, et al. Ubiquitin-conjugating enzyme (E2) confers rice UV protection through phenylalanine ammonia-lyase gene promoter unit[J]. Acta botanica sinica,2003,45(11):1351-1358.
    [141]郑先波.UV-C辐射诱导葡萄果实和叶片白黎芦醇及其糖甘合成的研究[D].北京:中国农业大学,2009.
    [142]陈贵娜.紫外诱导对葡萄和花生幼苗中白藜芦醇及其衍生物含量的影响[D].海南:海南大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700