用户名: 密码: 验证码:
大水矿山地下水致灾机理及防治研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大水矿山由于水文地质条件复杂,涌水量大,一旦发生井下涌水灾害,往往带来惨重的人身伤亡及经济损失。因此,此类矿山为确保安全生产不得不投入高昂的防治水费用,受灾害威胁严重的矿山甚至会被迫停产。随着采矿业的高速发展,大水地下矿山开采数量日益增多,矿山地下水害问题逐渐成为制约矿山开采发展的瓶颈问题。本文以大水矿山地下水害为研究对象,通过现场数据收集和调查,采用现场试验、理论分析及数值计算等方法,深入研究并揭示了大水矿山地下水致灾机理,建立了大水矿山地下水致灾判据,分析了大水矿山地下水致灾灾害分布特征,构建了大水矿山地下水害防治方法体系和大水矿山地下水致灾可能性评价指标体系和模型,取得了一系列有价值的研究成果。
     (1)基于系统学理论,针对大水矿山实际开采环境提出了大水矿山排水-地下水开采水环境系统的概念,利用数学方法建立了大水矿山排水-地下水环境系统模型及其求解方法。揭示了大水矿山排水-地下水环境系统的外部影响因素(涌水、排水)及内部条件变量(渗透系数、地下水水力坡度及含水层厚度、排泄边界,补给边界面积)的结构关系,得出了大水矿山排水-地下水环境系统是随机动态变化的结论。
     (2)从系统功能失效致灾的角度,提出大水矿山地下水灾害是由于大水矿山排水-地下水环境系统未能将系统水位降至安全水位以下所致,揭示了导致大水矿山排水-地下水环境系统失效致灾的机理:一是由随机作用引起的系统外部流量超出系统可承受的流量压力,导致系统内部水位升高超出安全水位,从而引发系统灾害,简称因外部压力超过系统承受能力致灾;二是因系统内部地下水系统含水层控水构造失效或者排水系统失效,给系统引入新的流量补给或减少了系统的排泄水量,致使系统水位升至安全水位之上,该情况可称为由系统内部结构失效致灾。在此基础上建立了大水矿山排水-地下水环境系统失效致灾判据。
     (3)开展了大水矿山地下水环境系统失效致灾机理应用研究。将大水矿山地下水环境系统失效致灾机理及判据应用于实例大水矿山,判别了实例矿山的地下水开采环境系统状态,分析了致灾影响因素对系统状态的影响。实例矿山地下水环境系统失效致灾判别应用表明:所建模型及判据可有效识别系统的灾害状态。实例矿山大水矿山地下水灾害因素分析表明:失效致灾的发生主要受安全水位、随机作用及系统流量差变化共同控制;从影响程度来讲,系统流量差变化对致灾影响最大,其次为安全水位,最后为系统的随机作用。
     (4)明确了大水矿山排水-地下水环境系统失效致灾分析的内涵,建立了大水矿山排水-地下水环境系统失效致灾概率计算方法,以及在对应失效概率下大水矿山排水-地下水环境系统失效致灾灾害空间分布预测方法,结合实例大水矿山进行了预测,其结果与实际的灾害分布相一致,验证了大水矿山排水-地下水环境系统失效致灾灾害空间分布预测方法的有效性。
     (5)结合实例矿山开展了大水矿山地下水灾害综合防治方法及其有效性检验研究。建立了大水矿山地下水害综合防治方法体系,提出了地下水害防治方法有效性检验方法,得出大水矿山涌水属于动水补给时,排水系统降水能力有限,采用疏干排水结合阻水帷幕的方式,对大水矿山地下水防治更为可靠等结论。
     (6)开展大水矿山地下水环境系统失效致灾可能性评价指标体系及模型研究。建立了大水矿山地下水环境系统失效致灾可能性评价指标体系。指标体系共分为三个层次,12个指标,分别为:边界距排水巷道距离、帷幕截流作用、地下水稳定水位、排水设施的最大承受水量、排水设施的使用年限、塌陷、降雨、渗透系数、截流巷截水能力、巷道涌水、排水设施使用状况和巷道尺寸。该指标体系综合概括了组成大水矿山地下水系统的孕灾环境、承灾体和致灾因子。分别采用模糊层次分析法和遗传投影寻踪聚类算法建立了大水矿山地下水环境系统失效致灾可能性评价模型。实际应用表明,两种模型均能有效实现对大水矿山地下水致灾可能等级的分析评价,遗传投影寻踪聚类模型分类结果离散性强,评价等级清晰,模糊层次分析模型分类结果离散性相对较弱,结果趋于均值化。因此遗传投影寻踪聚类模型在评价中确定等级上具有优势。此外,该法在权值确定上更具客观性,但对样本具有依赖性。
Owing to the fact that the abundant water mines have large water flow and complex hydrogeology condition, the groundwater disaster often cause serious human casualties and economic losses. Therefore, a large amount of expense must be paid to prevent and control these sorts of disaster, some mines even have to be forced to suspend production activities. With the rapid development of the mining industry, the number of excavated underground abundant water mines are gradually increasing, groundwater disaster has gradually become the bottleneck constrains of underground mining development. In this paper, taking groundwater disaster in abundant water mines as the research object, on-site information collection and surveying, field test, system theories and numerical calculations have been done for revealing the mechanism of groundwater disaster, the criterion of drainage-groundwater system failure disaster was founded, then distribution characteristics of groundwater disaster in abundant groundwater mines have been deeply analyzed, the method system of groundwater disaster prevention and evaluation model of disaster failure possibility have been put forward, a series of meaningful research achievements has been obtained consequently.
     (1) Based on systematic theory, the concept of drainage-groundwater mining system has been put forward according to the actual abundant groundwater mining environment. Model of the drainage-groundwater mining system and its solution method have been built by utilizing mathematical technique. The structural relationship of external factors and internal conditional variables (coefficient of permeability, hydraulic gradient and aquifer thickness about groundwater, drainage boundary, area of recharge boundary) about the system has been confirmed in the model, which drawn the conclusion that drainage-groundwater system is stochastic and dynamic.
     (2) The failure mechanism of drainage-groundwater mining system in abundant water mines was concluded by two points. One is that the external flow caused by random effect exceeded the system allowance pressure. As a result, the water level inside the system exceeded the safety level, so system disaster occurred. The other is that the water controlling structure or drainage system failed within the mining environment system, leading to the new water flow recharge or disrecharge which resulted in water level exceeding the safety water level, and the process can be called the disaster causing by system internal structural failure. The criterion of drainage-groundwater system failure disaster was founded.
     (3) The application research about failure mechanism of drainage-groundwater environment in water abundant mines was brought out. The disaster mechanism and failure criterion were applied in a mine instance. The state of the groundwater environment system was discriminated and the effect of disaster influencing factors to system state was analyzed. The practical application of failure criterion of the groundwater environment system showed that the model and criterion built could effectively discriminate the system's disaster state. The analysis of disaster factors showed that disaster occurrence was mainly controlled by safety water level, random effects and flow difference in system. The change of flow difference in system had the greatest impact on system failure, followed by safety water level, and finally by random effects of system.
     (4) The connotation of analyzing drainage-groundwater system's failure in abundant water mines was made clear, the calculation method of failure probability of drainage-groundwater system in abundant water mines was founded, while the prediction method of disaster distribution within corresponding failure probability was built, too. The above method was applied into a disaster prediction instance, and prediction result was consistent with the actual disaster distribution, which confirmed the validity of the founded prediction method.
     (5) The integrated control method and its effectiveness research were carried out within engineering application. The following conclusion was obtained:when groundwater flow belongs to dynamic water supply, the drainage ability of drainage system was limited. So, drainage system and impervious curtain should be jointly utilized.
     (6) The assessment index system and model of failure possibility of the groundwater system in groundwater abundant mines were established. The index system was divided into3levels and12factors. All factors were as follow:the offset distance between boundary and drainage drift, effect of curtain closure, stable level of groundwater, the maximum capability of bearing water in drainage facilities, service life of drainage facilities, collapse, rainfall, permeability coefficient, interception capacity of closure drift, drift gushing, condition of drainage facilities, cross-section of drift. The index system generally summarized the hazard breed environment, hazard bearing body, hazard induced factors. Fuzzy comprehensive evaluation method and projection pursuit clustering evaluation method based on genetic algorithms were respectively used for establishing corresponding failure possibility assessment model. The application results indicated that models both could effectively realize the possibility degree evaluation of the groundwater system failure in groundwater abundant mines, projection pursuit clustering evaluation model based on genetic algorithms has strong discreteness in classification results, while fuzzy comprehensive evaluation model has relatively weak discreteness in classification results. Therefore, projection pursuit clustering evaluation model based on genetic algorithms overwhelmed in determining evaluation degree, besides, the weights of genetic algorithms evaluation method are objective which are rely on the sample sets.
引文
[1]刘启仁.中国固体矿床的水文地质特征与勘探评价方法[M].北京:石油工业出版社,1995.
    [2]地质矿产部.中国岩溶充水矿床水文地质勘探类型[M].北京:地质矿产部,1993.
    [3]Kiraly, L. Groundwater flow in fractures rocks:models and reality [M]. In 14th Mintrop Seminar uber Interpretationsstrategien in Exploration und Produktion,1994. Ruhr Universitat Bochum.
    [4]Mangin. Contribution a letude hydrodynamique des aquiferes karstiques [M].1975, These:Institut des Sciences de la Terre de I Universite de Dijon.
    [5]Drogue. Structure de certains aquiferes karstiques dapres les resultats de travaux de forage [J]. Comptes Rendus Academie des sciences,1974(278):2621-2624.
    [6]Drogue, Essai d'identification d'un type structure de magasins carbonates fissures [J]. Application a I'interpretation de certains aspects du fonctionnement hydrogeologique,1980(11):101-108.
    [7]Kiraly. Karstification and Groundwater Flow, in Proceedings of the Conference onEvolution of Karst:From Prekarst to Cessation[M].2002. Postojna-Ljubljana.
    [8]Kiraly. Rapport sur letat actuel des connaissances dans le domaine des caracteres physique des roches karstique [J]. Union of Geol,1975(3):53-67.
    [9]G, K.L.M. Etude de regularisation de I'Areuse par modele mathematiques [J]. Bulletin d'ahaydrogeologie de l'Universite de Neuchatel,1976(1):19-36.
    [10]G, K.L.M. Remarques sur l'hydrogramme des sources karstiques simule par modeles mathematiques [J]. Bulletin d'Hydrogeologie de l'Universite de Neuchatel,1976(1): 37-60.
    [11]Rasmuson A, N.I., Radionuclide transport in fast channels in crystalline rock [J]. Water Resour Res,1986.12(22):47-56.
    [12]Novakowski KS, E.G.L.D. A field example of measuring hydrodynamic dispersion in a single fracture [J].Water Resour Res,1985,8(21):1165-74.
    [13]Novakowski KS, L.P.V.J. Prelim-inary interpretation of tracer experiments conducted in a discrete rock fracture under conditions of natural flow [J]. Geophys Res Lett,1995,11 (22):1417-20.
    [14]Raven KG, N.K.L.P. Interpretation of field tracer tests of a single fracture using a transient solute storage model [J]. Water Resour Res,1988(24):2019-32.
    [15]Raven KG, G.J. Water flow in a natural rock fracture as a function of stress and sample size [J]. Int J Rock Mech Min Sci Geomech Abstr,1985.4(22):251-61.
    [16]Pyrak-Nolte LJ, M.L.C.N. Hydraulic and mechanical properties of natural fractures in low permeable rock [J]. Proc 6th Int Cong ProcRock Mech,1987:225-31.
    [17]Durham WB, B.B. Self-propping and fluid flow in slightly offset joints at high effective pressures [J]. J Geophys Res,1994, B5 (99):9391-9.
    [18]Keller AA, R.P.K.P. Prediction of single-phase transport parameters in a variable aperture fracture [J]. Geophys Res let,1995,11(22):1425-8.
    [19]TT, V. Radionuclide migration experiments under laboratory conditions [J]. Geophys Res Lett,1995.11(22):1409-12.
    [20]Nolte DD, C.N.P.L. The fractal geometry of flow paths in natural fractures in rock and the approach to percolation [J]. Pure Appl Geophys,1989(131):111-38.
    [21]K, I. Fundamental studies of fluid flow through a single fracture [M].Berkeley: Thesis, University of California,1976.
    [22]SR, B. Fluid flow through rock joints:the effect of surface roughness [J]. Geophys Res,1987. B (72):1337-47.
    [23]Thompson ME, B.S. The effect of anisotropic surface roughness on flow and transport in fractures [J]. Geophys Res,1991. B (96):21923-32.
    [24]C, D. Geometry of flow paths for fluid transport in rocks [J]. Geophys Res,1993(98): 12267-78.
    [25]Unger AJA, M.C. Numerical study of the hydromechanical behavior of two rough fracture surfaces in contact [J]. Water Resour,1993(29):2101-14.
    [26]Amadei B, I.T. A mathematical model for flow and solute transport in non-homogeneous and anisotropic rock fractures [J]. Int J Rock Mech Min Sci Geomech Abstr,1994(31):719-31.
    [27]Mourzenko W, T. J.A.P. Permeability of a single fracture:validity of the Reynolds equation [J]. Phys Ⅱ Fr,1995.3(5):465-82.
    [28]Brown SR, S.H.R.S. Applicability of the Reynolds equation for modeling fluid flow between rough surfaces [J]. Geophys Res Lett,1995.18(22):2537-40.
    [29]Oron AP, B.B. Flow in fractures:the local cubic law assumption reexamined [J]. Water Resour Res,1998.11(34):2811-25.
    [30]Durham WB, B.B. Self-propping and fluid flow in slightly offset joints at high effective pressures [J]. Geophys Res,1994. B5 (99):9391-9.
    [31]I, N. Solute transport in fracture rock applications to radionuclide waste repositories, in Flow and contaminant transport in fractured rock [M].T.C.D.M. Bear J, T.C.D.M. Bear J Editors.1993, Academic Press:San Diego:39-127.
    [32]Neretnieks I, E.T.T.A. Tracer movement in a single fissure in granitic rock:some experimental results and their interpretation [J]. Water Resour Res,1982.4(18): 849-58.
    [33]Cacas MC, L.E.D.M. Modeling fracture flow with a stochastic discrete fracture network:calibration and validation 1.The flow model [J]. Water Resour Res,1990. 3(26):479-89.
    [34]Cacas MC, L.E.D.M. Modeling fracture flow with a stochastic discrete fracture network:calibration and validation 2. The transport model [J]. Water Resour Res, 1990.3(26):491-500.
    [35]Margolin G, B.B.S.H., Structure, flow, and gener-alized conductivity scaling in fracture networks [J]. Water Resour,1998,9(34):2103-21.
    [36]Smith L, S.F., An analysis of the influence of fracture geometry on mass transport in fractured media [J]. Water Resour Res,1984,9(20):1241-52.
    [37]Tsang YW, T.C. Channel model of flow through fractured media [J]. Water Resour Res,1987,3(23):467-79.
    [38]Tsang YW, T.C.N.I., Flow and tracer transport in fractured media:a variable aperture channel model and its properties [J]. Water Resour Res,1988,12(24): 2049-60.
    [39]Dagan G, N.S.E.Subsurface flow and transport:a stochastic approach [M]. New York:Cambridge University Press,1997.
    [40]Barenblatt GI, Z.I. Fundamental equations of filtration of homogeneous liquids in fissured rocks [J]. Sov Dokl Akad Nauk,1960,3(132):545-8.
    [41]Barenblatt GI, Z.I.K.I., Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [J]. PMM (Sov Appl Math Mech),1960,5(24):852-64.
    [42]M, S. Flow and transport in porous media and fractured rock:from classical methods to modern approache [J]. Weinheim, Germany,1995.
    [43]Council, N.R. Rock fractures and fluid flow:contemporary understanding and applications [J]. Washington, DC:National Academy Press,1996.
    [44]Lee CH, F.I. Fluid flow in discontinuous rocks [J]. London:Chapman & Hall,1993.
    [45]Granet S, F.P.L.P. A single-phase flow simulation of fractured reservoir using a discrete representation of fractures [M]. In 6th European Conference on the Math-ematics of Oil Recovery (ECMOR VI).1998:Peebles, Scotland, UK.
    [46]段玉成,黑磊,解光新.环境同位素在邢台煤矿放水试验中的应用[J].煤田地质与勘探,1994,1(22):33-37.
    [47]周健,史秀志,王怀勇.矿井突水水源识别的距离判别分析模型[J].煤炭学 报,2010(02):278-282.
    [48]徐智敏,李燕,孙亚军.影响矿井安全的多含水层矿井涌水构成分析[J].采矿与安全工程学报,2010.3(127):433-437.
    [49]褚振江,王钦东.矿井涌水来源综合分析及其防治对策[J].煤炭科学技术,2009.12(33):56-61.
    [50]马雷,张锐钢,钱家忠.可拓识别方法在矿井突水水源判别中的应用[J].煤炭学报,2009.1(34):33-38.
    [51]单智勇,王心义.岩溶裂隙型矿区水害防治技术及水资源综合利用[J].北京:煤炭工业出版社,2008.
    [52]Harr, M.E. Chap.10 Ground water and Seepage [M].1962:249-264.
    [53]Goodman, R.M.D.S. Ground-water in flow during tunnel driving [J]. Eng. Geol, 1965,2(2):39-56.
    [54]G. Behavior of pressure tunnels and guidelines for liner design [J]. Geotech. Eng, 1994,10(120):1768-1791.
    [55]Perrochet,P.D.A. Modeling transient discharge into a tunnel drilled in a heterogeneous formation[J]. Ground Water,2007.6(45):786-790.
    [56]Zarei, H.R.U.A. Prediction of groundwater inflow in to the Semnan tunnel using analytical and empirical methods and comparison with measured value [J]. In 8th Iranian Tunneling Conference,2009:308-317.
    [57]Fernandez, Zarei. Estimating rock tunnel water inflow [J]. In Rapid Excavation and Tunneling Conference.1995:41-60.
    [58]武强.煤矿防治水规定释义[M].徐州:中国矿业大学出版社.2009.
    [59]郑西贵,徐睿,屠世浩.浅析断层构造突水机理及防治措施[J].煤矿安全,2009,(1):79-84.
    [60]李利平,李树才.基于应力-渗流-损伤耦合效应的断层活化突水机制研究[J].岩石力学与工程学报,2011,30(2011):3295-3304.
    [61]梁正召,李连崇,唐春安.含断层煤层底板突水通道形成过程的仿真分析[J].岩石力学与工程学报,2009,2(28):290-297.
    [62]茅献彪,朴万奎.断层倾角对断层活化及底板突水的影响研究[J].岩石力学与工程学报,2009.,2(28):386-394.
    [63]王玉,郑功,程久龙.不同倾角断层对煤层底板突水影响的数值模拟研究[J].矿业安全与环保,2012,1(39):14-19.
    [64]彭文庆,李青峰,王卫军.断层采动活化对南方煤矿岩溶突水影响研究[J].岩石力学与工程学报,2010,增1(29):3418-3424.
    [65]陈龙,李凯,茅献彪.采动对承压底板断层活化及突水危险性的影响分析[J].力学 季刊,2011,2(32):261-268.
    [66]王卫军,黄存捍,冯涛.断层影响下底板隔水层的破坏机理研究.采矿与安全工程学报[J],2010,2(27):219-227.
    [67]张柬,浦海.断层影响下底板隔水层的破坏机理研究[J].采矿与安全工程学报,2010,3(27):421-424.
    [68]陈忠胜,李晓昭,罗国煜.地下工程突水的断裂变形活化导水机制[J].岩土工程学报,2002,6(24):695-700.
    [69]周治安,杨为民.山西岩溶陷落柱的岩体力学背景[J].煤炭学报,1999,4(24):435-438.
    [70]吴文金,杨为民,司海宝.岩溶陷落柱导水类型及其突水风险预测[J].煤炭工程,2005,80(2005):60-63.
    [71]尹尚先,刘国林,潘懋.华北型煤田岩溶陷落柱导水性研究[J].中国安全科学生产技术,2009,2(5):154-158.
    [72]张金才,张玉卓,刘天泉.岩体渗流与煤层底板突水[M].北京:地质出版社,1995.
    [73]尹尚先,王尚旭.陷落柱影响采区围岩破坏和底板突水的数值模拟分析[J].煤炭学报,2003,3(28):264-269.
    [74]许进鹏,梁开武,徐新启.陷落柱形成的力学机理及数值模拟研究[J].采矿与安全工程学报,2008,2(25):82-86.
    [75]虎维岳.矿山水害防治理论与方法.徐州:煤炭工业出版社,2005.
    [76]程星.岩溶塌陷机理及其预测与评价研究[M].北京:地质出版社,2006.
    [77]肖明贵.桂林市岩溶塌陷形成机制与危险性预测[D].吉林:吉林大学,2005.
    [78]陈学军,郭纬君,崔晓艳.泗顶铅锌矿区岩溶塌陷成因及治理对策分析[J].金属矿山,2009,12(402):41-43.
    [79]陈振东,张宝柱.矿山岩溶塌陷形成机理及综合治理[J].中国地质,1997(3):27-29.
    [80]冯小铭,张泰丽,周爱国.南京市地面塌陷发育特征及防治对策[J].中国安全科学学报,2011,3(2):3-8.
    [81]易顺民.广东省地面塌陷特征及防治对策[J].中国地质灾害与防治学报,2007,2(18):127-131.
    [82]Li Gongyu, Z.W., Sinkholes in karst mining areas in China and some methods of prevention [J]. Engineering Geology,1999(52):45-50.
    [83]罗周全,王益伟.矿区疏干诱发岩溶塌陷特征分析及预测[J].中国安全科学学报,2012,8(22):10-14.
    [84]沈强,刘秀敏,陈从新.覆盖型岩溶塌陷的时空预测与评价[J].岩石力学,2011,9(32):2785-2790.
    [85]蒋小珍.基于GIS技术的全国地面塌陷灾害危险性评价[J].地球学报,2003,5(24): 469-474.
    [86]康厚荣,雷明堂,张谢东.贵州省公路工程岩溶环境区划[J].岩石力学,2009,10(30):3032-3036.
    [87]雷明堂,蒋小珍.岩溶塌陷研究现状、发展趋势及其支撑技术方法[J]中国地质灾害与预防学报,1998,3(9):P1-5.
    [88]邓红卫.典型矿山地下水防治与资源化调控及工程应用研究[D].长沙:中南大学,2009.
    [89]齐跃明.矿区岩溶地下水动态的随机模拟及应用研究[D].徐州:中国矿业大学,2009.
    [90]王连国,宋扬.底板突水的非线性特征及预测[M].北京:煤炭工业出版社,2001.
    [91]董殿伟,刘久荣.时间序列分析法在地下水水位预测中的应用[M].方法应用,2007,2(4):29-32.
    [92]唐依民,肖江.矿区地下水系统演化过程中混沌性态形成的条件及机理[J].煤炭学报,2006,3 1(1):45-49.
    [93]亨利昂.不确定性[M¨北京:北京大学出版社,2011.
    [94]赵秀恒.不确定性系统理论及其在预测与决策中的应用[M].北京:冶金工业出版社,2010.
    [95]束龙仓,杨建青.地下水动态预测方法及其应用[M].北京:中国水利水电出版社,2010.
    [96]吴吉春,陆乐.地下水模拟不确定性分析[J].南京大学学报(自然科学),2011,47(3):227-234.
    [97]左其亭,马军霞.地下水系统中的不确定性信息及其处理方法[J].水文地质工程地质,1994,5:41-43.
    [98]夏强.地下水中不确定性问题的多模型分析方法及应用[M].北京:中国地质大学,2011.
    [99]J. Moon, G.F., Effect of Excavation-Induced Groundwater Level Drawdown on Tunnel In flow in aJointed Rock Mass[J]. Engineering Geology,2010,10(1):33-42.
    [100]李利平,路为,李术才.地下工程突水机理及其研究最新进展.山东大学学报(工学版).2010,40(3):104-118.
    [101]Peng Linjun, Yang Xiaojie.Analysis and control on anomaly water inrush in roof of fully-mechanized mining field [J]. Mining Science and Technology,2011, 21(1):89-92.
    [102]卜万奎,徐慧.某矿区带压开采逆断层活化及突水性分析[J].煤炭学报,2011,36(7):1176-1183.
    [103]LI Hui, JING Guo-xun. XinheMine water inrush risk assessment based on quantification theoretical models [J]. Journal of Coal Science & Engineering (China),2010,16(4):368-371.
    [104]Jin HAN, Long-qing SHI.Mechanism of mine water-inrush through a fault from the floor [J]. Mining Science and Technology,2009,19(3):276-281.
    [105]王媛,陆宇光.深埋隧道开挖过程中突水与突泥的机理研究[J].水力学报,2011,5(42):595-601.
    [106]杨天鸿,唐春安,谭志宏.岩体破坏突水模型研究现状及突水预测预报研究发展趋势[J].岩石力学与工程学报,2007,26(2):268-277
    [107]WANG J A, PARK H D. Fluid permeability of sedimentary rocks in a complete stress-strain process [J]. Engineering Geology,2002,63(2):291-300.
    [108]李利平.高风险岩溶隧道突水灾变演化机理及其应用研究[D].青岛,山东大学,2009.
    [109]Xiaojuan SHI. Operational state monitoring and fuzzy fault diagnostic system of mine drainage. Mining Science and Technology,2010,20(4):89-92.
    [110]谭清磊,陈国明.基于因果图和贝叶斯网络的高含硫井分离器风险分析[J].安全与环境学报,2012,12,(5):234-248.
    [111]邵辉,杨亮.反应器热爆炸风险分析模型的构建[J].安全与环境学报,2012,12,(3):55-59.
    [112]何书元.随机过程[M].北京,北京大学出版社,2008:261-278.
    [113]吴吉春,薛禹群.地下水动力学[M].北京:水利水电出版社,2009.
    [114]WOLKERSDORFER C, BO WELL R. Contemporary reviews of mine water studies in Europe[J]. Mine Water and the Environment,2004,23:161-167.
    [115]张德丰.MATLAB数值分析与应用[M].北京:防工业出版社,2009:258-307.
    [116]Javad Barabady, Uday Kumar.Reliability analysis of mining equipment:A case study of a crushing plant at Jajarm Bauxite Mine in Iran. Reliability Engineering& System Safety,2008,93(4):647-653.
    [117]Tang Minkang, Ding Yuanchun.The Reliability of Ergonomics in the Ventilation System of an Underground Metal Mine [J]. Procedia Engineering,2011,26 1705-1711.
    [118]Yuan HANG, Gai-ling ZHANGNumerical simulation of dewatering thick unconsolidated aquifers for safety of underground coal mining [J]. Mining Science and Technology,2009,19(3):312-316.
    [119]郭志刚,王济川.Logistic回归模型-方法与应用[M].北京:高等教育出版社,2000:91-120.
    [120]刘薇,常振海.Logistic回归模型及其应用[J].延边大学学报(自然科学 版),2012,1(83):28-32.
    [121]刘国栋,申璐,李翔.模糊评价法在生物安全实验室环境风险评价中的应用[J].中国安全科学学报,2009,4(19):114-120.
    [122]魏巍巍,贡金鑫.工程结构可靠性设计原理[M].北京:机械工业出版社,2007:109-315.
    [123]金菊良,魏一鸣.复杂系统广义智能评价方法与应用[M].北京:科学出版社,2008:8-20.
    [124]郭进平,梅建恩.集值统计法及其在安全评价中的应用[J].工业安全与环保,2005.9(31):50-52.
    [125]李金龙,孙晚华.高速公路交通事故成因分析及对策研究[J].中国安全科学学报,2005,1(15):59-61.
    [126]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994.
    [127]黄润秋,王贤能,陈龙生.深埋隧道涌水过程的水力劈裂作用分析[J].岩石力学与工程学报,2000,19(5):573-576.
    [128]沈金昌,赵坚,速宝玉.高水头作用下水工压力隧洞的水力劈裂分析[J].岩石力学与工程学报,2005,24(7):1226-1230.
    [129]詹美礼,岑建.岩体水力劈裂机理研究及其在地下洞室围岩稳定分析中应用[J].岩石力学与工程学报,2007,26(6):1173-1180.
    [130]陈五一,赵彦晖.土石坝心墙水力劈裂计算方法研究[J].岩石力学与工程学报,2007,27(7):1380-1385.
    [131]李术才.高风险岩溶隧道突水灾变演化机理及其应用研究[D].济南:山东大学,2009.
    [132]武强.矿井水害防治[M].徐州:中国矿业大学出版社,2007.
    [133]王剑峻.基建矿井巷道施工防探水方案研究[J].中国矿山工程,2014,43(1):29-43.
    [134]McConnell, C. L. Double porosity well testing in the fractured carbonate rocks of the Ozarks [J]. Ground Water,1993,31(1):75-83.
    [135]薛禹群.地下水动力学[D].北京:地质出版社,1997.
    [136]刘启仁.中国固体矿床的水文地质特征与勘探评价方法[D].北京:石油工业出版社,1995.
    [137]虎维岳.矿山水害防治理论与方法[M].煤炭工业出版社,2005.
    [138]张泰丽,周爱国,冯小铭.南京市地面塌陷发育特征及防治对策[J].中国安全科学学报,20111,2(3):3-8.
    [139]易顺民.广东省地面塌陷特征及防治对策[J].中国地质灾害与防治学报,2007,18(2):127-131
    [140]Li Gongyu,Zhou Wanfang. Sinkholes in karst mining areas in China and some methods of prevention[J].Engineering Geology,1999,52:45-50.
    [141]刘秀敏,陈从新,沈强.覆盖型岩溶塌陷的时空预测与评价[J].岩石力学,2011,32(9):2785-2790.
    [142]蒋小珍.基于GIS技术的全国地面塌陷灾害危险性评价[J].地球学报,2003,24(5):469-474.
    [143]康厚荣,雷明堂,张谢东,等.贵州省公路工程岩溶环境区划[J].岩石力学,2009,30(10):3032-3036.
    [144]Isik Yilmaz.GIS based susceptibility mapping of karst depression in gypsum:a case study from Sivas basin(Turkey)[J].Engineering Geology,2007,90:89-103.
    [145]罗周全,徐海,杨彪.矿山岩溶地表塌陷神经网络预测研究[J].中国地质灾害与防治学报,2011,22(3):30-44.
    [146]梁双华,汪云甲,周跃进.基于指示克里格法的复杂岩溶塌陷区空间分布特征研究[J].测绘科学,2011,36(3):88-90.
    [147]王新民,丁德强,段瑜.灰色关联分析在地下采空区危险度评价中的应用[J].中国安全生产科学技术,2006,2(4):35-39.
    [148]朱庆杰,苏幼坡,刘廷全.唐山市岩溶塌陷安全评价[J].中国安全科学学报,2004,14(2):91-94.
    [149]蒋卫东,李夕兵,胡柳青,等.基于灰色定权聚类的采空区上部地表稳定性分析[J].矿冶工程,2002,22(4):15-17.
    [150]何晓群.实用回归分析[M].北京:高等教育出版社,2008:19-32.
    [151]常振海,刘薇.Logistic回归模型及其应用[J].延边大学学报(自然科学版),2012,83(1):28-32.
    [152]王济川,郭志刚.Logistic回归模型-方法与应用[M].北京:高等教育出版社,2000.
    [153]刘顺忠,荣丽敏,景丽芳.非参数统计和spss软件应用[M].武汉大学出版社,2007.
    [154]李利平,路为.地下工程突水机理及其研究最新进展[J].山东大学学报,2010,3(40):104-112.
    [155]王媛,陆宇光.深埋隧道开挖过程中突水与突泥的机理研究[J].水力学报,2011,5(42):595-601.
    [156]刘洋,张幼振.浅埋煤层工作面涌水量预测方法研究[J].采矿与安全工程学报,2010,27(1):116-120.
    [157]闫志刚,白海波.矿井涌水水源识别的MMH支持向量机模型[J].岩石力学与工程学报,2009,28(2):324-329.
    [158]高萍,吴甦,贾希胜.复杂系统的可靠性模型及参数估计方法[J].系统仿真学报,2009,21(13):4140-4148.
    [159]李志宇.大风覆冰条件下输电杆塔可靠性模型的研究[J].安全与环境工程, 2010,17(3):59-63.
    [160]李辉,王永建.矿井排水系统可靠性模型研究及应用[J].矿业工程,2010(增刊):166-168.
    [161]桂祥友,郁钟铭.矿井水灾害预测的安全评价研究[J].中国矿业,2006,15(5):35-41.
    [162]WOLKERSDORFER C, BOWELL R. Contemporary reviews of mine water studies in Europe [J]. Mine Water and the Environment,2004,23:161-165.
    [163]Javad Barabady, Uday Kumar.Reliability analysis of mining equipment:A case study of a crushing plant at Jajarm Bauxite Mine in Iran [J]. Reliability Engineering & System Safety,2008,93(4):647-653.
    [164]Tang Minkang, Ding Yuanchun.The Reliability of Ergonomics in the Ventilation System of an Underground Metal Mine [J]. Procedia Engineering,2011, 26:1705-1711.
    [165]Yuan HANG, Gai-ling ZHANGNumerical simulation of dewatering thick unconsolidated aquifers for safety of underground coal mining [J]. Mining Science and Technology,2009,19(3):312-316.
    [166]宋若峰,李为行,郭凡灿.新型矿井水文自动监测系统的应用[J].矿山机械,2008,29(18):50-51.
    [167]谭一川,槐利,程玉龙,等.煤矿生产用水监控系统设计[J].工矿自动化,2012(10):10-13.
    [168]王玉洁.水库下采煤水情在线自动监测系统[J].煤矿安全,2013,44(3):190-131.
    [169]王宁涛.矿区地下水监测与预警系统研究-以福建省龙岩市马坑铁矿为例[D].北京:中国地质大学,2009.
    [170]张海龙,王涛,余浪,等.基于物联网的井下涌水自动监测与智能识别研究[J].金属矿山,2010,412(10):106-109.
    [171]程星.岩溶塌陷机理及其预测与评价研究[M].北京,地质出版社,2009.
    [172]雷明堂,李瑜,蒋小珍,等.岩溶塌陷灾害监测预报技术与方法初步研究-以桂林市柘木村岩溶塌陷监测为例[J].中国地质灾害与防治学报,2004,15(增刊):142-146.
    [173]蒙彦,管振德.应用光纤传感技术进行岩溶塌陷监测预报的关键问题探讨[J].中国岩溶,2011,30(2):187-192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700