用户名: 密码: 验证码:
椭圆轨迹成形方法与控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究了基于运动合成的椭圆内曲面成形方法,重点开展静压主轴椭圆轴心轨迹控制技术研究。构建了基于新型静压轴承和新型伺服节流阀的液压控制系统;研究了新型轴承—转子系统及新型伺服阀节流系统的动力学特性和控制特性;研究了椭圆轴心轨迹的控制技术和方法。为椭圆内曲面加工新方法的实现奠定了理论基础。
     开展了椭圆内曲面运动成形基础理论研究,并详细阐述了其实现方案和成形原理。研究了多种轴心公转轨迹与刀尖自转轨迹进行合成时形成椭圆刀尖轨迹的必要与充分条件;研究了刀具初始相位角对形成椭圆刀尖轨迹的影响;给出了多种轴心公转轨迹和不同刀具初始相位角下形成椭圆刀尖轨迹的特征和控制方程。
     针对椭圆轴心轨迹的空间要求,开展了椭圆廓形静压轴承的理论研究,给出了其雷诺方程和流量连续性方程等基础性方程及计算方法。提出了动压比的概念来衡量封油面上动压效应的大小,并对主轴轴心在新型静压轴承内运动轨迹为小椭圆时的动压比进行了仿真计算。利用偏导数法研究了半径间隙和椭圆度对新型静压轴承静动态特性参数的影响。
     设计了一种基于压电陶瓷的新型伺服节流阀,可以弥补普通电液伺服阀频响较低的缺点。基于新型油腔嵌套式轴承及新型伺服节流阀的结构,构建了轴心运动轨迹的液压控制系统。对新型节流阀的流量公式进行了仿真拟合。利用基于贝叶斯正则算法的BP神经网络对压电陶瓷的位移输出进行了仿真预测。根据动压效应的研究结果对封油面上的油膜力分布进行线性化处理,利用流量平衡方程以及高斯—勒让德积分公式得到了承载油腔以及控制油腔的压力计算公式,这种简化计算方法既简单又可以大大节省计算时间。仿真计算了轴心期望运动轨迹与新型节流阀控制电压的定量关系。
     利用最优控制理论对主轴轴心公转轨迹为椭圆的问题进行了最优控制建模。建立了基于新型静压轴承的轴承—转子系统的动力学模型,并以轴心位置坐标为待优化的状态变量,控制外力(这里为油膜合力)为控制变量,以待优化的轴心坐标与期望轴心坐标的偏差作为性能指标,得到系统的最优控制模型。求解勒让德零点以及对状态变量和控制变量近似化,通过高斯伪谱法将最优控制问题又转化成了非线性规划问题,最后通过序列二次规划法仿真得到了轴心运动轨迹的最优控制参数。仿真结果表明轴心的优化位置坐标与期望位置坐标非常接近,高斯伪谱法精度较高且可以应用在轴心运动轨迹的最优控制上。
     对主轴轴心的运动轨迹进行了开环控制仿真研究。利用轴心期望轨迹与新型节流阀控制电压的定量关系,通过欧拉方法迭代得到轴心的开环控制仿真轨迹。仿真得到轴心轨迹为不同椭圆度的椭圆时开环控制轨迹图,并对有瞬态干扰力时开环控制的轴心运动轨迹也进行了仿真。仿真结果表明开环控制方法不但可以控制轴心运动轨迹为不同椭圆度的小椭圆,还可以在系统受到干扰时保持较好的鲁棒性。
     对新型压电伺服节流阀以及油腔嵌套式轴承系统分别进行了动力学建模,得到系统的传递函数,并进行了前馈解耦。基于轴心期望运动轨迹的周期性特点,采用重复控制算法对系统进行了闭环控制仿真。在MATLAB的simulink环境下对系统进行建模,利用设计的重复控制器对轴心运动轨迹进行了闭环控制的仿真研究。仿真结果表明重复控制算法控制轴心跟踪期望轨迹时具有较高的精度。
Based on the movement forming methods for elliptical inner surface, this paper focuses on carrying out control technology research on elliptical shaft center orbit. The paper builds the hydraulic control system based on new type hydrostatic bearing and servo throttle valve. It also researches the kinetic property and controlling characteristics of new type bearing-rotor system and new type servo throttle valve systems. Control technology and methods of elliptical shaft center orbit are studied. This study lays a theoretical foundation for realization of new machining methods for elliptical inner surface.
     The basic theoretical studies are made on movement forming methods for elliptical inner surface, and the implementation scheme and forming principle are clarified in detail. Necessary and sufficient conditions for forming elliptic tool nose orbit, under the condition that multiple shaft center orbits and the tool nose's rotation orbit take synchronous forward synthesis and synchronous backward synthesis, are studied. The influence of initial phase angle of the tool nose on the formation of elliptic tool nose orbit has also been investigated. Characteristics and control equations of elliptic tool nose orbit under the conditions of multiple shaft center orbits and different initial phase angles of the tool nose are given.
     In order to meet the space requirement of elliptical shaft center orbit, the hydrostatic bearing whose inner face is an elliptic cylindrical surface is studied. The paper provides the fundamental equations(such as Reynolds equation and flow continuity equation) and their computing methods. The concept of dynamic pressure ratio is put forward to measure the hydrodynamic effect on bearing land, and the dynamic pressure ratio is computed when shaft center orbit is a small elliptical track in the new type hydrostatic bearing. Using partial derivative method, the paper studies the impacts of radius clearance and ovality on new hydrostatic bearing's static and dynamic performance parameters.
     The hydraulic control system is built based on special structure of the new nest-pocket bearing and servo throttle valve. A new-type servo throttle is designed based on piezoelectric ceramics, which can make up the disadvantage of low frequency response for ordinary electro-hydraulic servo valve. The flow formula of new servo throttle is obtained using simulation and fitting process. Output displacement of piezoelectric ceramics is predicted utilizing BP neural network(based on bayesian regular algorithms). The pressure value on bearing land is linearly assigned, and recess pressure computational formula of hydrostatic recess and control recess are obtained through combining flow equilibrium equation and Gaussian-Legendre integral formula. The quantitative relationship between expected shaft movement orbit and the control voltage of new type servo throttle is studied.
     The model of elliptical shaft center revolution orbit is built based on the optimal control theory. The bearing-rotor system kinetic model is built, and position coordinates of shaft center are taken as optimized state variable, external force(here, it is bearing force) taken as control variable, deviation between optimized shaft center coordinates and expected shaft center coordinates taken as performance index. With the solution of legendre zeros and approximation of state variable and control variable, the optimal control problem is transformed into general nonlinear programming problem using pseudo-spectral method, and at last, optimum control parameters of shaft center orbit are obtained using sequence quadratic programming method. The simulation results indicate that difference between optimized shaft center coordinates and expected shaft center coordinates is very small, and the Gaussian pseudo-spectral method has a advantage of high precision and can be used in optimum controlling of shaft center movement orbit.
     The open-loop control simulation is made on the shaft center movement orbit. Using the quantitative relationship between expected shaft movement orbit and control voltage of new type servo throttle valve, the open-loop control simulation orbit is obtain. The shaft center's kinetic parameters are calculated when the shaft center's coordinate is in the expected small ellipse orbit, and active control parameters for throttle valve in hydraulic control system are also solved. Then using the active control parameters, the open-loop control simulation orbits of shaft center are obtained with Euler's method iteration. The open loop control orbits are got when the shaft center orbits are different ovality ellipses, and the open loop control simulation of shaft center is also made when there is the transient disturbance force. The simulation results indicate that open-loop control method can control the shaft center and realize different ovality elliptical shaft center orbits, and keeps good robustness when the system is disturbed.
     Dynamics modeling is taken on piezoelectric servo valve and the whole system seperately. The system transferring function is obtained, and feedforward decoupling is taken. Based on periodical characteristic of expected orbit of shaft center, the repetition control algorithm is used as closed-loop control method. Under the simulink environment of MATLAB, the whole system is modeled, and the closed-loop control simulation of the system is made using designed repetition controller. Simulation results show repetitive control algorithm has high validity on controlling shaft center to track expected orbit.
引文
[1]Suhara T, Takei T. Characteristics of friction force on piston pin boss bearings[J]. JSAE Review.1996,17(4):297-302.
    [2]吴劲松,吴声震.活塞异形销孔的研究[J].内燃机配件.1994,(4):9-13.
    [3]Whitacre J P, Trainer H G. Piston pin bore treatments for high performance diesel engines[J]. SAE paper.1986,1:1-8.
    [4]Sander W, Kelm W.Formgedrehte Bohrungen zur Bolzenlagerung hochbelasteter Kolben[J], MTZ.1981,42(10):409-412.
    [5]Hanson R D, Tsao T C. Reducing cutting force induced bore cylindricity errors by learning control and variable depth of cut machining[J]. Journal of Manufacturing Science and Engineering.1998,120(3):547-554.
    [6]Katsuki A, Onikura H, Sajima T, et al. Development of a high-performance laser-guided deep-hole boring tool:optimal determination of reference origin for precise guiding[J]. Precision Engineering.2000,24(1):9-14.
    [7]O'Neal G P, Min B K, Pasek Z J, et al. Integrated Structural/Control Design of Micro-Positioner for Boring Bar Tool Insert[J]. Journal of Intelligent Material Systems and Structures.2001,12(9):617-627.
    [8]O'Neal G P, Min B K, Pasek Z J, et al. Precision piezoelectric micro-positioner for line boring bar tool insert[C]. Proceedings of ASME International Mechanical Engineering Congress and Exposition, Vibration and Noise Control DSC.1998,65: 99-106.
    [9]Koren Y, Pasek Z, Szuba P. Design of a precision, agile line boring station[J]. CIRP Annals-Manufacturing Technology.1999,48(1):313-316.
    [10]Min B K, O'Neal G P, Koran Y, et al. A smart boring tool for process control[J]. Mechatronics.2002,12(9):1097-1114.
    [11]Lee D G, Hui Y H, Jin K K. Design and manufacture of a carbon fiber epoxy rotating boring bar[J]. Composite Structures.2003,60(1):115-124.
    [12]Michler J R, Moon K S, Sutherland J W, et al. Development of a magnetostriction based cutting tool positioner[C]. Transactions of the North American Manufacturing Research Institute of SME,1993.
    [13]Week M, Zimmerschitt-halbig P. High dynamic intelligence-boring tool with local integrated control system [C]. Euspen International Topical Conference on Precision Engineering, Micro Technology, Measurement Techniques and Equipment, Aachen,2003.
    [14]Week M, Leifhelm B, Zimmerschitt-halbig P. Intelligent boring tool-iBo[C]. Euspen Conference, Eindhoven,2002.
    [15]Pasek Z J, Min B K, Koren Y, et al. Strategies to enhance agility and machining accuracy in line boring[C]. IFAC Conference on Mechatronic Systems, California, 2002.
    [16]Pasek Z J, Szuba P. Intelligent agile line boring station[C]. ASME International Mechanical Engineering Congress and Exposition, California,1998.
    [17]Eda H, Ohmura E, Sahashi M, et al. Ultra-precise machine tool equipped with a giant magnetostrictive actuator[J]. CIRP Annals-Manufacturing Technology.1992, 41(1):421-424.
    [18]Yamamoto Y, Eda H, Shimizu J. Application of giant magnetostrictive positioning actuator[C]. Proceedings of the 1999 IEEE/ASME Internationa lmaterials to Conference Mechatronics,1999.
    [19]翟鹏,张承瑞,王海涛,等.基于GMM的活塞异形销孔加工原理研究[J].压电与声光.2007,29(1):125-128.
    [20]翟鹏.非圆曲面型活塞异形销孔及其精密加工关键技术研究[D].济南:山东大学博士学位论文.2007:33-36.
    [21]翟鹏.一种镗削用高频响精密伺服阀刀杆的动态设计[J].制造技术与机床.2006,(8):103-106.
    [22]翟鹏.基于模态分析的高频响伺服镗刀杆研究[J].振动与冲击.2006,25(6): 170-173.
    [23]邬义杰,项占琴.基于超磁致伸缩材料的活塞异形销孔加工原理研究[J].浙江大学学报(工学版).2004,38(9):1185-1189.
    [24]邬义杰,刘楚辉.超磁致驱动器设计方法的研究[J].浙江大学学报(工学版),2004,38(6):747-750,760.
    [25]Moller B. Using high-speed electrospindles with active magnetic bearing for boring of noncircular shape[C]. International Symposium on Magnetic Bearings, Tokyo,1990.
    [26]Kim M S, Higuchi T, Mizuno T, et al. Application of a magnetic bearing spindle to non-circular fine boring[C]. International Symposium on Magnetic Bearings, Massachusetts,1998.
    [27]Zhang K, Hu D J. A new method for boring of non-circular holes[J]. Frontiers of" Mechanical Engineering in China.2006,1(4):456-460.
    [28]Zhang K, Liu C L. A new mechanism for boring of non-circular hole and its control method[C]. Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou,2005.
    [29]Zhang K, Zhang Y H, Liu C L. Study on a Magnetic Actuation Mechanism and Its Performance Simulations [C]. Proceedings of the 2nd IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, Beijing, 2006.
    [30]Zhang K, Li S P, Yang Q, et al. A new mechanism for boring of noncircular hole and its evaluation via simulation[C]. Proceedings of the 2009 IEEE International Conference on Information and Automation, Zhuhai,2009.
    [31]刘炳运.异型销孔镗削装置[P].中国专利:CN1232732A,1999.
    [32]山东活塞厂.异形孔镗床[P].中国专利:CN1064428A,1992.
    [33]Jadon V K, Singh M. Study of supply cut-off and bearing geometric parameters on design of hybrid journal bearing[J]. Industrial Lubrication and Tribology.2007, 59(2):92-102.
    [34]Harnoy A, Khonsari M M. Hydro-roll:a novel bearing design with superior thermal characteristics[J]. Tribology Transaction.1996,39(2):455-461.
    [35]苏红,毛军,蔡琳.一种复合式滑动轴承的实验研究[J].北方交通大学学报.2003,27(4):11-13.
    [36]Lu C H, Chen S J, Zhang J C. Theoretical Investigation on a Novel Hydrodynamic Journal Bearing[J]. Journal of Shanghai University.2004,8(1):1-6.
    [37]陈淑江.螺旋油楔滑动轴承润滑机理的理论与实验研究[D].济南:山东大学博士学位论文.2007:13-15.
    [38]Chen C H, Chu C H, Kang Y, et al. The restrictive Effects of Orifice Compensation on the Stability of the Jeffeott Rotor-hybrid Bearing System[J]. Industrial Lubrication and Tribology.2002,54(6):255-261.
    [39]Chen C H, Kang Y, Huang Y N, et al. The Restrictive Effects of Capillary Compensation on the Stability of the Jeffcott Rotor-hybrid Bearing System[J]. Tribology International.2002,35(12):849-855.
    [40]Johnson, Robert E, Noah D. Sensitivity Studies for the Shallow-pocket Geometry of a Hydrostatic Thrust Bearing[C]. ASME 2003 International Mechanical Engineering Congress and Exposition, Washington,2003.
    [41]Yoshimoto S, Rowe W B, Ives D. A theoretical investigation of the effect of inlet pocket size on the performance of hole entry hybrid journal bearings employing capillary restrictors[J]. Wear.1988,127(3):307-318.
    [42]Osman T A, Dorid M, Safar Z S, et al. Experimental Assessment of Hydrostatic Thrust Bearing Performance [J]. Tribology International.1996,29(3):233-239.
    [43]郭力,李波.不同油腔形状的高速动静压轴承研究[J].磨床与磨削.2000,(2):39-41.
    [44]车建明.静压向心轴承的结构创新设计[J].润滑与密封.2005,169(3):102-104.
    [45]伍良生,刘振宇,张宝柱,等.带过渡深腔的动压轴承的优化设计与试验[J].机械工程学报.2006,42(11):144-149.
    [46]Ho Y S. Pressure distribution in a six-pocket hydrostatic journal bearing[J]. Wear. 1984,98:89-100.
    [47]Artiles A, Walowit J, Shapiro W. Analysis of Hybrid Fluid Film Journal Bearings with Turbulence and Inertial Effects [J]. Advances in Computer Aided Bearing Design.1982, (1):25-52.
    [48]Chaomleffel J P, Nicolas D. Experimental Investigation of Hybrid Journal Bearings. Tribology International[J].1986,19:253-259.
    [49]Sharma S C, Kumar V, Jain S C, Sinhasan R, Subramanian M. A Study of Slot-entry Hydrostatic/Hybrid Journal Bearing Using the Finite Element Method[J]. Tribology International.1999,32:185-196.
    [50]Jain S C, Sharma S C, Nagaraju T. Misaligned Journal Effects in Liquid Hydrostatic Non-recessed Journal Bearings[J]. Wear.1997,210:67-75.
    [51]Sharma S C, Jain S C, Sinhasan R, Shalia R. Comparative Study of the Performance of Six-pocket and Four-pocket Hydrostatic/Hybrid Flexible Journal Bearings[J]. Tribology International.1995,28:531-539.
    [52]Singh N, Sharma S C, Jain S C, Reddy S S. Performance of Membrane Compensated Multirecess Hydrostatic/Hybrid Flexible Journal Bearing System Considering Various Recess Shapes[J]. Tribology International.2004,37(1): 11-24.
    [53]Sinhasan R, Sah P L. Static and Dynamic Performance Characteristics of an Orifice Compensated Hydrostatic Journal Bearing with Non-Newtonian Lubricants[J]. Tribology International.1996,29:515-526.
    [54]Rowe W B, Xu S X, Chong F S, Weston W. Hybrid Journal Bearings with Particular Reference to Hole-entry Configurations[J]. Tribology International. 1982,15:339-348.
    [55]Jain S C, Sinhasan R, Sharma S C. Analytical Study of a Flexible Hybrid Journal Bearing System Using Different Flow Control Devices[J]. Tribology International, 1992,25:387-395.
    [56]Nicodemus E R, Sharma S C. Orifice Compensated Multirecess Hydrostatic/Hybrid Journal Bearing System of Various Geometric Shapes of Recess Operating with Micropolar Lubricant[J]. Tribology International.2011,44: 284-296.
    [57]Davies P B, Leonard R. The Dynamic Behaviour of Multirecess Hydrostatic Journal Bearings[C]. Proceedings of the Institution of Mechanical Engineers Conference, London,1969.
    [58]Davies P B. A General Analysis of Multirecess Hydrostatic Journal Bearings[C]. Proceedings of the Institution of Mechanical Engineers Conference, London, 1969.
    [59]Sharma S C, Sinhasan R, Jain S C. Performance Characteristics of Multirecess Hydrostatic/Hybrid Flexible Journal Bearing with Membrane Type Variable-flow Restrictor as Compensating Elements[J].Wear.1992,152:279-300.
    [60]Pinkus O. Analysis of Elliptical Bearings[J]. Trans. ASME.,1956,78:965-973.
    [61]Li D F, Choy K C, Allaire P E. Stability and Transient Characteristic of Four Multilobe Journal Bearing Configurations[J]. Trans. ASME. J. Lub. Tech.1980, 102:291-299.
    [62]Garner D R, Lee C S, Martin F A. Stability of Profile Bore Bearings:Influence of Bearing Type Selection[J]. Tribology International.1980,13:204-210.
    [63]Basavaraja J S, Sharma S C, Jain S C. Performance of an Orifice Compensated Two-lobe Hole-entry Hybrid Journal Bearin[J]. Adv Tribol.2008:1-10.
    [64]Nagaraju, T., Sharana Basavaraja, J., Sharma, Satish C., Jain, S.C. A Study of Orifice Compensated Multilobe Hole-entry Hybrid Journal Bearing[C]. ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Las Vegas,2007.
    [65]Singh A, Gupta B K. Stability Analysis of Orthogonally Displaced Bearings[J]. Wear.1984,97:83-92.
    [66]Ma M T, Taylor M. An Experimental Investigation of Thermal Effects in Circular and Elliptical Plain Journal Bearings[J]. Tribology International.1996,29(1): 19-26.
    [67]Sharma S, Rattan SS. Micropolar Lubricant Effects on the Performance of a Two-Lobe Bearing with Pressure Dam[J]. International Journal of Engineering Science and Technology.2010,2:5637-5646.
    [68]Nagaraju Y, Joy M L, Nair K P. Thermohydrodynamic Analysis of a Two-Lobe Journal Bearing[J]. International Journal of Mechanical Sciences.1994,36: 209-217.
    [69]Prabhakaran Nair K, Sukumaran Nair V P, Jayadas N H. Static and Dynamic Analysis of Elastohydrodynamic Elliptical Journal Bearing with Micropolar Lubricant[J]. Tribology International.2007,40:297-305.
    [70]Lund J W, Thomsen K K. A Calculation Method and Data for the Dynamic Coefficient of Oil Lubricated Journal Bearing[C]. ASME design engineering conference, Chicago.1978.
    [71]Chandrawat H N, Sinhasan R. A Study of a Two-lobe Journal Bearing Considering Elastohydrodynamic Effects[J]. Wear.1988,127:161-177.
    [72]Soni S C, Sinhasan R, Singh D V. Non-linear Analysis of Two-lobe Bearings in Turbulent Flow Regimes[J]. Wear.1985,103:11-27.
    [73]Goyal K C, Sinhasan R. Elastohydrodynamic Studies of Two-lobe Journal Bearings with Non-Newtonian Lubricants[J]. Wear.1991,145:329-345.
    [74]Tayal S P, Sinhasan R, Singh D V. Finite Element Analysis of Elliptical Bearings Lubricated by a Non-newtonian Fluid[J]. Wear.1982,80:71-81.
    [75]Singh D V, Sinhasan R, Nair K P. Elastothermohydrodynamic Effects in Elliptical Bearings[J]. Tribology International.1989,22:43-49.
    [76]钱祥麐,马蕙心,徐语,等.椭圆轴承特性及参数分析[J].华东理工大学学报.1981,(2):69-92.
    [77]朱均,周长新,许儒铭,等.紊流工况下椭圆轴承性能研究[J].润滑与密封.1981,(1):1-13.
    [78]王立刚,曹登庆,王晋麟,等.椭圆轴承—转子系统的稳定性与分岔[J].航空 动力学报.2008,23(2):263-269.
    [79]Sinhasan R, Malik M, Mahesh Chandra. Analysis of Two-lobe Porous Hydrodynamic Journal Bearings[J]. Wear.1980,64(2):339-353.
    [80]Nair K P, Sinhasan K, Singh D V. Elastohydrodynamic Effects in Elliptical Bearings[J]. Wear.1987,118:129-145.
    [81]Amit Chauhana, Rakesh Sehgalb, Rajesh Kumar Sharmab. Thermohydrodynamic Analysis of Elliptical Journal Bearing with Different Grade Oils[J]. Tribology International.2010,43(11):1970-1977.
    [82]Singh Ajeet, Gupta B K. Stability Limits of Elliptical Journal Bearings Supporting Flexible Rotors[J]. Wear.1982,77(2):159-70.
    [83]Hussain A, Mistry K, Biswas S, Athre K. Thermal Analysis of Non-circular Bearing[J]. Trans ASME.1996,118:246-54.
    [84]Sehgal R, Swamy KNS, Athre K, Biswas S. A Comparative Study of the Thermal Behaviour of Circular and Non-circular Journal Bearings[J]. Lub Sci.2000,12(4): 329-44.
    [85]Banwait S S, Chandrawat H N. Effect of Misalignment on Thermohydrodynamic Analysis of Elliptical Journal Bearings[J]. IE (I) J.2000,81:93-101.
    [86]Ostayen RAJV, Beek A V. Thermal Modelling of the Lemon-bore Hydrodynamic Bearing[J]. Tribol Int.2009,42:23-32.
    [87]Amit Chauhana, Rakesh Sehgalb, Rajesh Kumar Sharmab. Investigations on the Thermal Effects in Non-circular Journal Bearings[J]. Tribology International.2011, 44(12):1765-1773.
    [88]吕延军,虞烈,刘恒.非线性轴承—转子系统的稳定性和分岔[J].机械工程学报.2004,40(10):62-67.
    [89]富彦丽,朱均.汽轮机组椭圆轴承瞬态响应的研究[J].机械科学与技术.2007,26(6):733-737.
    [90]赵卫军,郭勇,孙敏,等.紊流工况下的滑动轴承性能分析[J].东方汽轮机.2010,(4):34-39.
    [91]颜运昌,胡在君.计入热效应下的椭圆轴承动态特性计算[J].湖南大学学报(自然科学版).1994,21(6):74-79,87.
    [92]Crosby W. A. An Investigation of the Performance of a Journal Bearing with a Slightly Irregular Bore[J]. Tribology International.1992,25(3):199-204.
    [93]Mishra P C, Pandey R K, Athre K. Temperature Profile of an Elliptic Bore Journal Bearing[J]. Tribology International.2007,40(3):453-458.
    [94]Prakash Chandra Mishra. Mathematical Modeling of Stability in Rough Elliptic Bore Misaligned Journal Bearing Considering Thermal and Non-Newtonian Effects[J]. Applied Mathematical Modelling.2013,37(8):5896-5912.
    [95]Phalle V M, Sharma S C, Jain S C. Influence of Wear on the Performance of a 2-lobe Multirecess Hybrid Journal Bearing System Compensated with Membrane Restrictor[J]. Tribology International.2011,44:380-395.
    [96]Phalle V M, Sharma S C, Jain S C. Performance Analysis of a 2-lobe Worn Multirecess Hybrid Journal Bearing System Using Different Flow Control Devices[J]. Tribology International.2012,52:101-116.
    [97]Singh N, Sharma S C, Jain S C, et al. Performance of Membrane Compensated Multirecess Hydrostatic/Hybrid Flexible Journal Bearing System Considering Various Recess Shapes[J]. Tribology International.2004,37(1):11-24.
    [98]Kumar Vijay, Sharma Satish C, Jain S C. On the Restrictor Design Parameter of Hybrid Journal Bearing for Optimum Rotordynamic Coefficients[J]. Tribology International.2006,39(4):356-368.
    [99]Chen Cheng Hsien, Kang Yuan, Chang Yeon-Pun, et al. The Restrictive Effects of Orifice Compensation on the Stability of the Jeffcott Rotor-hybrid Bearing System[J]. Industrial Lubrication and Tribology.2002,54(6):255-261.
    [100]Sharma S C, Jain S C, Reddy N M. A Study of Non-recessed Hybrid Flexible Journal Bearing with Different Restrictors[J]. Tribology Transactions.2001,44(2): 310-317.
    [101]Yoshimoto S, Anno Y, Fujimura M. Static Characteristics of a Rectangular Hydrostatic Thrust Bearing with a Self-controlled Restrictor Employing a Floating Disk[J]. Tribol Trans ASME.1993,115(2):307-311.
    [102]Yoshimoto S, Kikuchi K. Step Response Characteristics of Hydrostatic Journal Bearings with Self-controlled Restrictors Employing a Floating Disk[J]. J Tribol Trans ASME.1999,121(2):315-320.
    [103]Sharma S C, Sinhasan R, Jain S C. Performance Characteristics of Multirecess Hydrostatic/Hybrid Flexible Journal Bearing with Membrane Type Variable-flow Restrictor as Compensating Elements[J]. Wear.2003,152(2):279-300.
    [104]Mizumoto H, Kobo M, Makimoto Y, et al. A hydrostatically controlled restrictor for an infinite stiffness hydrostatic journal bearing[J]. Journal of the Japan Society of Precision Engineering.1985,51(8):1553-1558.
    [105]岑少起,郭红,张少林,等.多种节流形式的动静压轴承有限元优化分析[J].机械科学与技术.2002,21(3):237-239.
    [106]华绍杰,付少敏,郭红.内置毛细管节流的动静压滑动轴承有限元—优化综合分析[J].郑州工业大学学报.1996,17(4):1-8.
    [107]朱有洪,刘建亭,杨建玺,等.液体静压轴承薄膜节流新结构的设计分析[J].轴承.2008,(3):27-30.
    [108]Santos I F, Russo F H. Tilting Pad Journal Bearings with Electronic Radial Oil Injection[J]. Journal of Tribology.1998,120:583-594.
    [109]Santos I F, Nicoletti R. THD Analysis in Tilting Pad Journal Bearings Using Multiple Orifice Hybrid Lubrication [J]. Transactions of the ASME.1999,121: 892-900.
    [110]Santos I F, Nicoletti R. Influence of Orifice Distribution on the Thermal and Static Properties of Hybrid Lubricated Bearings[J]. International Journal of Solids and Structures.2001,38:2069-2081.
    [111]Santos I F, Scalabrin A. Control System Design for Active Lubrication with Theoretical and Experimental Examples[J]. Journal of Engineering for Gas Turbines and Power.2003,125:75-80.
    [112]Nicoletti R, Santos I F. Linear and Non-linear Control Techniques Applied to Actively Lubricated Journal Bearings [J]. Journal of Sound and Vibration.2003, 260:927-947.
    [113]Nicoletti R, Santos I F. Active Lubrication:Feasibility and Limitations on Reducing Vibration in Rotating Machinery[C]. ABCM Symposium Series in Mechantronics.2004,12:434-443.
    [114]Santos I F, Nicoletti R, Scalabrin A. Feasibility of Applying Active Lubrication to Reduce Vibrations in Industrial Compressors[J]. Transactions of the ASME.2004. 126:848-854.
    [115]Nicoletti R, Santos I F. Frequency Response Analysis of an Actively Lubricated Rotor Tilting Pad Bearing System[J]. Transactions of the ASME.2005,127: 638-645.
    [116]Cai Z, De Queiroz M S, Khonsari M M. On the Active Stabilization of Tilting-pad Journal Bearings[J]. Journal of Sound and Vibration.2004,273:421-428.
    [117]Santos I F. On the Adjusting of the Dynamic Coefficients of Tilting-pad Journal Bearings[J]. Tribology Transactions.1995,38(3):700-706.
    [118]Deckler D C, Veillette R J, Choy F K,et al. Modeling of a Controllable Tilting Pad Bearings[C]. Proceedings of the American control conference, New Mexico,1997.
    [119]Deckler D C, Veillette R J, Braun F K,et al. Modeling and Control Design for a Controllable Bearing System[C]. Proceedings of the 39th IEEE conference on decision and control, Sydney,2000.
    [120]Sun L, Krodkiewski J M, Zhang N. Modeling and Analysis of the Dynamic Behavior of an Active Journal Bearing[J]. Am Soc Meeh Eng Pap.1994,6:11-16.
    [121]Sun L, Krodkiewski J M, Cen Y. Selt-Tuning Adaptive Control of Forced Vibration in Rotor Systems Using an Active Journal Bearing[J]. Journal of Sound and Vibration.1998,213(1):1-14.
    [122]Sun L, Krodkiewski J M. Experimental Investigation of Dynamic Properties of an Active Journal Bearing[J]. Journal of Sound and Vibration.2000,230(5): 1103-1117
    [123]孟光,殷达章,姚国治.电流变阻尼器用于转子振动控制的实验研究[J].航空动力学报.1996,11(3):265-268.
    [124]Yao G Z, Meng G, Fang T. Parameter Estimation and Damping Performance of Electro Rheological Dampers[J]. Journal of Sound and Vibration.1997,204(4): 575-584.
    [125]李运华,王占林,陈介力.电液主动控制挤压油膜阻尼器的理论分析[J].北京航空航天大学学报.1999,25(4):422-425.
    [126]汪建晓,孟光.磁流变液阻尼器在转子振动控制中的应用[J].化学物理学报.2001,14(5):548-554.
    [127]汪建晓,孟光.磁流变液阻尼器用于转子振动控制的实验研究[J].华中科技大学学报.2001,29(7):47-49.
    [128]Chen C L, Yau H T, Li Y. Subharmonic and Chaotic Motions of a Hybrid Squeeze film Damper-mounted Rigid Rotor with Active Control[J]. JVib Acoust Trans ASME.2002,124(2):198-208.
    [129]Yau H T, Chen C L. Electric-hydraulic Actuator Design for a Hybrid Squeeze-film Damper-mounted Rigid Rotor System with Active control[J]. J Vib Acoust Trans ASME.2006,128(2):176-183.
    [130]Rho R H, Kim K W. The Effect of Active Control on Stability Characteristics of Hydrodynamic Journal Bearings with an Axial Groove[J]. Proc Inst Mech Eng Part C J Mech Eng Sci.2002,216(9):939-946.
    [131]Rho B H, Kim K W. A Study on Stability Characteristics of Actively Controlled Hydrodynamic Journal Bearings[J]. JSME Int J Ser C.2002,45(1):239-245.
    [132]冯红光,宋洪侠.三柔性叶片轴承转子系统的PD控制及仿真[J].计算机仿真.2009,26(9):247-250.
    [133]苏义鑫,王娟,胡业发.磁悬浮轴承的变参数PID控制[J].武汉理工大学学报(信息与管理工程版).2004,26(2):35-37.
    [134]惠超,余海涛,李红伟,等.挠性转子磁力轴承系统LQ最优控制研究[J].武 汉理工大学学报(信息与管理工程版).2010,32(1):1-4.
    [135]Marx S, Nataraj C. An Optimal Control Algorithm for Suppression of Harmonic Base Excitation in Nonlinear Magnetic Bearings[C]. ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, California,2005.
    [136]Cai Z, de Queirozt M S, Khonsari M. Daptive Control of Active Tilting-Pad Bearings[C]. Proceedings of the American Control Conference, Denver,2003.
    [137]刘学忠,路长厚.主动混合轴承—转子运动轨迹的自校正控制[J].武汉理工大学学报.2008,30(1):134-137.
    [138]岑豫皖.转子—轴承系统振动的自校正控制[J].华东冶金学院学报.1996,13(2):143-148.
    [139]Jang M J, Chen C L, Tsao T M. Sliding Mode Control for Active Magnetic Bearing System with Flexible Rotor[J]. Journal of the Franklin Institute.2005, 342(4):401-419.
    [140]Tsai N C, Chiang C W, Kuo C H. Robust Sliding Mode Control for Axial AMB Systems [C]. Asian Control Conference, Tainan,2004.
    [141]秦红玲,李志雄,袁松.磁悬浮轴承系统的模糊滑模变结构控制研究[J].计算机仿真.2011,28(4):185-188,192.
    [142]柏华堂,齐蓉.主动磁悬浮轴承的积分滑模变结构控制[J].电工技术学报.2008,23(8):36-40.
    [143]Tsao T C, Tomizuka M. Robust Adaptive and Repetitive Digital Tracking Control and Application to a Hydraulic Servo for Noncircular Machining[J]. J Dyn Syst Meas Control Trans ASME.1994,116(1):24-32.
    [144]梁智权.具有油膜轴承的柔性转子系统振动主动控制[J].西南交通大学学报.2002,37:14-19.
    [145]刘雍,顾家柳,朱均.可控挤压油膜阻尼器轴承主动鲁棒H∞控制转子系统振动[J].振动工程学报.1996,9(1):69-74.
    [146]苏义鑫,龙祥,周祖德,张丹红.基于CMAC神经网络的主动磁轴承控制研 究[J].武汉大学学报(工学版).2006,39(2):63-66,71.
    [147]刘宏,宫晓春,王晋麟.基于主动润滑可倾瓦轴承转子系统的振动主动控制[J].强度与环境.2011,38(5):8-17.
    [148]路长厚,马金奎,陈淑江.控制油腔静压滑动轴承[P].中国:ZL201010295057.0.2012.
    [149]路长厚.椭圆静压滑动轴承[P].中国:ZL201010282265.7.2011.
    [150]孙恭寿,冯明.液体动静压混合轴承设计[M].北京:世界图书出版公司,1993.
    [151]Metman K J, et al. Load Capacity of Multi-recess Hydrostatic Journal Bearings at High Eccentricities [J]. Tribology International.1986,19:29-34.
    [152]Tsuneo Someya. Journal-Bearing Databook[M]. Berlin:Springer,1989.
    [153]王光钦.弹性力学[M].北京:中国铁道出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700