用户名: 密码: 验证码:
轻型高压直流输电系统的非线性控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着可关断电力电子器件(Insulated-gate Bipolar Transistor, IGBT; Gate-Turn Off Thyrisitor, GTO等)和PWM技术的发展,基于电压源换流器的轻型高压直流输电(Voltage Sourced Converter-High Voltage Direct Current, VSC-HVDC)系统越来越受到人们的关注。与传统的HVDC输电系统相比,该输电技术具有可向无源网络供电、无换相失败危险、有功功率和无功功率独立控制和易于构成多端直流输电系统等优点。
     本文着重研究VSC-HVDC输电系统的非线性控制策略。第一种方法,建立起双端无穷大VSC-HVDC输电系统在同步旋转dq坐标系下的暂态非线性数学模型,采用状态反馈精确线性化的方法,把非线性的数学模型转化成线性的形式。然后,运用变结构的控制方法,设计整流侧和逆变侧的控制器,从而实现直流侧电压恒定和有功、无功功率的独立解耦控制;第二种采用无源性理论的方法,建立VSC在同步旋转dq坐标系下的暂态非线性数学模型,验证了系统的无源性。外环采用定直流侧电压和定有功功率、无功功率来生成内环dq轴参考电流id*,iq*;内环采用无源性理论的控制方法,设计无源性控制器,用来追踪参考电流,以达到控制直流侧电压和独立调节有功和无功功率的目的。最后,基于MATLAB的仿真结果表明了该控制器能实现有功功率和无功独立控制,在负载扰动的情况下,具有良好的暂态控制性能和很强的鲁棒性。
     本文还建立了对无源网络供电的VSC-HVDC输电系统的数学模型,整流侧采用状态反馈精确线性化的方法对非线性数学模型进行解耦,然后用变结构的控制方法设计控制器;逆变侧利用稳态数学模型,利用前馈解耦的控制方法设计控制器。最后,基于MATLAB的仿真结果表明该控制器具有良好的启动和故障恢复性能,也能实现有功功率和无功独立控制。
With the development of self-commutated power electronic devices (Insulated-Gate Bipolar Transistor, IGBT; Gate-Turn Off Thyrisitor, GTO and so on) and PWM technique, HVDC based on the Voltage Source Converter (VSC-HVDC) has got more and more attention. The VSC-HVDC transmission system has many advantages compared with the traditional HVDC system. For example, it can realize the power supply to passive network, and avoid the risk of commutation failure, and obtain the individual control of active power and reactive power, and is also easy to construct multi-terminal DC system.
     Two nonlinear control strategies for the VSC-HVDC transmission system are mainly studied in this paper. In the first strategy, a nonlinear transient mathematical model of VSC-HVDC transmission system in synchronously rotating dq frame is built. To design the controller for this nonlinear system directly, the approach of state feedback exact linearization is adopted to change the nonlinear mathematical model into the linear one; then utilizing the variable structure control method, the controllers for rectifying side and inversion side are designed, thus the constant voltage at DC side and independent decoupling control for active power and reactive power can be implemented.
     In the second strategy, a nonlinear transient mathematical model of VSC-HVDC in synchronously rotating dq frame is developed and the passivity of the system is also verified. In order to realize the decoupling control between the active power and reactive power, a dual closed loop control strategy is established. The control strategy includes an outer loop, which contains the DC voltage together with active and reactive power regulators used to generate the inner dq-axis reference currents id*,iq*; and an inner loop, which consists of a passivity-based current controller that applied to track the reference currents. Finally, a MATLAB-based simulation model is constructed for simulation analysis of the controllers proposed. Simulation results show that the designed controllers possess satisfied transient control performance and strong robustness.
     A nonlinear transient mathematical model of VSC-HVDC system in synchronously rotating dq frame is developed. In rectifier side, the approach of state feedback exact linearization is adopted to change the nonlinear mathematical model into the linear one, and the variable structure control method is used to design controllers; in the inverter side, the feedforward decoupling control strategy is adopted to design controllers. At last, the MATLAB simulation results show that the controller has excellent startup and fault recovery performances, and can realize independent decoupling control for active and reactive power.
引文
[1]韩民晓,文俊,徐永海.高压直流输电原理与运行[M].北京:机械工业出版社,2008.
    [2]赵畹君.高压直流输电技术[M].北京:中国电力出版社,2004.
    [3]刘洪波.新型直流输电的保护与控制策略研究[D].杭州:浙江大学博士研究生学位论文,2003.
    [4]从振.轻型高压直流输电控制策略研究[D].成都:西南交通大学硕士学位论文,2010.
    [5]郑超.基于电压源换流器的高压直流输电系统数学建模与仿真分析[D].北京:中国电力科学研究院博士学位论文,2006.
    [6]皱超.基于逆系统理论的轻型高压直流输电的控制策略研究[D].成都:西南交通大学硕士学位论文,2009.
    [7]Abbas A M, Lehn P W. PWM based VSC-HVDC Systems:A Review[C]//Power and Energy society general meeting,2009:1-9.
    [8]陈谦,唐国庆,胡铭.采用dq0坐标的VSC-HVDC稳态模型与控制器设计[J].电力系统自动化,2004,28(16):61-66.
    [9]唐健,刘天琪,李兴源.新型直流输电数学模型和控制方式研究综述[J].继电器,2006,34(14):75-79.
    [10]Li Guojie, Ruan Siye, Lin Peng, Sun Yuanzhang, Li Xiong. A Novel Nonlinear Control for Stability Improvement in HVDC Light System [C]//IEEE Power Engineering Society General Meeting,2005: 837-845.
    [11]陈海荣,徐政.基于同步旋转坐标变换的VSC-HVDC态模型及其控制器[J].电工技术学报,2007,22(2):121-126.
    [12]孙栩,孔力VSC-HVDC系统的动态向量法建模仿真分析[J].电力系统自动化,2008,32(1):44-47.
    [13]皇甫成,汤广福,阮江军,王燕VSC-HVDC统一电磁暂态模型及其控制策略[J].高电压技术,2008,35(5):903-908.
    [14]姚为正,邓祥纯,易映萍,等.基于dq0同步坐标的柔性直流输电控制策略及仿真研究[J].电力系统保护与控制,2009,33(22):71-76.
    [15]Qahraman Behzad, Rahimi Ebrahim, Gole A M. An electromagnetic transient model for voltage sourced converter based HVDC transmission[C]//Canadian Conference on Electrical and Computer Engineering,2004:1063-1066.
    [16]梁海峰,王松,李庚银,赵成勇VSC-HVDC系统H。。控制器设计[J].电网技术,2009,33(9):35-39.
    [17]Ramadan H S, Siguerdidjane H, Petit M. A robust stabilizing nonlinear control design for VSC-HVDC system:a comparative study[C]//IEEE International Conference on Industry Technology. Gippsland.2009:1-6.
    [18]Alejandro P M, Claudio R, Ambriz P H, Enrique Acha. Modeling of VSC-Based HVDC systems for a Newton-Raphson OPF algorithm[J]. IEEE Transactions on Power Systems,2007,22(4):1794-1803.
    [19]Singh B, Panigrahi B K, Mohan D M. Voltage regulation and power flow control of VSC based HVDC system[C]//International Conference on Power Electronics:Drives and Energy Systems. New Delhi.2006:1-6.
    [20]Liu Zhongqi, Shao Weijun, Song Qiang. A novel nonlinear decoupled controller for VSC-HVDC system[C]//Power and Energy Engineering Conference. Asia-Pacific.2009:24-28.
    [21]Li Guangkai, Zhao Chengyong, Gengying. Research of nonlinear control strategy for VSC-HVDC system based on Lyapunov stability theory[C]//Proceedings of Electric Utility Deregulation and Restructuring and Power Technologies. Nanjuing.2008:2187-2191.
    [22]梁海峰,李庚银,李广凯,等.向无源网络供电的VSC-HVDC系统的系统仿真研究[J].电网技术,2005,29(8):45-50.
    [23]陈海荣,徐政.向无源网络供电的VSC-HVDC系统的控制器设计[J].中国电机工程学报,2006,26(23):42-48.
    [24]邹超,王奔,李泰.向无源网络供电的VSC-HVDC系统控制策略[J].电网技术,2009,33(2):84-88.
    [25]Adel Farag, Martyn Durrant, Herbert Werner, et al. Robust control of a VSC HVDC terminal attached to a weak AC system[A]. In:Proceeding of 2003 IEEE Conference on Control Application [C].2003:173-177.
    [26]李金丰,李广凯,赵成勇,李庚银.三相电压不对称时带有电压源换流器的HVDC系统的控制策略[J].电网技术,2005,29(16):16-20.
    [27]梁海峰,李庚银,王松,赵成勇.VSC-HVDC系统控制体系框架[J].电工技术学报,2009,24(5): 141-147.
    [28]张静,徐政,陈海荣VSC-HVDC系统启动控制[J].电工技术学报,2009,24(9):159-165.
    [29]邵文君,宋强,刘文华.轻型直流输电系统的不对称故障控制策略[J].电网技术,2009,33(12):42-48.
    [30]卢向东,赵成勇.基于VSC-HVDC的线路过电压抑制策略研究[J].高电压技术,2008,34(3):462-467.
    [31]周国梁,石新春,魏晓光,等.电压源换流器高压直流输电不平衡控制策略研究[J].中国电机工程学报,2008,28(22):137-143.
    [32]刘洪波.新型直流输电的保护与控制策略研究杭州[D].杭州:浙江大学博士学位论文,2003.
    [33]Xu L, Andersen B R, Cartwright P. Control of VSC transmission systems under unbalanced network conditions[C]//Proceedings of Transmission and Distribution conference and Exposition 2003. IEEE/PES,2003:626-632.
    [34]Du Cuiqing, Evert Agneholm, Gustaf Olsson. Comparison of different frequency controllers for a VSC-HVDC supplied system[J]. IEEE Transactions on Power Delivery,2008,23(4):2224-2232.
    [35]刘洪涛,徐政.基于三电平电压源换流器的高压直流输电系统的控制策略研究[J].电工技术学报,2003,18(3):102-107.
    [36]皇甫成,汤广福,阮江军,王燕VSC-HVDC统一电磁暂态模型及其控制策略[J].高电压技术,2008,35(5):903-908.
    [37]Flourentzou N, Agelidis V G. Optimized modulation for AC-DC harmonic immunity in VSC HVDC transmission[J]. IEEE Transactions on Power Delivery,2010,25(3):1713-1720.
    [38]Ion Etxeberria-Otadui, Unai Viscarret, Marcelino Caballero, et al. New optimized PWM VSC control structures and strategies under unbalanced voltage transients[J]. IEEE Transactions on Industrial Electronics,2007,54(5):2902-2914.
    [39]Du Cuiqing, Math H J Bollen, Evert Agneholm, Ambra Sannino. A new control strategy of a VSC-HVDC system for High-Quality supply of industrial plants[J]. IEEE Transactions on Power Delivery,2007,22(4):2386-2394.
    [40]Du Cuiqing, Evert Agneholm, Gustaf Olsson. VSC-HVDC system for industrial plants with onsite generators[J]. IEEE Transactions on Power Delivery,2009,24(3):1359-1366.
    [41]阮思烨,孙元章,李国杰.用电压源型高压直流输电解决高压电网中工业系统引起的电能质量问题[J].电网技术,2007,31(19):13-17.
    [42]Robinson J, Joos G. VSC HVDC transmission and offshore grid design for a linear generator based wave farm[C]. Canadian Conference on Electrical and Computer Engineering,2009:54-58.
    [43]魏晓光,汤广福,魏晓云,等VSC-HVDC控制器抑制风电场电压波动的研究[J].电工技术学报,2007,22(4):150-156.
    [44]赵成勇,胡冬良,李广凯,龙文.多端VSC-HVDC用于风电场联网时的控制策略[J].电网技术2009,33(17):135-140.
    [45]郑超,周孝信,李若梅,等.电压源换流器式高压直输电动态建模和暂态仿真[J].电网技术,2005,29(16):1-5.
    [46]张桂斌,徐政,王广柱.基于VSC的直流输电系统的稳态模型及非线性控制[J].中国电机工程学报,2002,22(1):17-22.
    [47]杨贵杰,孙力,崔乃政,陆永平.空间矢量脉宽调制方法的研究[J].电机工程学报,2001,21(5):79-83.
    [48]孙元章,焦晓红,申铁龙.电力系统非线性鲁棒控制[M].北京:清华大学出版社,2007.
    [49]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1996.
    [50]姚琼荟等.变结构控制系统[M].北京:清华大学出版社,2003.
    [51]王久和.无源控制理论及其应用[M].北京:电子工业出版社,2010.
    [52]卢强,梅生伟,孙元章.电力系统非线性控制[M].北京:清华大学出版社,2008
    [53]杜继伟,毕伟冬,于奔.三相有源电力滤波器的灰色变结构控制器设计[J].继电器,2006,34(6):49-52.
    [54]王奔,毛宗源.大型同步发电机变结构励磁控制[J].电力系统及其自动化学报,1998,10(2):1-6.
    [55]邓卫华,张波,丘东元,等.三相电压型PWM整流器状态反馈精确线性化解耦控制研究[J].中国电机工程学报,2005,25(7):97-103.
    [56]王奔,黄崇鑫,李泰.统一潮流控制器逆系统方法控制策略[J].控制理论与应用,2010,27(5):551-556.
    [57]Akshaya Moharana, Dash P K. Input-output linearization and robust sliding-mode controller for the VSC-HVDC transmission link[J]. IEEE Transactions on Power Delivery,2010,25(3):1952-1961.
    [58]王久和,黄立培,杨秀媛.三相电压型PWM整流器的无源性功率控制[J].电机工程学报,2008,28(21):20-25.
    [59]王久和.电压型PWM整流器的非线性控制.北京:机械工业出版社,2008.
    [60]纪志成,薛花,沈艳霞.感应电动机无源性控制方法研究[J].电工技术学报2005,20(3):1-6.
    [61]Lee Tzann Shin. Lagrangian modeling and passivity based control of three-phase AC/DC voltage-source converter. IEEE Transaction on Industrial Electronics,2004,51(4):892-902.
    [62]郑超,周孝信,李若梅.新型高压直流输电的开关函数建模与分析[J].电力系统自动化,2005,29(8):32-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700