用户名: 密码: 验证码:
负载效应对换流阀可靠性的影响及概率潮流仿真算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,大功率电力电子设备被广泛应用到电力系统领域,特别是柔性交流输电和高压直流输电设备。它们在远距离大容量输电、不伺频率联网、提高交流电网的可控性和最大化电网的输送能力等方面起着不可替代的作用。做为新一代的直流输电技术,柔性直流输电采用全控型电力电子器件、电压源换流器和脉宽调制等技术,解决了传统直流输电存在的诸多问题。然而,由于电力电子设备结构复杂、与电网联系紧密等特点,其本身的可靠性以及电网对其可靠性的影响不容忽视。现有柔性直流输电设备的可靠性模型,尤其是换流阀等核心器件,尚不完善;基于恒定故障率和解析法的元件可靠性模型,很难完全反应变化的工作环境对电力电子器件可靠性的影响。本文将负载效应引入柔性直流输电换流阀的可靠性建模中,针对电压与电流负载效应的不同特性,提出了相应的处理方法。同时,本文提出的电流负载等效模型计及变化的电网潮流对换流阀可靠性的影响,因此在对电流负载进行等效时,需要进行概率潮流的蒙特卡罗仿真计算。由于蒙特卡罗仿真计算量过大,本文提出并研究了扩展拉丁超立方采样算法,提高计算效率,减小计算时间。
     本文围绕以上问题,做了以下研究工作:
     (1)基于电力电子设备可靠性研究理论,提出了柔性直流输电换流阀的可靠性评估模型,采用表决系统模型,讨论了换流阀冗余设置与可靠性指标之间的量化关系;
     (2)针对现有恒定故障率下可靠性建模的不足,提出了基于负载效应的换流阀可靠性模型,采用蒙特卡罗仿真求解;从不可修和可修两类模型的角度分析了电压负载效应的引入对可靠性指标的影响,并以此为基础,对换流阀的备件储备策略进行了研究计算;
     (3)针对现有VSC-HVDC换流站稳态模型的不足,引入了一般形式的交流侧等值电路方程和二次函数拟合的换流站损耗计算模型,在此基础上采用统一求解法进行含VSC-HVDC的交直流混合潮流计算;
     (4)在现有VSC-HVDC稳态潮流模型的基础上,对含VSC-HVDC的电力系统概率潮流进行计算分析,根据概率潮流的计算结果对变化的电流负载进行等效计算,获得考虑电网潮流变化时的阀模块可靠性模型:
     (5)针对现有拉丁超立方采样技术的计算只能基于固定采样数,无法在已有采样点的基础上扩展的不足,引入扩展技术,形成了扩展拉丁超立方采样技术;并在此基础上研究了拉丁超立方采样减小方差的机理;通过对现有误差分析和收敛判据工具的研究,指出方差系数不能作为收敛判据,提出了以输出变量数字特征变化的相对值作为拉丁超立方采样的收敛判据;
     (6)将扩展拉丁超立方采样技术应用于电力系统概率潮流计算,通过算例分析证明了算法的正确性和高效性,分析比较了直接蒙特卡罗仿真、固定采样数拉丁超立方采样和本文提出的扩展拉丁超立方采样在概率潮流计算产生的绝对误差的概率性,验证了本文提出的收敛判据的有效性:同时在单次扩展方案的基础上,提出了多扩展方案的思想,通过获取更为精确和详细的收敛趋势提高收敛判据的准确性。
In recent years, high-power electronic devices become widely applied to the field of power system, especially for FACTS and HVDC technology. In long-distance large-capacity transmission, different frequencies interconnection, enhancement of the controllability of the AC power grid and maximize the power grid transmission capacity, etc., high-power electronic devices play an irreplaceable role. As a new generation of HVDC Transmission technology, VSC-HVDC introduced all-controlling power electronics device, voltage source converters and PWM control technology, solved many problems which exist in conventional HVDC. However, due to the immaturity in their own development, complex structure and the tie in closely with the grid, reliability of high-power electronic devices and the impact of the power system on its reliability should never be neglected. Existing VSC-HVDC reliability model, especially for converter valve, is not perfect and requires to be improved. It is difficult to reflect the impact of the changing work environment on the reliability of power electronic devices by the model based on fixed failure rate and analytic method. This paper introduces the load-sharing effect for reliability modeling of the VSC-HVDC converter valve, proposes the correspond disposal methods according to the characteristic between voltage and current load-sharing effect.Meanwhile, equivalent model proposed for current load-sharing effect takes the varying power flow into account. Therefore, probabilistic load flow (PLF) based on simulation is need for equivalent current load-sharing model. Due to large calculation quantities in Monte Carlo simulation (MCS) method, extended Latin hypercube sampling (ELHS) is proposed in this paper for PLF evaluation to improve computation efficiency and reduce calculation time.
     This paper conducts the following research based on the above:
     (1) Based on the theoretical basis of the existing research on reliability power electronic equipment, the reliability model of VSC-HVDC converter valve using the k-out-of-n:G model are presented, and the quantitative relationship between redundant set and reliability indicators is discussed.
     (2) Due to the disadvantages of the existing fixed failure rate reliability modeling, the proposed converter valve reliability model based on the load effect is presented. Instead of analytical algorithm, Monte monteCarlo simulation is used to solve the reliability model to explore the influence on the reliability indexes with the voltage load-sharing effect through the aspect of the unrepairable and repairable models. Calculation and study on the spare parts reserves strategy of the converter valve is presented.
     (3) Due to the disadvantages of the existing steady-state VSC-HVDC converter model, the converter equations are derived in the most general format and a generalized loss formula with the converter losses quadratically dependent on the converter current. This paper proposed a unified method for power flow calculation in the AC power systems with embedded VSC-HVDC system.
     (4) Based on the steady power flow model of VSC-HVDC, PLF evaluation with VSC-HVDC is proposed. According to the results, equivalent calculation of varying current is proposed to take varying power flow into account in reliability model of valve module.
     (5) In view of existing Latin Hypercube sampling (LHS) technique based on fixed sample sizes and the disadvantage that cannot be extended on the existing sampling points, the extended Latin hypercube sampling is presented. On the basis of the study of variance reduction mechanism of LHS, the existing error analysis and convergence criterion tool, this paper points out that the coefficient of variation cannot be used as convergence criterion for LHS, and proposes the relative change of the output variable estimator used as the convergence criterion for LHS.
     (6) ELHS is applied to the calculation of PLF. The numerical example has shown that the method is valid and effective. By comparing the probability of the absolute error in MCS, CLHS and ELHS, the efficiency of the proposed convergence criterion is validated. On the basis of a single expansion program, this paper presents the idea of multiple expansion programs for obtaining more accurate and detailed convergence trend to improve the accuracy of the proposed convergence criterion.
引文
[1]谢小荣,姜齐荣编著.柔性交流输电系统的原理与应用[M].北京:清华大学出版社,2006.
    [2]杨晓萍编著.高压直流输电与柔性交流输电[M].北京:中国电力出版社,2010.
    [3]周孝信,郭剑波,孙元章.大型互联电网运行可靠性基础研究[M].北京:清华大学出版社,2008.
    [4]郑超,周孝信,李若梅.电压源换流器式高压直流输电的动态建模与暂态仿真[J].电网技术,2007,31(6):45-50.
    [5]文俊,张一工,韩民晓,等.轻型直流输电:一种新一代的HVDC技术[J].电网技术,2003,27(1):47-50.
    [6]胡兆庆,毛承雄,陆继明.一种新的优化协调控制在轻型直流输电中的应用[J].中国电机工程学报,2005,25(8):41-47.
    [7]阮思烨,孙元章,李国杰.用电压源型高压直流输电解决高压电网中工业系统引起的电能质量问题[J].电网技术,2007,31(19):13-16.
    [8]殷自力,李庚银,李广凯,等.柔性直流输电系统运行机理分析及主回路相关参数设计[J].电网技术,2007,31(21):16-21.
    [9]俞俊霞,肖斌.基于VSC-HVDC的南汇风电场并网应用研究[J].上海电力,2011,(03):234-237.
    [10]乔卫东,毛颖科.上海柔性直流输电示范工程综述[J].华东电力,2011,39(07):1137-1140.
    [11]董云龙,包海龙,田杰,等.柔性直流输电控制及保护系统[J].电力系统自动化,2011,35(19):89-92.
    [12]郭焕,温家良,汤广福,等.高压直流输电晶闸管阀关断的电压应力分析[J].中国电机工程学报,2010,34(12):1-6.
    [13]胡航海,李敬如,杨卫红,等.柔性直流输电技术的发展与展望[J].电力建设,2011,32(05):62-66.
    [14]胡浩.柔性直流输电技术及其国内应用展望[J].华东电力,2011,39(09):1509-1511.
    [15]黄川,王志新,王国强.基于MMC的海上风电场柔性直流输电变流器仿真[J].电力自动化设备,2011,31(11):23-27.
    [16]李爽,王志新,王国强,等.三电平海上风电柔性直流输电变流器的PID神经网络滑模控制[J].中国电机工程学报,2012,32(04):20-28.
    [17]刘钟淇,宋强,刘文华.基于模块化多电平变流器的轻型直流输电系统[J].电力系统自动化,2010,34(02):53-58.
    [18]Ilves K, Antonopoulos A, Borrga S, et al. Steady-State Analysis of Interaction Between Harmonic Components of Arm and Line Quantities of Modular Multilevel Converters[J]. IEEE Transactions on Power Electronics,2012,27(1):57-68.
    [19]汤广福编著.基于电压源换流器的高压直流输电技术[M].北京:中国电力出版社,2010.
    [20]Dodds A, Railing B, Akman K, et al. HVDC VSC (HVDC Light) transmission-operating experiences [EB/OL]. http://www05.abb.com/global/scot/scot221.nsf/veritydisplay/973416ce4ddcd540c12578270057724b /$file/b4_03_2010%20hvdc%20vsc%20(hvdc%201ight)%20transmission%20operating%20experien ces.pdf,2010.
    [21]陈永进,任震.模型组合及其在直流输电系统可靠性评估中的应用[J].电网技术,2004,28(13):18-22.
    [22]任震,武娟,陈丽芳.高压直流输电可靠性评估的等效模型[J].电力系统自动化,1999,23(9):38-41.
    [23]谢开贵,吴韬,黄莹,等.等基于二分法的高压直流输电系统可靠性最优分解[J].电工技术学报,2010,25(5):149-154.
    [24]张静伟,任震,黄雯莹.直流系统可靠性故障树评估模型及应用[J].电力自动化设备,2005,25(6):62-65.
    [25]蒋金良,王遂,任震.基于蒙特卡罗法的高压直流输电系统可靠性评估[J].华南理工大学学报(自然科学版),2008,36(2):128-132.
    [26]Billinton R, Fotuhi-Firuzabad M. Faried S O. Power system reliability enhancement using a thyristor controlled series capacitor[J]. IEEE Transactions on Power Systems,1999,14(1):369-374.
    [27]Billinton R, Fotuhi-Firuzabad M, Faried S O, et al. Impact of unified power flow controllers on power system reliability[J]. IEEE Transactions on Power Systems,2000,15(1):410-415.
    [28]Fotuhi-Firuzabad M, Billinton R, Faried S O. Subtransmission system reliability enhancement using a thyristor controlled series capacitor[J]. IEEE Transactions on Power Delivery,2000,15(1): 443-449.
    [29]Fotuhi-Firuzabad M, Billinton R, Faried S O, et al. Power system reliability enhancement using unified power flow controllers[C]. Proceedings of International Conference on Power System Technology,2000:745-750.
    [30]Billinton R, Fotuhi-Firuzabad M, Faried S O. Composite system reliability evaluation incorporating an HVDC link and a static synchronous series compensator[C]. Proceedings of the 2002 Canadian Conference on Electrical and Computer Engineering:42-47.
    [31]Billinton R, Yu Cui. Reliability evaluation of composite electric power systems incorporating FACTS[C].Proceedings of the 2002 IEEE Canadian Conference on Electrical and Computer Engineering:1-4.
    [32]赵渊.大电力系统可靠性评估的灵敏度分析及其校正措施模型研究[D].重庆大学,2004.
    [33]赵渊,周念成,谢开贵.计及FACTS元件的发输电系统可靠性评估模型[J].重庆大学学报(自然科学版),2006,29(5):19-23.
    [34]Moghadasi S M, Kazemi A, Fotuhi-Firuzabad M, et al. Composite system reliability assessment incorporating an interline power-flow controller[J]. IEEE Transactions on Power Delivery,2008, 23(2):1191-1199.
    [35]Dorostkar-Ghamsari M, Fotuhi-Firuzabad M, Aminifar F. Probabilistic Worth Assessment of Distributed Static Series Compensators[J]. IEEE Transactions on Power Delivery,2011,26(3): 1734-1743.
    [36]Zadkhast S, Fotuhi-Firuzabad M, Aminifar F, et al. Reliability Evaluation of an HVDC Transmission System Tapped by a VSC Station[J]. IEEE Transactions on Power Delivery,2010,25(3): 1962-1970.
    [37]VermaA K, Srividya A, Deka B C. Impact of a FACTS controller on reliability of composite power generation and transmission system[J]. Electric Power Systems Research,2004,72(2):125-130.
    [38]郭永基,可靠性工程原理[M].北京:清华大学出版社,柏林:施普林格出版社,2002:53-55.
    [39]Kuo W, Zuo M J. Optimal reliability modeling:principles and applications[M]. Hoboken:John Wiley & Sons, INC.2003:231-234,257-259.
    [40]Schlegel R, Herr E, Richter F. Reliability of non-hermetic pressure contact IGBT modules[J]. Microelectronics Reliability,2001,41:1689.
    [41]鲁宗相,刘文华,王仲鸿.基于k/n(G)模型的STATCOM装置可靠性分析[J].中国电机工程学报,2007,27(13):12-17.
    [42]丁明,王京景,宋倩.基于k/n(G)模型的柔性直流输电系统换流阀可靠性建模与冗余性分析[J].电网技术,2008,32(21):32-36,41.
    [43]郭焕,温家良,汤广福,等.直流输电换流阀主电路的可靠性分析与优化设计[J].中国电机工程学报,2009,29(增刊):39-43.
    [44]Nelson W. Accelerated life testing step-stress models and data analyses[J]. IEEE Transactions on Reliability,1980, R-29(2):103-108.
    [45]Min L, Tongmin J. Step stress accelerated life testing data analysis for repairable system using proportional intensity model[C]. Reliability and Maintainability Symposium,2009:360-364.
    [46]Huamin L. Reliability of a load-sharing k-out-of-n:G system:non-iid components with arbitrary distributions[J]. IEEE Transactions on Reliability,1998,47(3):279-284.
    [47]Amari S V, Bergman R. Reliability analysis of k-out-of-n load-sharing systems[C]. Reliability and Maintainability Symposium,2008.'
    [48]Scheuer E M. Reliability of an m-out-of-n system when component failure induces higher failure rates in survivors[J]. IEEE Transactions on Reliability,37(1),1988:73-74.
    [49]Pozsgai P, Neher W. Models to consider load-sharing in reliability calculation and simulation of systems consisting of mechanical components[C]. Reliability and Maintainability Symposium, 2003:493-499.
    [50]Guoqing L, Jian Z. Available Transfer Capability Calculation for AC/DC Systems with VSC-HVDC[C]. International Conference on Electrical and Control Engineering (ICECE),2010: 3404-3409.
    [51]Pizano-Martinez A, Fuerte-Esquivel C R, Ambriz-Perez H, et al. Modeling of VSC-Based HVDC Systems for a Newton-Raphson OPF Algorithm[J]. IEEE Transactions on Power Systems,2007, 22(4):1794-1803.
    [52]卫志农,季聪,孙国强,等.含VSC-HVDC的交直流系统内点法最优潮流计算[J].中国电机工程学报,2012,32(19):89-95.
    [53]Angeles-Camacho C, Tortelli O L, Acha E, et al. Inclusion of a high voltage DC-voltage source converter model in a Newton-Raphson power flow algorithm[J]. IEE Proceedings-Generation, Transmission and Distribution,2003,150(6):691-696.
    [54]Xiao-Ping Z. Multiterminal voltage-sourced converter-based HVDC models for power flow analysis[J]. IEEE Transactions on Power Systems,2004,19(4):1877-1884.
    [55]陈谦,唐国庆,王浔.多端VSC-HVDC系统交直流潮流计算[J].电力自动化设备,2005,25(06):1--6.
    [56]郑超,周孝信,李若梅,等.VSC-HVDC稳态特性与潮流算法的研究[J].中国电机工程学报,2005,25(6):1-5.
    [57]郑超.基于电压源换流器的高压直流输电系统数学建模与仿真分析[D].北京:中国电力科学研究院,2006.
    [58]郑超,盛灿辉.含VSC-HVDC的交直流混合系统潮流统一迭代求解算法[J].中国电力,2007,40(7):65-69.
    [59]Acha E, Fuerte-Esquivel C R, Ambriz-Perez H, et al,程新功,张勇,等译.柔性交流输电系统在电网中的建模与仿真[M].北京:机械工业出版社,2011.
    [60]Baradar M, Ghandhari M, Hertem D V, et al. The modeling multi-terminal VSC-HVDC in power flow calculation using unified methodology[C].2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies,2011:1-6.
    [61]Beerten J, Cole S, Belmans R, et al. Generalized Steady-State VSC MTDC Model for Sequential AC/DC Power Flow Algorithms[J]. IEEE Transactions on Power Systems,2012,27(2):821-829.
    [62]肖刚,李天柁.系统可靠性分析中的蒙特卡罗方法[M].北京:科学出版社,2003:1-5,49-52.
    [63]Dubi A著,卫军胡译.蒙特卡洛方法在系统工程中的应用[M].西安:西安交通大学出版社,2007.
    [64]Cunha S H F, Pereira M V F, Pinto L M V G, et al. Composite generation and transmission reliability evaluation in large hydroelectric systems[J]. IEEE Transactions on Power Apparatus and Systems,1985,104(10):2657-2663.
    [65]Pereira M V F, Maceira M E P, Oliveira G C. Combing analytical model and Monte-Carlo techniques in probabilistic power system analysis[J]. IEEE Transactions on Power Systems,1992, 7(1):265-272.
    [66]李生虎,丁明,杜雪樵.采用重点抽样方法的电力系统概率仿真[J].合肥工业大学学报,1999,22(6):20-25.
    [67]宋晓通,谭震宇.改进的重要抽样法在电力系统可靠性评估中的应用[J].电网技术,2005,29(13):56-59.
    [68]宋晓通,谭震宇.大型发输电组合系统可靠性评估方法[J].高电压技术,2007,33(7):1040-1044.
    [69]王斌,赵渊,刘威,等.基于分裂最优乘子重要抽样的电网可靠性评估[J].电力系统自动化,2008,32(19):30-34.
    [70]张粒子,王茜,舒隽.基于聚类最优乘子向量的发输电系统可靠性评估[J].电力系统自动化,2011,35(06):14-19.
    [71]宋晓通,谭震宇.基于自适应算法的电力系统可靠性评估[J].清华大学学报(自然科学版),2007,47(S1):191-194.
    [72]宋晓通,谭震宇.基于最优抽样与选择性解析的电力系统可靠性评估田.电力系统自动化,2009,33(5):29-33,60.
    [73]Peminge M, Lindskog F, Soder L. Importance Sampling of Injected Powers for Electric Power System Security Analysis[J]. IEEE Transactions on Power Systems,2012,27(1):3-11.
    [74]Breipohl A, Lee F N, Huang J, et al. Sample size reduction in stochastic production simulation[J]. IEEE Transactions on Power Systems,1990,5(3):984-992.
    [75]Marnay C, Strauss T. Effectiveness of antithetic sampling and stratified sampling in Monte Carlo chronological production cost modeling[J]. IEEE Transactions on Power Systems,1991,6(2): 669-675.
    [76]Chen S L, Huang S R. Improvement on state formulation, stratification and estimation in Monte Carlo production cost[J]. IEE Proceedings-C, Generation, Transmission and Distribution,1993, 140(6):439-446.
    [77]Huang S R. Effectiveness of optimum stratified sampling and estimation in Monte Carlo production simulation[J]. IEEE Transactions on Power Systems,1997,12(2):566-572.
    [78]Oliveira G C, Pereira M V F, Cunha S H F. A technique for reducing computational effort in Monte-Carlo based composite reliability evaluation[J]. IEEE Transactions on Power Systems,1989, 4(4):1309-1315.
    [79]Pereira M V F, Pinto L M V G . A new computational tool for composite reliability evaluation[J]. IEEE Transactions on Power Systems,1992,7(1):258-264.
    [80]丁明,李生虎.可靠性计算中加快蒙特卡罗仿真收敛速度的方法[J].电力系统自动化,2000(16):16-19,35.
    [81]丁明,李生虎,黄凯.基于蒙特卡罗模拟的概率潮流计算[J].电网技术,2001,25(11):10-14.
    [82]孙荣富,Singh C,程林,等.瞬时状态概率和方差减少技术在短期可靠性评估中的应用[J].中国电机工程学报,2009,29(28):47-54.
    [83]Huang S R, Chen S L. Evaluation and improvement of variance reduction in Monte Carlo production simulation[J]. IEEE Transactions on Energy Conversion,1993,8(4):610-620.
    [84]别朝红,王锡凡.蒙特卡洛法在评估电力系统可靠性中的应用[J].电力系统自动化,1997,21(06):68-75.
    [85]He J, Sun Y, Kirschen D S, et al. State-space partitioning method for composite power system reliability assessment[J]. IET, Generation, Transmission & Distribution,2010,4(7):780-792.
    [86]王晓滨,黄武浩,楼华辉,等.系统状态空间分割法在电力系统可靠性评估中的应用[J].电网技术,2011,35(10):124-129.
    [87]李文沅,孙洪波,周家启.大型发输电组合系统可靠性评估的Monte-Carlo法[J].重庆大学学报,1989,12(3):92-98.
    [88]何国锋,谭震宇.采用等分散抽样法的电力系统概率仿真[J].电力自动化设备,2004,24(7):57-59.
    [89]别朝红,王锡凡.一种减小蒙特卡洛模拟方差的新方法[J].中国电力,1999,21(6):68-75.
    [90]Bie Zhaohong, Wang Xifan. Studies on variance reduction technique of Monte Carlo simulation in composite system reliability evaluation[J]. Electric Power Systems Research,2002,63(1):59-64.
    [91]赵渊,徐焜耀,吴彬.大电力系统可靠性评估的蒙特卡洛仿真及概率密度估计[J].重庆大学学报(自然科学版),2007,30(12):16-20.
    [92]赵渊,沈智健,周念成,等.基于序贯仿真和非参数核密度估计的大电网可靠性评估[J].电力系统自动化,2008,32(6);14-19.
    [93]赵渊,沈智健,周念成,等.大电网可靠性蒙特卡洛仿真的概率不确定性分析[J].中国电机工程学报,2008,28(28):61-67.
    [94]Borkowska B. Probabilistic load flow[J]. IEEE Transactions on Power Appartus and Systems,1974, PAS-93(3):752-759.
    [95]Allan R N, Silva da A M L, Burchett R C. Evaluation methods and accuracy in probabilistic load flow solutions[J], IEEE Transactions on Power Appartus and Systems,1981, PAS-100(5): 2539-2546.
    [96]Pei Z, Lee S T. Probabilistic load flow computation using the method of combined cumulants and Gram-Charlier expansion[J]. IEEE Transactions on Power Systems,2004,19(1):676-682.
    [97]Chun-Lien S. Probabilistic load-flow computation using point estimate method[J]. IEEE Transactions on Power Systems,2005,20(4):1843-1851.
    [98]丁明,李生虎,洪梅.电力系统概率分析中的K均值聚类负荷模型[J].电力系统自动化,1999,23(19):51-54.
    [99]陈雁,文劲宇,程时杰.考虑输入变量相关性的概率潮流计算方法[J].中国电机工程学报,2011,31(22):80-87.
    [100]Mckay M D, Beckman R J, Conover W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics,1979,21(2): 239-245.
    [101]Iman R L, Conover W J. A distribution-free approach to inducing rank correlation among input variables[J]. Communications in Statistics-Simulation and Computation,1982,11(3):311-334.
    [102]Owen A.Controlling correlations in Latin hypercube samples[J]. Journal of the American Statistical Association,1994,89(428):1517-1522.
    [103]Huntington D E, Lyrintzis C S. Improvements to and limitations of Latin hypercube sampling[J]. Probabilistic Engineering Mechanics,1998,13(4):245-253.
    [104]Liefvendahl M, Stocki R. A study on algorithms for optimization of Latin hypercubes[J]. Journal of Statistical Planning and Inference,2006,136(9):3231-3247.
    [105]Vorechovsky M, Nova k D. Correlation control in small-sample Monte Carlo type simulations I:a simulated annealing approach[J]. Probabilistic Engineering Mechanics,2009,24(3):452-462.
    [106]Jirutitijaroen P, Singh C. Comparison of simulation methods for power system reliability indexes and their distributions[J]. IEEE Transactions on Power Systems,2008,23(2):486-493.
    [107]Jirutitijaroen P, Singh C. Reliability constrained multi-area adequacy planning using stochastic programming with sample-average approximations[J]. IEEE Transactions on Power Systems,2008, 23(2):504-513.
    [108]Shu Z, Jirutitijaroen P. Latin Hypercube Sampling Techniques for Power Systems Reliability Analysis With Renewable Energy Sources[J]. IEEE Transactions on Power Systems,2011,26(4): 2066-2073.
    [109]冯长有,王锡凡,王秀丽,等.考虑市场风险的发电商机组检修随机规划模型[J].中国电机工程学报,2009,29(28):95-101.
    [110]颜拥,文福拴,杨首晖,等.考虑风电出力波动性的发电调度[J].电力系统自动化,2010,34(6):79-88.
    [111]Yu H, Chung C Y, Wong K P, et al. Probabilistic load flow evaluation with hybrid Latin hypercube sampling and cholesky decomposition[J]. IEEE Transactions on Power Systems,2009,24(2): 661-667.
    [112]于晗,钟志勇,黄杰波,等.采用拉丁超立方采样的电力系统概率潮流计算方法[J].电力系统自动化,2009,33(21):32-36.
    [113]李俊芳,张步涵.基于进化算法改进拉丁超立方抽样的概率潮流计算[J].中国电机工程学报,2011,31(25):90-96.
    [114]于晗.基于概率的含风电场电网的输电系统规划方法研究[D].华北电力大学,2009.
    [115]Tong C. Refinement strategies for stratified sampling methods[J]. Reliability Engineering & System Safety,2006,91:1257-1265.
    [116]Sallaberry C J, Helton J C, Hora S C. Extension of Latin hypercube samples with correlated variables[J]. Reliability Engineering & System Safety,2008,93:1047-1059.
    [117]Drew S S, Homem-de-Mello T. Some large deviations results for Latin hypercube sampling[C]. Proceedings of the Winter on Simulation Conference,2005.
    [118]Sood V K.高压直流输电与柔性交流输电控制装置:静止换流器在电力系统中的应用[M].徐政,译.北京:机械工业出版社,2006:110-113.
    [119]武娟,任震,黄雯莹,等.轻型直流输电的运行机理和特性分析[J].华南理工大学学报:自然科学版,2001,29(8):41-44.
    [120]It's time to connect [EB/OL]. http://search.abb.com/library/Download.aspx?DocumentID=1JNL100105-122&LanguageCode=en& DocumentPartID=&A ction=Launch&content=external.
    [121]曹晋华,程侃.可靠性数学引论[M].北京:高等教育出版社,2006:11-21.
    [122]Welleman A, Ramezani E, Waldmeyer J. Semiconductor components & solid state switches for power modulator applications[C]. Power Modulator Symposium, California,2002:191-194.
    [123]A new packaging concept for high power electronics[EB/OL]. http://library.abb.com/GLOBAL/SCOT/scot256.nsf/VerityDisplay/259BBDF1BC57E34EC1256EA2 00208701/$File/StakPak_Flyer.pdf.
    [124]Steimer P, Apeldorn O, Carroll E, et al. IGCT technology baseline and future opportunities[C]. Transmission and Distribution Conference and Exposition, Atlanta, US,2001.
    [125]Allan R N, Al-Shakarchi M R G. Probabilistic techniques in a.c. load-flow analysis.[J]. Proceedings of the Institution of Electrical Engineers,1977,124(2):154-160.
    [126]Morales J M, Perez-Ruiz J. Point estimate schemes to solve the probabilistic power flow[J]. IEEE Transactions on Power Systems,2007,22(4):1594-1601.
    [127]茆诗松,汤银才,王玲玲,编著.可靠性统计[M].北京:高等教育出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700