用户名: 密码: 验证码:
UPFC的非线性控制与限流式UPFC研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代电力系统通过大规模互联使得电网结构日益庞大和复杂,如何在确保系统安全稳定的前提下提高电网输送容量、控制线路潮流、有效限制系统短路电流水平等问题已越来越突出并备受关注。近年来柔性交流输电系统(flexible AC transmission system, FACTS)的快速发展为解决上述问题提供了新的思路。在FACTS控制器家族中,统一潮流控制器(Unified Power Flow Controller, UPFC)可以综合调节输电线路的三大参数,即电压、相位和阻抗,继而可以控制线路潮流,有效提升电力系统的稳态和动态性能,是目前综合功能最为全面的FACTS装置,因此成为了学术界的研究热点。本文在UPFC的控制以及电力系统发生故障时UPFC的安全性问题两方面做了一些研究工作。
     在UPFC的控制方面,针对UPFC的非线性特性和不确定性,分别提出了一种基于状态反馈精确线性化理论的非线性最优控制策略和一种基于反馈线性化H∞理论的非线性鲁棒控制策略;针对UPFC负荷端电压存在的随机扰动,提出了一种非线性随机最优控制策略。这方面的具体研究成果概括为以下几点:
     1.针对UPFC传统线性控制器的性能可能因运行点的大范围变化而恶化的缺陷,考虑UPFC的非线性特性,提出了一种基于微分几何状态反馈精确线性化理论的UPFC非线性最优控制策略。首先从数学上证明了UPFC五阶非线性模型满足可精确线性化的条件,然后通过选择李雅普诺夫型输出函数、适当的非线性坐标变换和状态反馈将UPFC五阶非线性系统完全转化为一个Brunovsky标准线性系统,最后采用线性极点配置方法设计了UPFC内部潮流控制器。仿真结果表明,该控制策略改进了传统PI控制近似线性化的缺陷,可以有效适应运行点的大范围变化,在提高电力系统暂态稳定性方面的效果明显优于传统PI控制。
     2.针对UPFC在电力系统中面临的不确定性和外部干扰问题,建立了加入干扰向量的UPFC非线性鲁棒模型,在第1点工作的基础上进一步提出了一种基于反馈线性化H∞理论的UPFC非线性鲁棒控制策略。仿真结果表明,该控制器在多种外部干扰下都具有良好的鲁棒性。
     3.在第2点的研究中仅考虑了不确定性,但实际电力系统中存在的干扰带有很强的随机性。针对UPFC负荷端电压存在的随机扰动问题,将精确线性化理论和随机控制理论相结合,提出了一种反馈线性化随机最优控制方法。首先建立了具有加性噪声的UPFC非线性随机模型;然后根据伊藤引理将其精确线性化为一个具有乘性噪声的线性随机系统;随后通过随机HJB方程推导了该系统的随机黎卡提矩阵微分方程及其辅助方程,并给出了上述方程的一种数值解法;最后通过控制向量反馈关系得出原UPFC系统的非线性随机最优控制策略。仿真结果表明,与传统的LQG控制方法相比,所提控制方法可以更好地抑制随机干扰,而且在多重复杂扰动下都具有良好的控制性能和稳定性。
     上述三种UPFC的控制策略设计方法均可扩展应用于所有基于电压源变换器的FACTS装置,如STATCOM、SSSC、IPFC、GUPFC、VSC-HVDC等。
     在电力系统发生短路故障时UPFC的运行安全性方面,提出并研制了一种新型FACTS装置——具有短路限流功能的统一潮流控制器(简称限流式UPFC).这方面的具体研究成果概括为以下几点:
     1.在电力系统发生短路故障时,UPFC的串联变换器极可能因承受系统高电压和短路大电流的冲击而损毁。针对该问题,提出了一种新型FACTS装置——限流式UPFC。给出了限流式UPFC的主电路拓扑结构,对其稳态运行工作原理、短路限流动态过程及控制策略进行了研究。建立了故障下的数学模型,提出了两个关键参数——直流限流电感和直流电容的计算方法和选取原则。仿真结果证实了这种新装置的可行性和有效性。
     2.研制了一套限流式UPFC实验装置,对其控制系统的硬件构成和软件设计问题进行了研究。实验结果表明,在电网正常状态下,限流式UPFC等效为常规UPFC;当(装置安装点附近)电网发生短路故障时,装置中的限流器模块能立即从零阻抗转变为高阻抗串入回路中承担大部分系统电压并将系统及流经UPFC的短路电流限制到设定数值,有效保护了UPFC免受系统高电压和短路大电流的冲击,保证了UPFC的安全性,同时也降低了系统的短路电流水平,增加了系统的可靠性和经济性。
     实际上,限流式UPFC的设计也可以看成是在系统故障的大扰动下为保证装置安全性所采取的一种特殊控制方法,该方法同样可以应用于其他基于电压源变换器且具有串联部分的FACTS装置,如设计限流式SSSC、限流式IPFC、限流式GUPFC等。
Modern power systems are becoming increasingly huger and more complex through wide interconnections. Many problems such as improving transmission capacity, controlling power flow and limiting short circuit fault current are becoming more and more highlighted. In recent years the rapid development of flexible AC transmission system (FACTS) provides a new way to solve the foregoing problems. The unified power flow controller (UPFC) is a versatile FACTS device and is the emphasis of the research work in the field of power systems due to its powerful functions. An UPFC is able to control, concurrently or selectively, the transmission voltage, impedance and angle, and then, the real and reactive power flow in the line. Furthermore, an UPFC can also improve various steady-state and dynamic performances of the power system. This dissertation focuses on those problems concerning UPFC nonlinear control and the security of UPFC under short circuit fault current.
     This dissertation is divided into two parts. The first part refers to nonlinear control of UPFC. Considering the nonlinearity of UPFC, a nonlinear optimal control strategy based on exact feedback linearization theory and a nonlinear robust control strategy based on feedback linearization H∞theory are proposed. Moreover, a nonlinear stochastic optimal control strategy is presented to suppress random disturbances on the load side voltage of the UPFC. Details are as follows:
     1. The performance of the traditional linear controller for UPFC may deteriorate due to a large-scale change of the operating point. In order to solve this problem, a new nonlinear optimal control strategy for UPFC based on exact feedback linearization theory is presented. Firstly, the5th-order UPFC nonlinear model is proved to meet the conditions for exact feedback linearization. Then the nonlinear model is converted into a Brunovsky linear system via selection of a Lyapunov-like output function, an appropriate nonlinear coordinate transformation and state variable feedback. At last the pole placement method is applied on the transformed linear system to design the UPFC internal power flow controller. The simulation results demonstrate that the proposed control overcomes the inherent drawback of traditional PI control and provides better performance on power system transient stability improvement than PI control.
     2. A nonlinear robust model of UPFC is established and a new nonlinear robust control strategy for UPFC based on feedback linearization H∞theory is presented to solve the uncertain disturbance rejection problem faced by an UPFC in a real power system. The simulation results demonstrate that the given controller shows excellent performances and robustness under various kinds of disturbances.
     3. In the second research point above, all the disturbances which an UPFC may suffer in a real power system are formulated to a common disturbance vector. This method is generally practical but lacks the specificity and accuracy. Aimed at suppress the random disturbance on the load side voltage of UPFC, a new nonlinear stochastic optimal control strategy for UPFC is proposed. Firstly, a nonlinear stochastic model of UPFC with additive noises is established. Secondly, the model is exactly linearized to a linear stochastic system with multiplicative noises according to Ito's Lemma. Thirdly, the stochastic Riccati matrix differential equation and its assistant equation are derived from stochastic HJB equation, and then a numerical algorithm of the solutions is given. At last, the nonlinear stochastic control strategy of the original UPFC system is gained through the control vector transformation. The simulation results demonstrate that the proposed control strategy can suppress random disturbances more effectively and maintain better control performance under many complicated disturbances than that of traditional LQG control method.
     The design methods of the three control strategies mentioned above can also be applied to other voltage source converter (VSC)-based FACTS devices, such as STATCOM, SSSC, GUPFC, IPFC, VSC-HVDC and so on.
     In the second part of this dissertation, a novel FACTS device called Unified Power Flow Controller with Fault Current Limiting (UPFC-FCL) is presented and developed in order to deal with the security problem of UPFC in case a short circuit fault occurs in the power system. Details are as follows:
     1. When a short circuit fault occurs in the power system, the series converter of UPFC may be damaged because of bearing high system voltage and large fault current. A novel FACTS device called Unified Power Flow Controller with Fault Current Limiting (UPFC-FCL) is designed to solve this problem. The topology of UPFC-FCL is given. The working principles in normal condition, dynamic process in fault condition, and corresponding control strategies of UPFC-FCL are analyzed. The mathematical model of UPFC-FCL is set up. The calculation and selection methods of DC reactor and DC capacitor are illustrated. The simulation results verify the feasibility and validity of UPFC-FCL.
     2. An UPFC-FCL prototype is developed. The hardware structure and software structure of the control system of the prototype are designed. Various experiments on the prototype are conducted and the results demonstrate that:in normal condition, the UPFC-FCL is equivalent to a regular UPFC; when a short circuit fault occurs near the device in the power system, the FCL module will transform from "zero impedance" into "large impedance" immediately and automatically to limit the fault current. The UPFC-FCL can not only protect the UPFC series converter from being destroyed by the high system voltage and large fault current but also lower the fault current level in the power system, and thereby enhance the reliability and economy of the power system.
     The design methodology of the UPFC-FCL can also be applied to other VSC-based serial FACTS devices, and then giving birth to SSSC-FCL, IPFC-FCL, GUPFC-FCL, etc.
引文
[1]韩祯祥.电力系统分析(第5版)[M].杭州:浙江大学出版社,2011.
    [2]陈珩.电力系统稳态分析(第3版)[M].北京:中国电力出版社,2007.
    [3]Kundur P. Power system stability and control[M]. New York:McGraw-Hill,1994.
    [4]薛禹胜.综合防御由偶然事故演化为电力灾难——北美“8.14”大停电的警示[J].电力系统自动化,2003,27(18):1-5,37.
    [5]甘德强,胡江溢,韩祯祥.2003年国际若干停电事故思考[J].电力系统自动化,2004,28(3):1-4,9.
    [6]黄娟娟,郑英芬.特高压网架对华中电网短路电流水平的影响分析及其限流措施[J].中国电力,2007,4(3):49-52.
    [7]李力,李爱民,吴科成,等.广东电网短路电流超标问题分析和限流措施研究[J].南方电网技术,2009,3(增刊):20-24.
    [8]惠建峰,钱乙卫,张世学.2010年陕西电网短路电流超标问题研究[J].陕西电力,2010(1):26-29.
    [9]李光琦.电力系统暂态分析(第3版)[M].北京:中国电力出版社,2007.
    [10]陈丽莉.大电网限流措施的优化配置研究[D].杭州:浙江大学,2011.
    [11]谢小荣,姜齐荣.柔性交流输电系统的原理与应用[M].北京:清华大学出版社,2006.
    [12]Hingorani N G, Gyugyi L. Understanding FACTS:concepts and technology of flexible AC transmission systems[M]. New York:IEEE Press,2000.
    [13]Gyugyi L. Unified power-flow control concept for flexible AC transmission systems[J]. IEE Proceedings-C,1992,139(4):323-331.
    [14]Gyugyi L. Dynamic compensation of AC transmission lines by solid-state synchronous[J]. IEEE Transactions on Power Delivery,1994,9(2):904-911.
    [15]Gyugyi L, Schauder C D, Williams S L, et al. The unified power flow controller:A new approach to power transmission control[J]. IEEE Transactions on Power Delivery,1995,10(2):1085-1097.
    [16]Sen K K, Stacey E J. UPFC-unified power flow controller:theory, modeling, and applications[J]. IEEE Transactions on Power Delivery,1998,13(4):1453-1460.
    [17]余贻鑫,栾文鹏.智能电网评述[J].中国电机工程学报,2009,29(34):1-8.
    [18]陈树勇,宋书芳,李兰欣,等.智能电网技术综述[J].电网技术,2009,33(8):1-7.
    [19]何光宇,孙英云,梅生伟,等.多指标自趋优的智能电网[J].电力系统自动化,2009,33(17):1-5.
    [20]王益民.坚强智能电网技术标准体系研究框架[J].电力系统自动化,2010,34(22):1-6.
    [21]张文亮,汤广福,查鲲鹏,等.先进电力电子技术在智能电网中的应用[J].中国电机工程学报,2010,30(4):1-7.
    [22]Rahman M, Ahmed M, Gutman R, et al. UPFC application on the AEP system:planning considerations[J]. IEEE Transactions on Power Systems,1997,12(4):1695-1701.
    [23]Schauder C, Stacey E, Lund M, et al. AEP UPFC project:installation, commissioning and operation of the ±160 MVA STATCOM (phase I)[J]. IEEE Transactions on Power Delivery,1998,13(4): 1374-1381.
    [24]Renz B A, Keri A, Mehraban A S, et al. AEP unified power flow controller performance[J]. IEEE Transactions on Power Delivery,1999,14(4):1530-1535.
    [25]Arabi S, Hamadanizadeh H, Fardanesh B. Convertible static compensator performance studies on the NY state transmission system[J]. IEEE Transactions on Power Systems,2002,17(3):701-706.
    [26]Guo J, Crow M L, Sarangapani J. An improved UPFC control for oscillation damping[J]. IEEE Transactions on Power Systems,2009,24(1):288-296.
    [27]孙元章,刘前进.FACTS装置技术综述——模型,目标与策略[J].电力系统自动化,1999,23(6):1-7.
    [28]Schauder C, Mehta H. Vector analysis and control of advanced static VAR compensators[J]. IEE Proceedings-C,1993,140(4):299-306.
    [29]Round S D, Yu Q, Norum L E, et al. Performance of a unified power flow controller using a d-q control system[C]. IEE Conference on AC and DC Power Transmission, London, UK,1996.
    [30]Yu Q, Round S D, Norum L E, et al. Dynamic control of a unified power flow controller[C]. IEEE Power Electronics Specialists Conference, Baveno, Italy,1996.
    [31]Yu Q, Norum L, Undeland T, et al. Investigation of dynamic controllers for a unified power flow controller[C]. Proceedings of IEEE Conference on Industrial Electronics, Control, and Instrumentation, Taipei, China,1996.
    [32]Blasko V, Kaura V. A new mathematical model and control of a three-phase AC-DC voltage source converter[J]. IEEE Transactions on Power Electronics,1997,12(1):116-123.
    [33]Dong L, Crow M L, Yang Z, et al. A reconfigurable FACTS system for university laboratories [J]. IEEE Transactions on Power Systems,2004,19(1):120-128.
    [34]Padiyar K R, Kulkarni A M. Control design and simulation of unified power flow controller[J]. IEEE Transactions on Power Delivery,1998,13(4):1348-1354.
    [35]Papic I, Zunko P, Povh D, et al. Basic control of unified power flow controller[J]. IEEE Transactions on Power Systems,1997,12(4):1734-1739.
    [36]Fujita H, Watanabe Y, Akagi H. Control and analysis of a unified power flow controller[J]. IEEE Transactions on Power Electronics,1999,14(6):1021-1027.
    [37]Fujita H, Akagi H, Watanabe Y. Dynamic control and performance of a unified power flow controller for stabilizing and AC transmission system[J]. IEEE Transactions on Power Electronics,2006,21(4): 1013-1020.
    [38]Kannan S, Jayaram S, Salama M M A. Real and reactive power coordination for a unified power flow controller[J]. IEEE Transactions on Power Systems,2004,19(3):1454-1461.
    [39]Lehn P W, Iravani M R. Discrete time modeling and control of the voltage source converter for improved disturbance rejection[J]. IEEE Transactions on Power Electronics,1999,14(6): 1028-1036.
    [40]Sonnenmoser A, Lehn P W. Line current balancing with a unified power flow controller[J]. IEEE Transactions on Power Delivery,1999,14(3):1151-1157.
    [41]Stefanov P C, Stankovic A M. Modeling of UPFC operation under unbalanced conditions with dynamic phasors[J]. IEEE Transactions on Power Systems,2002,17(2):395-403.
    [42]章良栋,岑文辉,刘为.UPFC的模型及控制器研究[J].电力系统自动化,1998,22(1):36-39.
    [43]王建,吴捷.统一潮流控制器的建模与控制研究综述[J].电力自动化设备,2000,20(6):41-45.
    [44]王海风,李敏,陈珩.统一潮流控制器的多变量控制设计[J].中国电机工程学报,2000,20(8):51-55.
    [45]邹振宇,江全元,张鹏翔,等.基于新型电力系统仿真工具的UPFC建模研究[J].浙江大学学报(工学版),2006,40(6):1002-1006,1060.
    [46]颜伟,朱继忠,孙洪波,等UPFC的模型与控制器研究[J].电力系统自动化,2000,23(6):36-41.
    [47]颜伟,朱继忠,孙洪波,等.UPFC的潮流控制与暂态稳定性研究[J].中国电机工程学报,2000,20(12):57-61.
    [48]颜伟,朱继忠,徐国禹.UPFC线性最优控制方式的研究及其对暂态稳定性的改善[J].中国电机工程学报,2000,20(1):45-49.
    [49]陈众,徐国禹,颜伟,等.UPFC直流侧电容电压弱控制策略研究[J].电工技术学报,2004,19(1):49-54.
    [50]陈众,颜伟,徐国禹,等.基于直流侧电容电压弱控制策略的UPFC二阶段控制器设计[J].中国电机工程学报,2004,24(1):49-53.
    [51]朱鹏程.用于UPFC的串、并联双变流器控制策略研究[D].武汉:华中科技大学,2005.
    [52]刘黎明.柔性交流输电系统中电力电子装置运行特性分析及实验研究[D].武汉:华中科技大学,2006.
    [53]朱鹏程,刘黎明,刘小元,等.统一潮流控制器的分析与控制策略[J].电力系统自动化,2006,30(1):45-51.
    [54]Liu L, Zhu P, Kang Y, et al. Power-flow control performance analysis of a unified power-flow controller in a novel control scheme[J]. IEEE Transactions on Power Delivery,2007,22(3): 1613-1619.
    [55]刘黎明,康勇,陈坚,等.统一潮流控制器控制策略的研究与实现[J].中国电机工程学报,2006,26(10):114-119.
    [56]刘黎明,康勇,陈坚,等.UPFC的交叉耦合控制及潮流调节能力分析[J].中国电机工程学报,2007,27(10):42-48.
    [57]章勇高,康勇,刘黎明,等.统一潮流控制器并联变换器的改进型双环控制系统[J].中国电机工程学报,2007,27(4):40-46.
    [58]杜文娟,王海风,Jazaeri M,等.UPFC运行点变化对电力系统稳定和控制性能的影响[J].电力系统自动化,2005,29(20):40-45,62.
    [59]杜文娟,秦川,王海风,等.UPFC控制的交互影响分析——可控参数域计算方法[J].电力系统自动化,2008,32(7):19-24.
    [60]鞠儒生,陈宝贤,邱晓刚UPFC控制方法研究[J].中国电机工程学报,2003,23(6):60-65,70.
    [61]Dash P K, Morris S, Mishra S. Design of a nonlinear variable-gain fuzzy controller for FACTS devices[J]. IEEE Transactions on Control Systems Technology,2004,12(3):428-438.
    [62]孙海顺,马凡,刘黎明,等.一种UPFC模糊PI自整定控制[J].电工技术学报,2007,22(9):136-142,
    [63]Dash P K, Mishra S, Panda G. A radial basis function neural network controller for UPFC[J]. IEEE Transactions on Power Systems,2000,15(4):1293-1299.
    [64]Ray S, Venayagamoorthy G K. Wide-area signal-based optimal neurocontroller for a UPFC[J]. IEEE Transactions on Power Delivery,2008,23(3):1597-1605.
    [65]杜文娟,秦川,王海风,等.UPFC控制的协调设计——变参数开环解耦控制方法[J].电力系统自动化,2008,32(8):19-23.
    [66]李浩昱,吴建强.模糊神经网络在能量缓冲统一潮流控制器中应用的研究[J].中国电机工程学报,2003,23(10):83-88.
    [67]陈众,颜伟,徐国禹,等.统一潮流控制器的智能解耦与结构设计研究[J].电网技术,2004,28(2):23-27.
    [68]Al-Awami A T, Abdel-Magid Y L, Abido M A. A particle-swarm-based approach of power system stability enhancement with unified power flow controller[J]. International Journal of Electrical Power and Energy Systems,2007,29(3):251-259.
    [69]蔡松,段善旭,陈坚,等.阻抗跟踪对UPFC交叉解耦控制策略的改进[J].电力系统自动化,2006,30(13):38-42.
    [70]黄方能,黄成军,陈陈,等.统一潮流控制器的自适应校正稳定控制器设计[J].电网技术,2008,32(21):37-41.
    [71]Brockett R W. Nonlinear systems and differential geometry[J]. Proceedings of the IEEE,1976,64(1): 61-72.
    [72]Cheng D, Tam T J, Isidori A. Global external linearization of nonlinear systems via feedback[J]. IEEE Transactions on Automatic Control,1985,30(8):808-811.
    [73]程代展.非线性系统的几何理论[M].北京:科学出版社,1988.
    [74]Lu Q, Sun Y, Mei S. Nonlinear control systems and power system dynamics[M]. Norwell:Kluwer Academic Publishers,2001.
    [75]卢强,梅生伟,孙元章.电力系统非线性控制(第2版)[M].北京:清华大学出版社,2008.
    [76]Isidori A. Nonlinear control systems (3rd edition)[M]. London:Springer-Verlag,1995.
    [77]Khalil H K著,朱义胜,董辉,李作洲,等译.非线性系统(第3版)[M].北京:电子工业出版社,2005.
    [78]Sahoo N C, Panigrahi B K, Dash P K, et al. Application of a multivariable feedback linearization scheme for STATCOM control[J]. Electric Power Systems Research,2002,62(2):81-91.
    [79]Soto D, Pena R. Nonlinear control strategies for cascaded multilevel STATCOMs[J]. IEEE Transactions on Power Delivery,2004,19(4):1919-1927.
    [80]Song E, Lynch A F, Dinavahi V. Experimental validation of nonlinear control for a voltage source converter[J]. IEEE Transactions on Control Systems Technology,2009,17(5):1135-1144.
    [81]查晓明,张茂松,孙建军.链式D-STATCOM建模及其状态反馈精确线性化解耦控制[J].中国电机工程学报,2010,30(28):107-113.
    [82]乐江源,谢云祥,公伟勇,等.单相有源电力滤波器非线性统一控制策略[J].控制理论与应用,2011,28(5):652-658.
    [83]乐江源,谢云祥,洪庆祖,等.Boost变换器精确反馈线性化滑模变结构控制[J].中国电机工程学报,2011,31(30):16-23.
    [84]谢桦,梅生伟,徐政,等.统一潮流控制器的非线性控制和对电力系统稳定性的改善[J].电力系统自动化,2001,25(19):1-5.
    [85]Yuan Z, Song Q, Liu W, et al. A nonlinear controller for unified power flow controller[J]. Automation of Electric Power Systems,2005,29(19):36-39.
    [86]奚玲玲,艾芊,陈陈.UPFC新型非线性控制策略[J].电力自动化设备,2007,27(4):55-59.
    [87]Lu B, Ooi B T. Nonlinear control of voltage-source converter systems[J]. IEEE Transactions on Power Electronics,2007,22(4):1186-1195.
    [88]Ilango G S, Nagamani C, Sai A V S S R, et al. Control algorithms for control of real and reactive power flows and power oscillation damping using UPFC[J]. Electric Power Systems Research,2009, 79(4):595-605.
    [89]孙元章,焦晓红,申铁龙.电力系统非线性鲁棒控制[M].北京:清华大学出版社,2007.
    [90]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用(第2版)[M].北京:清华大学出版社,2008.
    [91]Seo J C, Moon S I, Park J K, et al. Design of a robust UPFC controller for enhancing the small signal stability in the multi-machine power systems[C]. Power Engineering Society Winter Meeting, Columbus, USA,2001.
    [92]Pal B C. Robust damping of interarea oscillations with unified power-flow controller[J]. IEE Proceedings-Generation, Transmission and Distribution,2002,149(6):733-738.
    [93]Chaudhuri B, Pal B C, Zolotas A C, et al. Mixed-sensitivity approach to Hm control of power system oscillations employing multiple FACTS devices[J]. IEEE Transactions on Power Systems,2003, 18(3):1149-1156.
    [94]Liu F, Mei S, Lu Q, et al. The nonlinear internal control of STATCOM:theory and application[J]. International Journal of Electrical Power and Energy Systems,2003,25(6):421-430.
    [95]张敏,刘京湘.一类参数不确定系统的鲁棒镇定[J].控制理论与应用,2004,21(5):830-834.
    [96]孙运全,孙玉坤,刘贤兴,等.H2/H∞保性能控制理论在静止无功发生器控制中的应用[J].控制理论与应用,2009,26(6):641-646.
    [97]Lu Q, Mei S, Hu W, et al. Decentralised nonlinear H∞, excitation control based on regulation linearisation[J]. IEE Proceedings-Generation, Transmission and Distribution,2000,147(4):245-251.
    [98]桂小阳,梅生伟,卢强.多机系统水轮机调速器鲁棒非线性协调控制[J].电力系统自动化,2006,30(3):29-33,88.
    [99]卢强,梅生伟,郑少明.大型同步发电机组NR-PSS白山电厂300MW机组现场试验[J].中国科学(E辑:技术科学),2007,37(7):975-978.
    [100]卢强,郑少明,梅生伟,等.大型同步发电机组NR-PSS及RTDS大扰动实验研究[J].中国科学(E辑:技术科学),2008,38(7):979-992.
    [101]Yong J, Zhou X Y. Stochastic controls:Hamiltonian systems and HJB equations[M]. New York: Springer-Verlag,1999.
    [102]Anderson D, Townehill J, Pletcher R. Computiaonal fluid mechanics and heat transfer[M]. New York:Hemisphere,1984.
    [103]Kushner H J, Dupois P. Numerical methods for stochastic control problems in continuous time[M]. New York:Springer-Verlag,2001.
    [104]Bratus A, Dimentberg M, Iourtchenko D, et al. Hybird solution method for dynamic programming equations for MDOF stochastic systems[J]. Dynamics and Control,2000,10(1):107-116.
    [105]Zhu W Q, Ying Z G, Soong T T. An optimal nonlinear feedback control strategy for randomly excited structural systems[J]. Nonlinear Dynamics,2001,24(1):31-51.
    [106]朱位秋.非线性随机动力学与控制——Hamilton理论体系框架[M].北京:科学出版社,2003.
    [107]Son K M, Park J K. On the robust LQG control of TCSC for damping power system oscillations[J]. IEEE Transactions on Power Systems,2000,15(4):1306-1312.
    [108]雷绍兰,颜伟,王官洁,等.统一潮流控制器的线性二次高斯控制/回路传输恢复技术设计[J].电网技术,2003,27(3):41-45.
    [109]Zolotas A C, Chaudhuri B, Jaimoukha I M, et al. A study on LQG/LTR control for damping inter-area oscillations in power systems[J]. IEEE Transactions on Control Systems Technology,2007, 15(1):151-160.
    [110]Hossain M J, Pota H R, Ugrinovskii V A, et al. Simultaneous STATCOM and pitch angle control for improved LVRT capability of fixed-speed wind turbines[J]. IEEE Transactions on Sustainable Energy,2010,1(3):142-151.
    [111]Mihalic R, Zunko P, Povh D. Improvement of transient stability using unified power flow controller[J]. IEEE Transactions on Power Delivery,1996,11(1):485-492.
    [112]Gholipour E, Saadate S. Improving of transient stability of power systems using UPFC[J]. IEEE Transactions on Power Delivery,2005,20(2):1677-1682.
    [113]Jiang S, Gole A M, Annakkage U D, et al. Damping performance analysis of IPFC and UPFC controllers using validated small-signal models[J]. IEEE Transactions on Power Delivery,2011, 26(1):446-454.
    [114]黄方能,黄成军,陈陈,等.基于转矩面积的UPFC稳定控制器优化设计[J].电力系统自动化,2008,32(7):25-29.
    [115]Wei X, Chow J H, Fardanesh B, et al. A dispatch strategy for a unified power-flow controller to maximize voltage-stability-limited power transfer[J]. IEEE Transactions on Power Delivery,2005, 20(3):2022-2029.
    [116]Jiang X, Chow J H, Edris A A, et al. Transfer path stability enhancement by voltage-sourced converter-based FACTS controllers[J]. IEEE Transactions on Power Delivery,2010,25(2): 1019-1025.
    [117]Wang H F. A unified model for the analysis of FACTS devices in damping power system oscillations —Part Ⅲ:unified power flow controlle[J]. IEEE Transactions on Power Delivery,2000,15(3): 978-983.
    [118]Son K M, Lasseter R H. A Newton-type current injection model of UPFC for studying low-frequency oscillations[J]. IEEE Transactions on Power Delivery,2004,19(2):694-701.
    [119]Farsangi M M, Song Y H, Lee K Y. Choice of FACTS device control inputs for damping interarea oscillations[J]. IEEE Transactions on Power Systems,2004,19(2):1135-1143.
    [120]Zarghami M, Crow M L, Sarangapani J, et al. A novel approach to interarea oscillation damping by unified power flow controllers utilizing ultracapacitors[J]. IEEE Transactions on Power Systems, 2010,25(1):404-412.
    [121]Huang Z, Ni Y, Shen C M, et al. Application of unified power flow controller in interconnected power systems——modeling, interface, control strategy, and case study[J]. IEEE Transactions on Power Systems,2000,15(2):817-824.
    [122]Billinton R, Fotuhi-Firuzabad M, Faried S O, et al. Impact of unified power flow controllers on power system reliability [J]. IEEE Transactions on Power Systems,2000,15(1):410-415.
    [123]Rajabi-Ghahnavieh A, Fotuhi-Firuzabad M, Shahidehpour M, et al. UPFC for enhancing power system reliability[J]. IEEE Transactions on Power Delivery,2010,25(4):2881-2890.
    [124]Gyugyi L, Sen K K, Schauder C D. The interline power flow controller concept:a new approach to power flow management in transmission systems[J]. IEEE Transactions on Power Delivery,1999, 14(3):1115-1123.
    [125]Fardanesh B, Shperling B, Uzunovic E, et al. Multi-converter FACTS devices:the generalized unified power flow controller (GUPFC)[C]. Power Engineering Society Summer Meeting, Seattle, USA,2000.
    [126]Mwinyiwiwa B, Lu B, Ooi B T. Multiterminal unified power flow controller[J]. IEEE Transactions on Power Electronics,2000,15(6):1088-1093.
    [127]Niaki S A N, Iravani R, Noroozian M. Power-flow model and steady-state analysis of the hybrid flow controller[J]. IEEE Transactions on Power Delivery,2008,23(4):2330-2338.
    [128]Ba A O, Peng T, Lefebvre S. Rotary power-flow controller for dynamic performance evaluation— Part I:RPFC modeling[J]. IEEE Transactions on Power Delivery,2009,24(3):1406-1416.
    [129]Ba A O, Peng T, Lefebvre S. Rotary power-flow controller for dynamic performance evaluation— Part II:RPFC application in a transmission corridor[J]. IEEE Transactions on Power Delivery,2009, 24(3):1417-1425.
    [130]Yuan Z, de Haan S W H, Ferreira J B. A FACTS device:distributed power-flow controller (DPFC)[J]. IEEE Transactions on Power Electronics,2010,25(10):2564-2572.
    [131]Monteiro J, Silva J F, Pinto S F. Matrix converter-based unified power-flow controllers:advanced direct power control method[J]. IEEE Transactions on Power Delivery,2011,26(1):420-430.
    [132]Takeshita M, Sugihara H. Effect of fault current limiting of UPFC for power flow control in loop transmission[C]. IEEE/PES Transmission and Distribution Conference and Exhibition, Yokohama, Japan,2002.
    [133]Hojo M, Fujimura Y, Ohnishi T, et al. An operating mode of voltage source inverter for fault current limitation[C]. Proceedings of the 41st International Universities Power Engineering Conference, Newcastle-upon-Tyne, UK,2006.
    [134]张磊.基于UPFC的非对称短路故障电流限制研究[D].昆明:昆明理工大学,2009.
    [135]Farmad M, Farhangi S, Afshamia S, et al. Modelling and simulation of voltage source converter-based interphase power controller as fault-current limiter and power flow controller[J]. IET Generation, Transmission and Distribution,2011,5(11):1132-1140.
    [136]刘豹,唐万生.现代控制理论(第3版)[M].北京:机械工业出版社,2006.
    [137]Rao P, Crow M L, Yang Z. STATCOM control for power system voltage control applications[J]. IEEE Transactions on Power Delivery,2000,15(4):1311-1317.
    [138]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002.
    [139]李登峰.微分对策及其应用[M].北京:国防工业出版社,2000.
    [140]Friedman A. Differential games[M]. Mineola:Dover Publications,2006.
    [141]Isaacs R. Differential games:a mathematical theory with applications to warfare and pursuit, control and optimization[M]. Mineola:Dover Publications,1999.
    [142]Jiang S, Annakkage U D, Gole A M. A platform for validation of FACTS models[J]. IEEE Transactions on Power Delivery,2006,21(1):484-491.
    [143]盛骤,谢式千,潘承毅.概率论与数理统计(第4版)[M].北京:高等教育出版社,2008.
    [144]Arnold L. Stochastic differential equations:theory and applications[M]. New York:John Wiley & Sons,1974.
    [145]Kloeden P E, Platen E. Numerical solution of stochastic differential equations[M]. Berlin: Springer-Verlag,1999.
    [146]Protter P E. Stochastic integration and differential equations (2nd edition)[M]. Berlin: Springer-Verlag,2005.
    [147]Oksendal B. Stochastic differential equations:an introduction with applications (6th edition)[M]. Berlin:Springer-Verlag,2010.
    [148]Astrom K J. Introduction to stochastic control theory[M]. New York:Academic Press,1970.
    [149]Astrom K J著,潘裕焕译.随机控制理论导论[M].北京:科学出版社,1983.
    [150]Sun J-Q. Stochastic dynamics and control[M]. Amsterdam:Elsevier,2006.
    [151]Wu Z, Chen P, Tan L, et al. Short circuit current limiter in AC network[J]. Journal of Zhejiang University (Science),2001,2(1):41-45.
    [152]谭凌云,吴兆麟.桥式固态短路限流器在电网中的应用研究[J].电力系统自动化,2000,24(18):4144.
    [153]费万民,吕征宇,吴兆麟,等.三相接地系统短路故障限流器及其控制策略[J].电力系统自动化,2002,26(8):33-37.
    [154]费万民,吕征宇,谭凌云,等.三相不接地系统短路故障限流器的研究[J].电力系统自动化,2002,26(16):48-51.
    [155]蔡永华.固态限流器的研制[D].杭州:浙江大学,2004.
    [156]蔡永华,江道灼,吴兆麟.新型固态限流器控制系统的研制[J].电力系统自动化,2004,28(7):62-66.
    [157]蔡永华,江道灼,吴兆麟.三相桥式固态限流器数学模型及其仿真研究[J].电力系统及其自动化学报,2004,16(5):56-61.
    [158]陈刚.新型固态限流器及其对电力系统影响研究[D].杭州:浙江大学,2005.
    [159]赵中原,吕征宇,江道灼.新型固态限流器三相主电路拓扑及控制策略研[J].中国电机工程学报,2005,25(12):42-46.
    [160]江道灼,王威,李电.双向潮流固态限流器的控制策略与试验[J].电力系统自动化,2006,30(9):69-75.
    [161]江道灼,陈永刚,李电,等.变压器耦合固态限流器的纯电容负载试验[J].电力系统自动化,2006,30(17):65-69,93.
    [162]江道灼,陈永刚.固态限流器对双端电源系统正常运行的影响[J].电力系统自动化,2006,30(23):38-42,52.
    [163]王兆安,刘进军.电力电子技术(第5版)[M].北京:机械工业出版社,2009.
    [164]Bian J, Ramey D G, Nelson R J, et al. A study of equipment sizes and constraints for a unified power flow controller[J]. IEEE Transactions on Power Delivery,1997,12(3):1385-1391.
    [165]Schauder C D, Gyugyi L, Lund M R, et al. Operation of the unified power flow controller (UPFC) under practical constraints[J]. IEEE Transactions on Power Delivery,1998,13(2):630-639.
    [166]Liu J-Y, Song Y-H, Mehta P A. Strategies for handling UPFC constraints in steady-state power flow and voltage control[J]. IEEE Transactions on Power Systems,2000,15(2):566-571.
    [167]Bebic J Z, Lehn P W, Iravani M R. P-6 characteristics for the unified power flow controller—analysis inclusive of equipment ratings and line limits[J]. IEEE Transactions on Power Delivery,2003,18(3):1066-1072.
    [168]唐爱红,朱鹏程,程时杰,等.UPFC装置参数设计研究[J].高电压技术,2005,31(6):63-65,72.
    [169]唐爱红,朱鹏程,程时杰,等.统一潮流调节器实验装置的研究[J].电工技术学报,2006,21(6):122-126.
    [170]范承志,孙盾,童梅.电路原理(第2版)[M].北京:机械工业出版社,2004.
    [171]Christie R. Power systems test case archive[R/OL].1993-05. http://www.ee.washington.edu/ research/pstca/pf118/pg_tca118bus.htm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700