用户名: 密码: 验证码:
铋酸钠基钙钛矿型功能材料的可见光催化/直接氧化降解典型有机水相染料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可溶性有机染料的广泛生产和使用不可避免的导致了水体环境中的染料污染,对人类和生态健康产生潜在威胁。面对不断涌现的环境问题,当务之急是采取有效措施消除降解有机染料废水中的污染物。传统的降解技术处理有机水相染料污染效率较低,因此开发高效的处理技术正迅速成为一大研究热点。本论文建立了铋酸钠可见光光催化,铋银氧化物直接氧化与可见光催化/直接氧化联用降解水体有机染料等方法。这些基于铋酸钠型功能材料的降解方法成本低、简单易行,同时实现了对典型有机水相染料的高效、深度降解。
     以罗丹明B作为模式染料研究铋酸钠的可见光催化活性以及罗丹明B的降解行为。1g/L铋酸钠在可见光照射下30分钟内将20mg/L罗丹明B溶液完全脱色,假一级反应速率常数为0.124min-1。染料溶液紫外可见吸收光谱在降解过程中有一定蓝移,最大吸收峰波长从554nm降至534nm。铋酸钠加热温度显著影响其光催化反应活性,未加热的铋酸钠样品活性最高。重复5次降解罗丹明B溶液结果显示铋酸钠有较高的光催化稳定性。检测出罗丹明B所有脱乙基产物与多种小分子产物。其中两种脱乙基同分异构体产物生成量区别很大,推测原因为降解过程中罗丹明B分子两侧电子密度不同所致。在铋酸钠可见光催化降解过程中罗丹明B主要有两种竞争性反应路径:破坏生色团与脱乙基过程。
     利用二水铋酸钠与硝酸银采用水相共沉淀方法首次合成铋银氧化物(BSO),并基于BSO提出了快速直接氧化降解罗丹明B染料的方法。结果显示,在仅需混合BSO与罗丹明B溶液的条件下,20mg/L罗丹明B降解假一级反应速率常数k=0.5594min-1,同时形成多种小分子分解产物。该反应在常温常压下进行,无需任何外加能源。BSO能够被多次重复利用降解罗丹明B溶液而没有显著失活。当铋酸钠与硝酸银重量比为2/1的时候,合成的BSO活性最好。BSO表征结果显示在罗丹明B降解反应过程中银元素被还原为零价银;初始二水铋酸钠的主体钙钛矿结构变为Bi2O2CO3结构;晶格氧含量减少,活性/吸附氧含量增加。反应过程中有单重态氧生成,其作为主要活性物质直接导致了染料分子的降解。
     开发了基于BSO直接氧化与基于铋酸钠可见光催化的联用方法,大幅提高了有机染料的降解效果。以结晶紫染料为目标化合物研究发现,在铋酸钠光催化降解过程中,染料溶液最大吸收波长由584nm蓝移至576nm;而在BSO直接氧化过程中,最大吸收波长由584nm红移至592nm。由于产生的自由基种类不同,结晶紫的降解路径差异很大。脱甲基过程在光催化反应中显著发生而在直接氧化反应中并不显著。另外,基于相同铋酸钠量的直接氧化对结晶紫溶液脱色效率比可见光催化效率高,并且染料浓度越大降解效率差别越大。通过对比联用的和单一使用的直接氧化与可见光催化方法降解效果发现,应用联用方法130mg/L结晶紫溶液在30分钟内矿化率达到37%,相同使用量的BSO或铋酸钠在相同时间内直接氧化或光催化降解相同浓度的结晶紫溶液,矿化率只有18%和15%。应用联用方法降解多种不同浓度不同类型染料都达到了更高的矿化率。在联用过程中,开始的直接氧化过程主要起快速脱色作用,使后续的可见光催化过程效率得到实质性提高,从而最终达到染料溶液矿化率提高100%的效果。该新型联用方法效率高,成本低特别适用于高浓度染料溶液的深度矿化。
     此外,开发出铜掺杂铋酸钠(CSB)材料,并基于该材料发展了一种快速简单的染料降解方法。应用此方法降解孔雀石绿染料溶液发现,在0.2g二水铋酸钠合成的CSB作用下,15分钟内30mg/L孔雀石绿溶液脱色率达到95%,并生成多种小分子降解产物。当铋酸钠与硝酸铜两者重量比相同时,合成的CSB活性最好。该方法在常温常压下应用,无需任何外加能源。对CSB的表征研究结果表明铜元素主要分布于材料表面。该材料作用方式与BSO作用方式相似,可以进一步发展为更低成本的替代性材料。
The production and widespread use of soluble organic dyes inevitably results in their unintended release into the aqueous environment where they pose potential threats to human and ecological health. With the growing awareness and environmental concerns, it is imperative that the hierarchy of reduction and degradation be adopted and measures be taken to remove pollutants from the organic dye wastewater. The traditional treatment techniques prove to be ineffective in removing these pollutions. The desire to develop efficient water treatment techniques is quickly becoming a major focus in the environmental research community. This work presented novel, affordable and easy-operated organic dye wastewater control technologies based on sodium bismuthate-type functional material, viz. NaBiO3initiated visible light photocatalytic (PC) technique, silver bismuth oxide (BSO) initiated direct oxidation (DO) technique and combined DO/PC technique.
     For PC process, the photocatalytic degradation of Rhodamine B (RhB) over NaBiO3under visible light irradiation was investigated.20mg/L of RhB solution was completely decolorized in30min with1g/L of NaBiO3·2H2O at the pseudo first-order reaction constant k=0.124min-1. The dye solution absorption maximum shifted from554to534nm during the degradation reaction. NaBiO3heating temperature significantly influenced its photocatalytic activity. The original sample exhibited higher activity than the heated samples did. The stability of NaBiO3was evaluated by repeated degradation of RhB solution for five times. All N-deethylation intermediates and several small molecular products were separated and identified. The yield distinctness between two isomer intermediates was correlated with the changes in the electron density of the dye molecule. Then two possible competitive photodegradation pathways of RhB over NaBiO3were proposed:Chromophore cleavage and N-deethylation.
     For DO process, the oxidative powder BSO was firstly prepared by simple coprecipitation of NaBiO3·2H2O and AgN03. The technique was evaluated for the decolorization and oxidative decomposition of RhB. The results demonstrated that mixing BSO with an aqueous solution of RhB (20mg/L) resulted in rapid decolorization (pseudo-first-order kinetic constant k=0.5594min-1) and formation of several small molecular weight products. The optimal starting weight for NaBiO3·2H2O to AgNO3is2to1for synthesizing the BSO. The reaction proceeded at ambient temperature and pressure, and required no external energy sources or light. An advantage of the technique is that BSO can be used to degrade sequential additions of dye without significant fouling or loss of activity. The characterization of BSO and its corrosion products revealed that Ag species were reduced to metallic silver and NaBiO3·2H2O was transformed into the Bi2O2CO3during the reaction process. Singlet oxygen (1O2) was identified as the major reactive species generated by BSO for the degradation of RhB.
     For combined DO and PC process, extensive and much enhanced organic dye degradation was achieved. In single PC treatment process, the Crystal Violet (CV) dye solution absorption maximum blue-shifted from584to576nm; whereas in single DO treatment process, it red-shifted from584to592nm. CV dye decomposition by each reagent proceeded via two distinct pathways, each involving different active oxygen species. N-demethylation of CV significantly occurred in PC but not in DO process. Same amount of NaBiO3·2H2O based DO process exhibited a superior performance to PC process with respect to the CV decolorization, particularly when high concentration dye solution was treated. A comparison of each treatment method alone and in combination demonstrated that using the combined sequential methods37%of TOC removal was achieved in30min for130mg/L of CV solution whereas only18%and15%was obtained using DO and PC alone, respectively. The combined method also manifested significantly improved mineralization of several diverse groups of dyes. In the combined process DO acts as a pre-treatment to rapidly bleach the dye solution which substantially facilitates subsequent PC processes. The integrated sequential DO and PC are complementary manifesting a>100%increase in TOC removal, compared to either isolated method. The combined process is proposed as a novel and effective technology (especially with respect of TOC removal) for treating wastewaters contaminated by high concentrations of organic dyes.
     In addition, as an extension of the study, copper doped sodium bismuthate (CSB) was firstly synthesized through aqueous ion exchange reaction and a simple and efficient method based on it for degrading organic dye is proposed. The Malachite Green dye degradation experiments demonstrated that mixing0.2g NaBiO3·2H2O based CSB in the dye solution (30mg/L) for15min resulted in95%of decolorization and formation of several small molecular weight products. The sodium bismuthate starting weight equivalent to that of copper nitrate is optimal to synthesize CSB. The reaction proceeded at ambient temperature and pressure, and required no external energy sources or light. The characterization suggested copper species were distributed through the external surface of CSB. CSB performed in a similar functional mode as BSO did and it could be further developed as an optional material for BSO at lower cost.
引文
1. Perkin, W. H., LXXIV.-On mauveine and allied colouring matters. Journal of the Chemical Society, Transactions 1879,35,717-732.
    2. Singh, K.; Arora, S., Removal of synthetic textile dyes from wastewaters:a critical review on present treatment technologies. Critical Reviews in Environmental Science and Technology 2011, 41,(9),807-878.
    3. Guivarch, E.; Oruran, N.; Oturan, M., Removal of organophosphorus pesticides from water by electrogenerated Fenton's reagent. Environmental Chemistry Letters 2003,1, (3),165-168.(3)
    4. Bergmann, H.; Iourtchouk, T.; Schops, K.; Bouzek, K., New UV irradiation and direct electrolysis-promising methods for water disinfection. Chemical Engineering Journal 2002,85, (2-3),111-117.
    5. Walker, G. M.; Weatherley, L. R., Textile wastewater treatment using granular activated carbon adsorption in fixed beds. Separation Science and Technology 2000,35, (9),1329-1341.
    6. Ammar, S.; Abdelhedi, R.; Flox, C.; Arias, C.; Brillas, E., Electrochemical degradation of the dye indigo carmine at boron-doped diamond anode for wastewaters remediation. Environmental Chemistry Letters 2006,4, (4),229-233.
    7. Raghu, S.; Ahmed Basha, C., Chemical or electrochemical techniques, followed by ion exchange, for recycle of textile dye wastewater. Journal of Hazardous Materials 2007,149, (2), 324-330.
    8. Awad, H. S.; Galwa, N. A., Electrochemical degradation of Acid Blue and Basic Brown dyes on Pb/PbO2 electrode in the presence of different conductive electrolyte and effect of various operating factors. Chemosphere 2005,61, (9),1327-1335.
    9. Bandara, J.; Wansapura, P. T.; Jayathilaka, S. P. B., Indium tin oxide coated conducting glass electrode for electrochemical destruction of textile colorants. Electrochimica Acta 2007,52, (12), 4161-4166.
    10. Bayramoglu, M; Kobya, M.; Can, O. T.; Sozbir, M., Operating cost analysis of electrocoagulation of textile dye wastewater. Separation and Purification Technology 2004,37, (2), 117-125.
    11. Bergmann, M. E. H.; Rollin, J., Product and by-product formation in laboratory studies on disinfection electrolysis of water using boron-doped diamond anodes. Catalysis Today 2007,124, (3-4),198-203.
    12. Brillas, E.; Bastida, R. M.; Llosa, E.; Casado, J., Electrochemical destruction of aniline and 4-chloroaniline for waste-water treatment using a carbon-PTFE O-2-fed cathode Journal of the Electrochemical Society 1995,142, (6),1733-1741.
    13. Brillas, E.; Calpe, J. C.; Casado, J., Mineralization of 2,4-D by advanced electrochemical oxidation processes. Water Research 2000,34, (8),2253-2262.
    14. Canizares, P.; Louhichi, B.; Gadri, A.; Nasr, B.; Paz, R.; Rodrigo, M. A.; Saez, C., Electrochemical treatment of the pollutants generated in an ink-manufacturing process. Journal of Hazardous Materials 2007,146, (3),552-557.
    15. Canizares, P.; Martinez, F.; Jimenez, C.; Lobato, J.; Rodrigo, M. A., Coagulation and electrocoagulation of wastes polluted with dyes. Environmental Science & Technology 2006,40, (20),6418-6424.
    16. Canizares, P.; Jimenez, C.; Martinez, F.; Saez, C.; Rodrigo, M. A., Study of the electrocoagulation process using aluminum and iron electrodes. Industrial & Engineering Chemistry Research 2007,46, (19),6189-6195.
    17. Carneiro, P. A.; Boralle, N.; Stradiotto, N. R.; Furlan, M.; Zanoni, M. V. B., Decolourization of anthraquinone reactive dye by electrochemical reduction on reticulated glassy carbon electrode. Journal of the Brazilian Chemical Society 2004,15, (4),587-594.
    18. Carneiro, P. A.; Osugi, M. E.; Sene, J. J.; Anderson, M. A.; Zanoni, M. V. B., Evaluation of color removal and degradation of a reactive textile azo dye on nanoporous TiO2 thin-film electrodes. Electrochimica Acta 2004,49, (22-23),3807-3820.
    19. Carneiro, P. A.; Osugi, M. E.; Fugivara, C. S.; Boralle, N.; Furlan, M.; Zanoni, M. V. B., Evaluation of different electrochemical methods on the oxidation and degradation of Reactive Blue 4 in aqueous solution. Chemosphere 2005,59, (3),431-439.
    20. Anderson, M. W.; Angermanstewart, J.; Patterson, R.; Maronpot, R. R.; Reynolds, S. H., Ras gene activation in rat-tumors induced by various benzidine derived dyes. Proceedings of the American Association for Cancer Research 1987,28,149-149.
    21. Babu, S. R.; Lakshmi, V. M.; Hsu, F. F.; Zenser, T. V.; Davis, B. B., Role of N-glucuronidation in benzidene-cancer in dog. Carcinogenesis 1992,13, (7),1235-1240.
    22. Morgan, D. L.; Dunnick, J. K.; Goehl, T.; Jokinen, M. P.; Matthews, H. B.; Zeiger, E.; Mennear, J. H., Summary of the national toxicology program benzine dye initiative. Environmental Health Perspectives 1994,102,63-78.
    23. Can, O. T.; Bayramoglu, M.; Kobya, M., Decolorization of reactive dye solutions by electrocoagulation using aluminum electrodes. Industrial & Engineering Chemistry Research 2003,42, (14),3391-3396.
    24. Canizares, P.; Gadri, A.; Lobato, J.; Nasr, B.; Paz, R.; Rodrigo, M. A.; Saez, C., Electrochemical oxidation of azoic dyes with conductive-diamond anodes. Industrial & Engineering Chemistry Research 2006,45, (10),3468-3473.
    25. Canizares, P.; Martinez, F.; Lobato, J.; Rodrigo, M. A., Electrochemically assisted coagulation of wastes polluted with Eriochrome Black T. Industrial & Engineering Chemistry Research 2006,45, (10),3474-3480.
    26. Butron, E.; Juarez, M. E.; Solis, M.; Teutli, M.; Gonzalez, I.; Nava, J. L., Electrochemical incineration of indigo textile dye in filter-press-type FM01-LC electrochemical cell using BDD electrodes. Electrochimica Acta 2007,52, (24),6888-6894.
    27. Cameselle, C.; Pazos, M.; Sanroman, M. A., Selection of an electrolyte to enhance the electrochemical decolourisation of indigo. Optimisation and scale-up. Chemosphere 2005,60, (8), 1080-1086.
    28. Espantaleon, A. G.; Nieto, J. A.; Fernandez, M.; Marsal, A., Use of activated clays in the removal of dyes and surfactants from tannery waste waters. Applied Clay Science 2003,24, (1-2), 105-110.
    29. Wang, S. B.; Boyjoo, Y.; Choueib, A.; Zhu, Z. H., Removal of dyes from aqueous solution using fly ash and red mud. Water Research 2005,39, (1),129-138.
    30. Crini, G., Non-conventional low-cost adsorbents for dye removal:A review. Bioresource Technology 2006,97, (9),1061-1085.
    31. Anjaneyulu, Y.; Chary, N. S.; Raj, D. S. S., Decolourization of industrial effluents-available methods and emerging technologies-a review. Reviews in Environmental Science and Bio/Technology 2005,4, (4),245-273.
    32. Kumar, M., A review of chitin and chitosan applications. Reactive & Functional Polymers 2000,46,(1),1-27.
    33. Kumar, U., Agricultural products and by-products as a low cost adsorbent for heavy metal removal from water and wastewater:A review. Scientific Research and Essays 2006,1, (2),33-37.
    34. Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P., Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology 2001,77, (3),247-255.
    35. Banat, I. M.; Nigam, P.; Singh, D.; Marchant, R., Microbial decolorization of textile-dye-containing effluents:A review. Bioresource Technology 1996,58, (3),217-227.
    36. Adedayo, O.; Javadpour, S.; Taylor, C.; Anderson, W. A.; Moo-Young, M., Decolourization and detoxification of methyl red by aerobic bacteria from a wastewater treatment plant. World Journal of Microbiology & Biotechnology 2004,20, (6),545-550.
    37. Cripps, C.; Bumpus, J. A.; Aust, S. D., Biodegradation of azo and heterocyclic dyes by phanerochaete-chrysosporium. Applied and Environmental Microbiology 1990,56, (4), 1114-1118.
    38. Stolz, A., Basic and applied aspects in the microbial degradation of azo dyes. Applied Microbiology and Biotechnology 2001,56, (1-2),69-80.
    39. Delee, W.; O'Neill, C.; Hawkes, F. R.; Pinheiro, H. M., Anaerobic treatment of textile effluents:A review. Journal of Chemical Technology and Biotechnology 1998,73, (4),323-335.
    40. Quezada, M.; Linares, I.; Buitron, G., Use of a sequencing batch biofilter for degradation of azo dyes (acids and bases). Water Science and Technology 2000,42, (5-6),329-336.
    41. Yoshida, H.; Takemori, T., Adsorption of direct dye on cross-linked chitosan fiber: Breakthrough curve. Water Science and Technology 1997,35, (7),29-37.
    42. van der Zee, F. P.; Lettinga, G.; Field, J. A., Azo dye decolourisation by anaerobic granular sludge. Chemosphere 2001,44, (5),1169-1176.
    43. Pearce, C. I.; Christie, R.; Boothman, C.; von Canstein, H.; Guthrie, J. T.; Lloyd, J. R., Reactive azo dye reduction by Shewanella strain j18 143. Biotechnology and Bioengineering 2006, 95,(4),692-703.
    44. Fu, Y. Z.; Viraraghavan, T., Fungal decolorization of dye wastewaters:a review. Bioresource Technology 2001,79, (3),251-262.
    45. Uygur, A., An overview of oxidative and photooxidative decolorisation treatments of textile waste waters. Journal of the Society of Dyers and Colourists 1997,113, (7-8),211-217.
    46. Xu, X. R.; Li, H. B.; Wang, W. H.; Gu, J. D., Degradation of dyes in aqueous solutions by the Fenton process. Chemosphere 2004,57, (7),595-600.
    47. Rajkumar, D.; Song, B. J.; Kim, J. G., Electrochemical degradation of Reactive Blue 19 in chloride medium for the treatment of textile dyeing wastewater with identification of intermediate compounds. Dyes and Pigments 2007,72, (1),1-7.
    48. Rajkumar, D.; Kim, J. G., Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment. Journal of Hazardous Materials 2006,136, (2),203-212.
    49. Khraisheh, M. A. M., Effect of key process parameters in the decolorisation of reactive dyes by ozone. Coloration Technology 2003,119, (1),24-30.
    50. Gul, S.; Ozcan, O.; Erbatur, O., Ozonation of CI Reactive Red 194 and CI Reactive Yellow 145 in aqueous solution in the presence of granular activated carbon. Dyes and Pigments 2007,75, (2),426-431.
    51. Alaton, I. A.; Balcioglu, I. A.; Bahnemann, D. W., Advanced oxidation of a reactive dyebath effluent:comparison of O3, H2O2/UV-C and TiO2/UV-A processes. Water Research 2002,36, (5), 1143-1154.
    52. Churchley, J. H., Removal of dyewaste color from sewage effluent-the use of a full-scale ozone plant. Water Science and Technology 1994,30, (3),275-284.
    53. Shu, H. Y.; Huang, C. R., Degradation of commercial azo dyes in water using ozonation and UV enhanced ozonation process. Chemosphere 1995,31, (8),3813-3825.
    54. Dos Santos, A. B.; Cervantes, F. J.; van Lier, J. B., Review paper on current technologies for decolourisation of textile wastewaters:Perspectives for anaerobic biotechnology. Bioresource Technology 2007,98, (12),2369-2385.
    55. Forgacs, E.; Cserhati, T.; Oros, G., Removal of synthetic dyes from wastewaters:a review. Environment International 2004,30, (7),953-971.
    56. Konstantinou, I. K.; Albanis, T. A., TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution:kinetic and mechanistic investigations-A review. Applied Catalysis B-Environmental 2004,49, (1),1-14.
    57. Villanueva, S. F.; Martinez, S. S., TiO2-assisted degradation of acid orange 7 textile dye under solar light. Solar Energy Materials and Solar Cells 2007,91, (15-16),1492-1495.
    58. Saquib, M.; Abu Tariq, M.; Faisal, M.; Muneer, M., Photocatalytic degradation of two selected dye derivatives in aqueous suspensions of titanium dioxide. Desalination 2008,219, (1-3), 301-311.
    59. Dong, Y. C.; Chen, J. L.; Li, C. H.; Zhu, H. X., Decoloration of three azo dyes in water by photocatalysis of Fe(III)-oxalate complexes/H2O2 in the presence of inorganic salts. Dyes and Pigments 2007,73, (2),261-268.
    60. Mrowetz, M.; Pirola, C.; Selli, E., Degradation of organic water pollutants through sonophotocatalysis in the presence of TiO2. Ultrasonics Sonochemistry 2003,10, (4-5),247-254.
    61. Li, L. S.; Zhu, W. P.; Zhang, P. Y.; Chen, Z. Y.; Han, W. Y, Photocatalytic oxidation and ozonation of catechol over carbon-black-modified nano-TiO2 thin films supported on Al sheet. Water Research 2003,37, (15),3646-3651.
    62. Wu, C. H.; Kuo, C. Y.; Chang, C. L., Decolorization of CI Reactive Red 2 by catalytic ozonation processes. Journal of Hazardous Materials 2008,153, (3),1052-1058.
    63. Zou, L. D.; Zhu, B., The synergistic effect of ozonation and photocatalysis on color removal from reused water. Journal of Photochemistry and Photobiology a-Chemistry 2008,196, (1), 24-32.
    64. Mozia, S.; Morawski, A. W.; Toyoda, M.; Tsumura, T., Integration of photocatalysis and membrane distillation for removal of mono- and poly-azo dyes from water. Desalination 2010, 250, (2),666-672.
    65. Grzechulska-Damszel, J.; Tomaszewska, M.; Morawski, A. W., Integration of photocatalysis with membrane processes for purification of water contaminated with organic dyes. Desalination 2009,241,(1-3),118-126.
    66. Gonzalez, A. S.; Martinez, S. S., Study of the sonophotocatalytic degradation of basic blue 9 industrial textile dye over slurry titanium dioxide and influencing factors. Ultrasonics Sonochemistry 2008,15, (6),1038-1042.
    67. Beiarano-Perez, N. J.; Suarez-Herrera, M. F., Sonophotocatalytic degradation of congo red and methyl orange in the presence of TiO2 as a catalyst. Ultrasonics Sonochemistry 2007,14, (5), 589-595.
    68. Zhang, H. M.; Quan, X.; Chen, S.; Zhao, H. M.; Zhao, Y. Z., Fabrication of photocatalytic membrane and evaluation its efficiency in removal of organic pollutants from water. Separation and Purification Technology 2006,50, (2),147-155.
    69. Wu, J.; Lynn, J. W.; Glinka, C. J.; Burley, J.; Zheng, H.; Mitchell, J. F.; Leighton, C., Intergranular giant magnetoresistance in a spontaneously phase separated perovskite oxide. Physical Review Letters 2005,94, (3).
    70. Glazer, A. M.; Megaw, H. D., Studies of the lattice parameters and domains in the phase transitions of NaNbO3. Acta Crystallographica Section A 1973,29, (5),489-495.
    71. Okazaki, H.; Lipkin, L. E.; Aronson, S. M., Diffuse intracytoplasmic ganglionic inclusions (Lewy type) associated with progressive dementia and quadriparesis in flexion. Journal of neuropathology and experimental neurology 1961,20,237-44.
    72. Jona, F.; Shirane, G.; Mazzi, F.; Pepinsky, R., X-Ray and Neutron Diffraction Study of Antiferroelectric Lead Zirconate, PbZrO3. Physical Review 1957,105, (3),849-856.
    73. Woodward, P., Octahedral Tilting in Perovskites.Ⅰ. Geometrical Considerations. Acta Crystallographica Section B 1997,53, (1),32-43.
    74. Glazer, A., The classification of tilted octahedra in perovskites. Acta Crystallographica Section B 1972,28, (11),3384-3392.
    75. Goldschmidt, V. M., Die Gesetze der Krystallochemie. Naturwissenschaften 1926,14, (21), 477-485.
    76. Randall, C. A.; Bhalla, A. S.; Shrout, T. R.; Cross, L. E., Classification and consquences of complex lead perovskite ferroelectrics with regard to B-site cation order. Journal of Materials Research 1990,5, (4),829-834.
    77. Stolen, S.; Grande, T., Surfaces, Interfaces and Adsorption. In Chemical Thermodynamics of Materials, John Wiley & Sons, Ltd:2004; pp 157-195.
    78. Berastegui, P.; Hull, S.; Garcia-Garcia, F. J.; Eriksson, S. G., The crystal structures, microstructure and ionic conductivity of Ba2In2O5 and Ba(InxZr1-x)O3-x/2. Journal of Solid State Chemistry 2002,164,(1),119-130.
    79. Hansteen, O. H.; Fjellvag, H.; Hauback, B. C., Crystal structure, thermal and magnetic properties of La3Co3O8. Phase relations for LaCoO3-6 (0.00≤6≤0.50) at 673 K. Journal of Materials Chemistry 1998,8, (9),2081-2088.
    80. Gonzalezcalbet, J. M.; Sayagues, M. J.; Valletregi, M., An electron-diffraction study of new phases in the LaNiO3-x System. Solid State Ionics 1989,32-3,721-726.
    81. Hodges, J. P.; Short, S.; Jorgensen, J. D.; Xiong, X.; Dabrowski, B.; Mini, S. M.; Kimball, C. W., Evolution of oxygen-vacancy ordered crystal structures in the perovskite series SrnFenO3n-1 (n=2,4,8, and infinity), and the relationship to electronic and magnetic properties. Journal of Solid State Chemistry 2000,151, (2),190-209.
    82. Burstein, G. T.; Wright, G. A., Bismuth (V) aqueous fluoride solution. Nature 1969,221, (5176),169-170.
    83. Norymberski, J. K., Determination of urinary corticosteroids. Nature 1952,170, (4338), 1074-1075.
    84. Hewgill, F. R.; Kennedy, B. R.; Kilpin, D.,523. Oxidation of alkoxyphenols Part Ⅱ. Reactions of 4-Methoxy-2- and -3-t-butylphenols with various oxidising agents. Journal of the Chemical Society (Resumed) 1965,2904-2914.
    85. Adderley, C. J. R.; Hewgill, F. R., Oxidation of alkoxyphenols. Part ⅩⅦ. Competitive oxidative demethylation and debromination. Journal of the Chemical Society C:Organic 1968, 2770-2774.
    86. Muathen, H. A., Oxidative Halogenation of Aromatic Compounds with Metal Halides and Sodium Bismuthate. Helvetica Chimica Acta 2003,86, (1),164-168.
    87. Kako, T.; Zou, Z. G.; Katagiri, M.; Ye, J. H., Decomposition of organic compounds over NaBiO3 under visible light irradiation. Chemistry of Materials 2007,19, (2),198-202.
    88. Kou, J. H.; Zhang, H. T.; Li, Z. S.; Ouyang, S. X.; Ye, J. H.; Zou, Z. G., Photooxidation of polycyclic aromatic hydrocarbons over NaBiO3 under visible light irradiation. Catalysis Letters 2008,122, (1-2),131-137.
    89. Chang, X.; Ji, G.; Sui, Q.; Huang, J.; Yu, G., Rapid photocatalytic degradation of PCP-Na over NaBiO3 driven by visible light irradiation. Journal of Hazardous Materials 2009,166, (2-3), 728-733.
    90. Feng, P.; Chen, C. L.; Hao, Y.; Wang, H. J.; Jian, Y, Preparation of NaxBayBiO3center dot nH2O and their photooxidation characteristic under visible-light irradiation. Materials Chemistry and Physics 2009,116, (1),294-299.
    91. Chang, X.; Huang, J.; Cheng, C.; Sha, W.; Li, X.; Ji, G.; Deng, S.; Yu, G., Photocatalytic decomposition of 4-t-octylphenol over NaBiO3 driven by visible light:Catalytic kinetics and corrosion products characterization. Journal of Hazardous Materials 2010,173, (1-3),765-772.
    1. Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C., First-principles simulation:ideas, illustrations and the CASTEP code. Journal of Physics-Condensed Matter 2002,14, (11),2717-2744.
    2. Gratzel, M., Photoelectrochemical cells. Nature 2001,414, (6861),338-344.
    3. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y., Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001,293, (5528),269-271.
    4. Linsebigler, A. L.; Lu, G. Q.; Yates, J. T., Photocatalysis on TiO2 surfaces-principles, mechanisms, and selected results. Chemical Reviews 1995,95, (3),735-758.
    5. Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W., Environmental applications of semiconductor photocatalysis. Chemical Reviews 1995,95, (1),69-96.
    6. Hagfeldt, A.; Gratzel, M., Light-induced redox reactions in nanocrystaline systems. Chemical Reviews 1995,95,(1),49-68.
    7. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphrybaker, R.; Muller, E.; Liska, P.; Vlachopoulos, N.; Gratzel, M., Conversion of light to electricity by Cis-X2 bis (2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium (II) charge-transfer sensitizers (X=CL-, BR-, I-, CN-, AND SCN-) on nanocrystalline TiO2 electrodes. Journal of the American Chemical Society 1993,115, (14),6382-6390.
    8. Oregan, B.; Gratzel, M., A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 1991,353, (6346),737-740.
    9. Li, J.-y.; Ma, W.-h.; Lei, P.-x.; Zhao, J.-c., Detection of intermediates in the TiO2-assisted photodegradation of Rhodamine B under visible light irradiation. Journal of Environmental Sciences 2007,19, (7),892-896.
    10. Chatterjee, D.; Dasgupta, S., Visible light induced photocatalytic degradation of organic pollutants. Journal of Photochemistry and Photobiology C:Photochemistry Reviews 2005,6, (2-3), 186-205.
    11. Zhao, D.; Chen, C.; Wang, Y.; Ma, W.; Zhao, J.; Rajh, T.; Zang, L., Enhanced photocatalytic degradation of dye pollutants under visible irradiation on Al(III)-modified TiO2:structure, interaction, and interfacial electron transfer. Environmental Science & Technology 2008,42, (1), 308-314.
    12. Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H., Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 2001,414, (6864),625-627.
    13. Kohtani, S.; Tomohiro, M.; Tokumura, K.; Nakagaki, R., Photooxidation reactions of polycyclic aromatic hydrocarbons over pure and Ag-loaded BiVO4 photocatalysts. Applied Catalysis B-Environmental 2005,58, (3-4),265-272.
    14. Fu, H. B.; Zhang, S. C.; Xu, T. G.; Zhu, Y. F.; Chen, J. M., Photocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products. Environmental Science & Technology 2008,42, (6),2085-2091.
    15. Kako, T.; Zou, Z. G.; Katagiri, M.; Ye, J. H., Decomposition of organic compounds over NaBiO3 under visible light irradiation. Chemistry of Materials 2007,19, (2),198-202.
    16. Kou, J. H.; Zhang, H. T.; Li, Z. S.; Ouyang, S. X.; Ye, J. H.; Zou, Z. G., Photooxidation of polycyclic aromatic hydrocarbons over NaBiO3 under visible light irradiation. Catalysis Letters 2008,122,(1-2),131-137.
    17. Parshetti, G.; Kalme, S.; Saratale, G.; Govindwar, S., Biodegradation of malachite green by Kocuria rosea MTCC 1532. Acta Chimica Slovenica 2006,53, (4),492-498.
    18. Mittal, A., Adsorption kinetics of removal of a toxic dye, Malachite Green, from wastewater by using hen feathers. Journal of Hazardous Materials 2006,133, (1-3),196-202.
    19. Indig, G. L.; Anderson, G. S.; Nichols, M. G.; Bartlett, J. A.; Mellon, W. S.; Sieber, F., Effect of molecular structure on the performance of triarylmethane dyes as therapeutic agents for photochemical purging of autologous bone marrow grafts from residual tumor cells. Journal of Pharmaceutical Sciences 2000,89, (1),88-99.
    20. Fessard, V.; Godard, T.; Huet, S.; Mourot, A.; Poul, J. M., Mutagenicity of malachite green and leucomalachite green in in vitro tests. Journal of Applied Toxicology 1999,19, (6),421-430.
    21. Azmi, W.; Sani, R. K.; Banerjee, U. C., Biodegradation of triphenylmethane dyes. Enzyme and Microbial Technology 1998,22, (3),185-191.
    22. Perez-Estrada, L. A.; Aguera, A.; Hernando, M. D.; Malato, S.; Fernandez-Alba, A. R., Photo degradation of malachite green under natural sunlight irradiation:Kinetic and toxicity of the transformation products. Chemosphere 2008,70, (11),2068-2075.
    23. Jadhav, S. U.; Kalme, S. D.; Govindwar, S. P., Biodegradation of Methyl red by Galactomyces geotrichum MTCC 1360. International Biodeterioration & Biodegradation 2008, 62, (2),135-142.
    24. Papinutti, V. L.; Forchiassin, F., Modification of malachite green by Fomes sclerodermeus and reduction of toxicity to Phanerochaete chrysosporium. Fems Microbiology Letters 2004,231, (2),205-209.
    25. Sarnaik, S.; Kanekar, P., Bioremediation of color of methyl violet and phenol from a dye-industry waste effluent using pseudomonas spp isolated from factory soil. Journal of Applied Bacteriology 1995,79, (4),459-469.
    26. Ayed, L.; Chaieb, K.; Cheref, A.; Bakhrouf, A., Biodegradation of triphenylmethane dye Malachite Green by Sphingomonas paucimobilis. World Journal of Microbiology & Biotechnology 2009,25, (4),705-711.
    27. Waldau, L., Dye industry-harmful and harmless substances. Kemisk Tidskrift 1979,91, (3), 20-23.
    28. Shedbalkar, U.; Dhanve, R.; Jadhav, J., Biodegradation of triphenylmethane dye cotton blue by Penicillium ochrochloron MTCC 517. Journal of Hazardous Materials 2008,157, (2-3), 472-479.
    29. Sharma, M. K.; Sobti, R. C., Rec effect of certain textile dyes in Bacillus subtilis. Mutation Research-Genetic Toxicology and Environmental Mutagenesis 2000,465, (1-2),27-38.
    30. He, Z.; Sun, C.; Yang, S.; Ding, Y.; He, H.; Wang, Z., Photocatalytic degradation of Rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation:Mechanism and pathway. Journal of Hazardous Materials 2009,162, (2-3),1477-1486.
    31. Liu, S.; Yu, J., Cooperative self-construction and enhanced optical absorption of nanoplates-assembled hierarchical Bi2WO6 flowers. Journal of Solid State Chemistry 2008,181, (5),1048-1055.
    32. Horikoshi, S.; Saitou, A.; Hidaka, H.; Serpone, N., Environmental remediation by an integrated microwave/UV illumination method. V. thermal and nonthermal effects of microwave radiation on the photocatalyst and on the photodegradation of rhodamine-B under UV/Vis radiation. Environmental Science & Technology 2003,37 (24),5813-5822.
    33. Wu, T.; Liu, G.; Zhao, J.; Hidaka, H.; Serpone, N., Photoassisted degradation of dye pollutants. V. self-photosensitized oxidative transformation of Rhodamine B under visible light irradiation in aqueous TiO2 dispersions. Environmental Science & Technology 1998,102, 5845-5851.
    34. Chen, C.; Zhao, W.; Li, J.; Zhao, J.; Hidaka, H.; Serpone, N., Formation and identification of intermediates in the visible-light-assisted photodegradation of Sulforhodamine-B Dye in aqueous TiO2 dispersion. Environmental Science & Technology 2002,36,3604-3611.
    35. Mizoguchi, H.; Woodward, P. M., Electronic structure studies of main group oxides possessing edge-sharing octahedra:implications for the design of transparent Conducting Oxides. Chemistry of Materials 2004,16,5233-5248.
    36. Yu, J.; Yu, X., Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. Environmental Science & Technology 2008,42,4902-4907.
    37. Zhang, C.; Zhu, Y., Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts. Environmental Science & Technology 2005,17,3537-3545.
    38. Mai, F. D.; Chen, C. C.; Chen, J. L.; Liu, S. C., Photodegradation of methyl green using visible irradiation in ZnO suspensions:Determination of the reaction pathway and identification of intermediates by a high-performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry method. Journal of Chromatography A 2008,1189, (1-2),355-365.
    39. Pan, J. Q.; Sun, Y. Z.; Wan, P. Y.; Wang, Z. H.; Liu, X. G., Preparation of NaBiO3 and the electrochemical characteristic of manganese dioxide doped with NaBiO3. Electrochimica Acta 2006,51, (15),3118-3124.
    40. Mills, A.; Davies, R. H.; Worsley, D., Water-purification by semiconductor photocatalysis. Chemical Society Reviews 1993,22, (6),417-425.
    41. Hattori, A.; Tada, H., High photocatalytic activity of F-doped TiO2 film on glass. Journal of Sol-Gel Science and Technology 2001,22, (1-2),47-52.
    42. Huang, G. L.; Zhu, Y. F., Enhanced photocatalytic activity of ZnWO4 catalyst via fluorine doping. Journal of Physical Chemistry C 2007,111, (32),11952-11958.
    43. Chen, F.; Zhao, J. C.; Hidaka, H., Highly selective deethylation of rhodamine B:Adsorption and photooxidation pathways of the dye on the TiO2/SiO2 composite photocatalyst. International Journal of Photoenergy 2003,5, (4),209-217.
    44. Chen, C. C.; Zhao, W.; Lei, P. X.; Zhao, J. C.; Serponer, N., Photosensitized degradation of dyes in polyoxometalate solutions versus TiO2 dispersions under visible-light irradiation: Mechanistic implications. Chemistry-a European Journal 2004,10,(8),1956-1965.
    45. Wang, Q.; Chen, C. C.; Zhao, D.; Ma, W. H.; Zhao, J. C., Change of adsorption modes of dyes on fluorinated TiO2 and its effect on photocatalytic degradation of dyes under visible irradiation. Langmuir 2008,24, (14),7338-7345.
    46. Lei, P.; Chen, C.; Yang, J.; Ma, W.; Zhao, J.; Zang, L., Degradation of dye pollutants by immobilized polyoxometalate with H2O2 under visible-light irradiation. Environmental Science & Technology 2005,39,8466-8474.
    47. Liu, G. M.; Wu, T. X.; Zhao, J. C.; Hidaka, H.; Serpone, N., Photoassisted degradation of dye pollutants.8. Irreversible degradation of alizarin red under visible light radiation in air-equilibrated aqueous TiO2 dispersions. Environmental Science & Technology 1999,33, (12), 2081-2087.
    48. Hu, X. F.; Mohamood, T.; Ma, W. H.; Chen, C. C.; Zhao, J. C., Oxidative decomposition of rhodamine B dye in the presence of VO2+ and/or PtⅣ under visible light irradiation: N-deethylation, chromophore cleavage, and mineralization. Journal of Physical Chemistry B 2006, 110, (51),26012-26018.
    49. Chen, C.-C.; Fan, H.-J.; Jan, J.-L., Degradation pathways and efficiencies of Acid Blue 1 by photocatalytic reaction with ZnO nanopowder. Environmental Science & Technology 2008,112, 11962-11972.
    1. Rodriguez-Gonzalez, V.; Garcia-Montelongo, X. L.; Garza-Tovar, L. L.; Lee, S. W.; Torres-Martinez, L. M., Strontium tantalum oxides with perovskite-type structure:synthesis and dye photodecomposition properties. Research on Chemical Intermediates 2009,35, (2),187-196.
    2. Kako, T.; Zou, Z. G.; Katagiri, M.; Ye, J. H., Decomposition of organic compounds over NaBiO3 under visible light irradiation. Chemistry of Materials 2007,19, (2),198-202.
    3. Liu, T. X.; Li, X. Z.; Li, F. B., AgNO3-induced photocatalytic degradation of odorous methyl mercaptan in gaseous phase:Mechanism of chemisorption and photocatalytic reaction. Environmental Science & Technology 2008,42, (12),4540-4545.
    4. Kumada, N.; Kinomura, N.; Sleight, A. W., Neutron powder diffraction refinement of ilmenite-type bismuth oxides:ABiO3 (A=Na, Ag). Materials Research Bulletin 2000,35, (14-15), 2397-2402.
    5. Yu, K.; Yang, S.; He, H.; Sun, C.; Gu, C.; Ju, Y, Visible light-driven photocatalytic degradation of rhodamine B over NaBiO3:pathways and mechanism. J Phys Chem A 2009,113, (37),10024-32.
    6. Feng, P.; Chen, C. L.; Hao, Y.; Wang, H. J.; Jian, Y., Preparation of NaxBayBiO3 center dot nH2O and their photooxidation characteristic under visible-light irradiation. Materials Chemistry and Physics 2009,116, (1),294-299.
    7. Barreca, D.; Morazzoni, F.; Rizzi, G. A.; Scotti, R.; Tondello, E., Molecular oxygen interaction with Bi2O3:a spectroscopic and spectromagnetic investigation. Physical Chemistry Chemical Physics 2001,3, (9),1743-1749.
    8. Huang, C. C.; Fung, K. Z., Effect of water/water vapor on microstructure and phase stability (Yo.25Bio.75)203 solid electrolytes. Journal of Materials Research 2003,18, (11),2624-2632.
    9. Shirley, D. A., High-resolution X-ray photoemission spectrum of valence bands of gold. Physical Review B 1972,5, (12),4709-4714.
    10. Zhang, H. J.; Chen, G. H., Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol-gel Method. Environmental Science & Technology 2009,43, (8), 2905-2910.
    11. Lutzenkirchen-Hecht, D.; Strehblow, H. H., Anodic silver (Ⅱ) oxides investigated by combined electrochemistry, ex situ XPS and in situ X-ray absorption spectroscopy. Surface and Interface Analysis 2009,41,(10),820-829.
    12. Mekki, A., XPS study of lead vanadate glasses. Arabian Journal for Science and Engineering 2003,28, (1A),73-85.
    13. Dimitrov, V.; Komatsu, T., Classification of simple oxides:A polarizability approach. Journal of Solid State Chemistry 2002,163, (1),100-112.
    14. Lopez-Suarez, F. E.; Bueno-Lopez, A.; Illan-Gomez, M. J.; Adamski, A.; Ura, B.; Trawczynski, J., Copper catalysts for soot oxidation:Alumina versus perovskite supports. Environmental Science & Technology 2008,42, (20),7670-7675.
    15. He, H.; Dai, H. X.; Au, C. T., An investigation on the utilization of perovskite-type oxides La1-xSrxMO3 (M=Co0.77Bi0.20Pd0.03) as three-way catalysts. Applied Catalysis B:Environmental 2001,33,(1),65-80.
    16. Hu, Y.; Lin, U. L.; Liu, N. H., Effect of copper valence on the glass structure and crystallization behavior of Bi-Pb-Cu-O glasses. Materials Chemistry and Physics 1997,49, (2), 115-119.
    17. Mizoguchi, H.; Woodward, P. M., Electronic structure studies of main group oxides possessing edge-sharing octahedra:Implications for the design of transparent conducting oxides. Chemistry of Materials 2004,16, (25),5233-5248.
    18. Kumada, N.; Takahashi, N.; Kinomura, N.; Sleight, A. W., Preparation and crystal structure of a new lithium bismuth oxide:LiBiO3. Journal of Solid State Chemistry 1996,126, (1),121-126.
    19. Kumada, N.; Kinomura, N.; Sleight, A. W., Ion-exchange reaction of Na+ in NaBiO3 center dot nH2O with Sr2+ and Ba2+. Solid State Ionics 1999,122, (1-4),183-189.
    20. Chia, L. H.; Tang, X. M.; Weavers, L. K., Kinetics and mechanism of photoactivated periodate reaction with 4-chlorophenol in acidic solution. Environmental Science & Technology 2004,38, (24),6875-6880.
    21. Martin, S. T.; Lee, A. T.; Hoffmann, M. R., Chemical mechanism of inorganic oxidants in the TiO2/UV process-increased rates of degradation of chlorinated hydrocarbons. Environmental Science & Technology 1995,29, (10),2567-2573.
    22. Wu, L.; Li, A. M.; Gao, G. D.; Fei, Z. H.; Xu, S. R.; Zhang, Q. X., Efficient photodegradation of 2,4-dichlorophenol in aqueous solution catalyzed by polydivinylbenzene-supported zinc phthalocyanine. Journal of Molecular Catalysis a-Chemical 2007,269, (1-2),183-189.
    23. Benhur, E.; Carmichael, A.; Riesz, P.; Rosenthal, I., Photochemical generation of superoxide radical and the cyto-toxicity of phthalocyanines. International Journal of Radiation Biology 1985, 48, (5),837-846.
    24. Shvykin, A. Y.; Platonov, V. V.; Proskuryakov, V. P.; Chilachava, K. B.; Khmarin, E. M.; Kovtun, I. V, Bismuth(V) oxide and silver bismuthate as oxidizing agents for gas-chromatographic elemental microanalysis. Russian Journal of Applied Chemistry 2004,77, (7),1200-1202.
    25. Peters, J. W.; Bekowies, P. J.; Winer, A. M.; Pitts, J. N., Investigation of potassium perchromate as source of singlet oxygen. Journal of the American Chemical Society 1975,97, (12), 1299-3306.
    1. Berberidou, C.; Avlonitis, S.; Poulios, I., Dyestuff effluent treatment by integrated sequential photocatalytic oxidation and membrane filtration. Desalination 2009,249, (3),1099-1106.
    2. Selli, E., Synergistic effects of sonolysis combined with photocatalysis in the degradation of an azo dye. Physical Chemistry Chemical Physics 2002,4, (24),6123-6128.
    3. Zhang, Z. H.; Yuan, Y.; Liang, L. H.; Fang, Y. J.; Cheng, Y. X.; Ding, H. C.; Shi, G. Y.; Jin, L. T., Sonophotoelectrocatalytic degradation of azo dye on TiO2 nanotube electrode. Ultrasonics Sonochemistry 2008,15, (4),370-375.
    4. Stock, N. L.; Peller, J.; Vinodgopal, K.; Kamat, P. V., Combinative sonolysis and photocatalysis for textile dye degradation. Environmental Science & Technology 2000,34, (9), 1747-1750.
    5. Kim, J.; Lee, C. W.; Choi, W., Platinized WO3 as an Environmental Photocatalyst that Generates OH Radicals under Visible Light. Environmental Science & Technology 2010,44, (17), 6849-6854.
    6. Liao, G. Z.; Chen, S.; Quan, X.; Chen, H.; Zhang, Y. B., Photonic Crystal Coupled TiO2/Polymer Hybrid for Efficient Photocatalysis under Visible Light Irradiation. Environmental Science & Technology 2010,44, (9),3481-3485.
    7. Li, Y. Y.; Yao, S. S.; Wen, W.; Xue, L. H.; Yan, Y. W., Sol-gel combustion synthesis and visible-light-driven photocatalytic property of perovskite LaNiO3. Journal of Alloys and Compounds 2010,491, (1-2),560-564.
    8. Sulaeman, U.; Yin, S.; Sato, T., Visible light photocatalytic activity induced by the carboxyl group chemically bonded on the surface of SrTiO3. Applied Catalysis B-Environmental 2011,102, (1-2),286-290.
    9. Yu, K.; Yang, S.; He, H.; Sun, C.; Gu, C.; Ju, Y, Visible light-driven photocatalytic degradation of rhodamine B over NaBiO3:pathways and mechanism. Journal of Physical Chemistry A 2009,113, (37),10024-32.
    10. Chang, X. F.; Huang, J.; Cheng, C.; Sha, W.; Li, X.; Ji, G. B.; Deng, S. B.; Yu, G., Photocatalytic decomposition of 4-t-octylphenol over NaBiO3 driven by visible light:Catalytic kinetics and corrosion products characterization. Journal of Hazardous Materials 2010,173, (1-3), 765-772.
    11. Kou, J. H.; Zhang, H. T.; Li, Z. S.; Ouyang, S. X.; Ye, J. H.; Zou, Z. G., Photooxidation of polycyclic aromatic hydrocarbons over NaBiO3 under visible light irradiation. Catalysis Letters 2008,122,(1-2),131-137.
    12. Teraoka, Y.; Kanada, K.; Kagawa, S., Synthesis of La-K-Mn-O perovskite-type oxides and their catalytic property for simultaneous removal of NOX and diesel soot particulates. Applied Catalysis B-Environmental 2001,34, (1),73-78.
    13. Bialobok, B.; Trawczynski, J.; Rzadki, T.; Mista, W.; Zawadzki, M., Catalytic combustion of soot over alkali doped SrTiO3. Catalysis Today 2007,119, (1-4),278-285.
    14. Yin, M. C.; Li, Z. S.; Kou, J. H.; Zou, Z. G., Mechanism investigation of visible light-induced degradation in a heterogeneous TiO2/Eosin Y/Rhodamine B system. Environmental Science & Technology 2009,43, (21),8361-8366.
    15. Fu, H. B.; Zhang, S. C.; Xu, T. G.; Zhu, Y. F.; Chen, J. M., Photocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products. Environmental Science & Technology 2008,42, (6),2085-2091.
    16. Caine, M. A.; McCabe, R. W.; Wang, L. C.; Brown, R. G.; Hepworth, J. D., The influence of singlet oxygen in the fading of carbonless copy paper primary dyes on clays. Dyes and Pigments 2001,49,(3),135-143.
    17. Grocock, D. E.; Hallas, G.; Hepworth, J. D., Steric effects in di-arylmethane and tri-arylmethane dyes.11. Electronic absorption-spectra of derivatives of michlers hydrol blue, crystal violet, and malachite green containing ortho-trifluoromethyl groups. Journal of the Chemical Society-Perkin Transactions 2 1973, (13),1792-1796.
    18. Brooker, L. G. S.; White, F. L.; Sprague, R. H.; Dent, S. G.; Vanzandt, G., Steric hindrance to planarity in dye molecules. Chemical Reviews 1947,41, (2),325-351.
    19. Dewar, M. J. S., Colour and constitiution.1. Basic dyes. Journal of the Chemical Society 1950, (SEP),2329-2334.
    20. Fan, H. J.; Huang, S. T.; Chung, W. H.; Jan, J. L.; Lin, W. Y.; Chen, C. C., Degradation pathways of crystal violet by Fenton and Fenton-like systems:Condition optimization and intermediate separation and identification. Journal of Hazardous Materials 2009,171, (1-3), 1032-1044.
    21. Mai, F. D.; Chen, C. C.; Chen, J. L.; Liu, S. C., Photodegradation of methyl green using visible irradiation in ZnO suspensions-Determination of the reaction pathway and identification of intermediates by a high-performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry method. Journal of Chromatography A 2008,1189, (1-2),355-365.
    22. Chang, X. F.; Ji, G. B.; Sui, Q.; Huang, J.; Yu, G., Rapid photocatalytic degradation of PCP-Na over NaBiO3 driven by visible light irradiation. Journal of Hazardous Materials 2009, 166, (2-3),728-733.
    23. Foote, C. S.; Shook, F. C.; Abakerli, R. B., Characterization of singlet oxygen. Methods in Enzymology 1984,105,36-47.
    24. Kuramoto, N.; Kitao, T., The contribution of singlet oxygen to the photofading of triphenylmethane and related dyes. Dyes and Pigments 1982,3, (1),49-58.
    25. Kuramoto, N.; Kitao, T., Contribution of singlet oxygen to the photofading of some dyes.Journal of the Society of Dyers and Colourists 1982,98, (10),334-340.
    26. Weyermann, C.; Kirsch, D.; Vera, C. C.; Spengler, B., Evaluation of the photodegradation of Crystal Violet upon light exposure by mass spectrometric and spectroscopic methods. Journal of Forensic Sciences 2009,54, (2),339-345.
    27. Chen, C. C.; Mai, F. D.; Chen, K. T.; Wu, C. W.; Lu, C. S., Photocatalyzed N-de-methylation and degradation of crystal violet in titania dispersions under UV irradiation. Dyes and Pigments 2007,75, (2),434-442.
    28. Gallard, H.; De Laat, J.; Legube, B., Spectrophotometric study of the formation of iron(III)-hydroperoxy complexes in homogeneous aqueous solutions. Water Research 1999,33, (13),2929-2936.
    29. Sakthivel, S.; Neppolian, B.; Shankar, M. V.; Arabindoo, B.; Palanichamy, M.; Murugesan, V., Solar photocatalytic degradation of azo dye:comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Materials and Solar Cells 2003,77, (1),65-82.
    30. Benhur, E.; Carmichael, A.; Riesz, P.; Rosenthal, I., Photochemical generation of superoxide radical and the cyto-toxicity of phthalocyanines. International Journal of Radiation Biology 1985, 48, (5),837-846.
    31. Wang, Z. H.; Chen, X.; Ji, H. W.; Ma, W. H.; Chen, C. C.; Zhao, J. C., Photochemical cycling of iron mediated by dicarboxylates:Special effect of malonate. Environmental Science & Technology 2010,44, (1),263-268.
    32. Wu, T. X.; Lin, T.; Zhao, J. C.; Hidaka, H.; Serpone, N., TiO2-assisted photodegradation of dyes.9. Photooxidation of a squarylium cyanine dye in aqueous dispersions under visible light irradiation. Environmental Science & Technology 1999,33, (9),1379-1387.
    33. Jakopitsch, C.; Regelsberger, G.; Furtmuller, P. G.; Ruker, F.; Peschek, G. A.; Obinger, C., Catalase-peroxidase from Synechocystis is capable of chlorination and bromination reactions. Biochemical and Biophysical Research Communications 2001,287, (3),682-687.
    34. Koppenol, W. H.; Stanbury, D. M.; Bounds, P. L., Electrode potentials of partially reduced oxygen species, from dioxygen to water. Free Radical Biology and Medicine 2010,49, (3), 317-322.
    35. de Souza, S.; Bonilla, K. A. S.; de Souza, A. A. U., Removal of COD and color from hydrolyzed textile azo dye by combined ozonation and biological treatment. Journal of Hazardous Materials 2010,179, (1-3),35-42.
    36. Chen, C. C.; Lu, C. S., Mechanistic studies of the photocatalytic degradation of methyl green: An investigation of products of the decomposition processes. Environmental Science & Technology 2007,41, (12),4389-4396.
    1. Wang, H.; Zhao, Z.; Xu, C. M.; Liu, J., Nanometric La1-xKxMnO3 Perovskite-type oxides-highly active catalysts for the combustion of diesel soot particle under loose contact conditions. Catalysis Letters 2005,102, (3-4),251-256.
    2. Yu, K.; Yang, S. G.; He, H.; Sun, C.; Gu, C. G.; Ju, Y. M., Visible Light-Driven Photocatalytic Degradation of Rhodamine B over NaBiO3:Pathways and Mechanism. Journal of Physical Chemistry A 2009,113, (37),10024-10032.
    3. Kumada, N.; Kinomura, N.; Sleight, A. W., Ion-exchange reaction of Na+ in NaBiO3 center dot nH2O with Sr2+ and Ba2+. Solid State Ionics 1999,122,(1-4),183-189.
    4. Halme, K.; Lindfors, E.; Peltonen, K., A confirmatory analysis of malachite green residues in rainbow trout with liquid chromatography-electrospray tandem mass spectrometry. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2007,845, (1), 74-79.
    5. Chen, C. Y.; Kuo, J. T.; Cheng, C. Y.; Huang, Y. T.; Ho, I. H.; Chung, Y. C., Biological decolorization of dye solution containing malachite green by Pandoraea pulmonicola YC32 using a batch and continuous system. Journal of Hazardous Materials 2009,172, (2-3),1439-1445.
    6. Jadhav, J. P.; Govindwar, S. P., Biotransformation of malachite green by Saccharomyces cerevisiae MTCC 463. Yeast 2006,23, (4),315-323.
    7. Yang, Y. Y.; Wang, G.; Wang, B.; Du, L. N.; Jia, X. M.; Zhao, Y. H., Decolorization of Malachite Green by a newly isolated penicillium sp YW 01 and optimization of decolorization parameters. Environmental Engineering Science 2011,28, (8),555-562.
    8. Shvykin, A. Y.; Platonov, V. V.; Proskuryakov, V. P.; Chilachava, K. B.; Khmarin, E. M.; Kovtun, I. V., Bismuth(V) oxide and silver bismuthate as oxidizing agents for gas-chromatographic elemental microanalysis. Russian Journal of Applied Chemistry 2004,77, (7), 1200-1202.
    9. Deng, H. B.; Lin, L.; Liu, S. J., Catalysis of Cu-doped Co-based perovskite-type oxide in wet oxidation of lignin to produce aromatic aldehydes. Energy & Fuels 2010,24,4797-4802.
    10. Yu, K.; Yang, S.; Boyd, S. A.; Chen, H.; Sun, C., Efficient degradation of organic dyes by BiAgxOy. Journal of Hazardous Materials 2011,197,88-96.
    11. Zhang, H. J.; Chen, G. H., Potent Antibacterial Activities of Ag/TiO2 Nanocomposite Powders Synthesized by a One-Pot Sol-Gel Method. Environmental Science & Technology 2009, 43, (8),2905-2910.
    12. Shirley, D. A., High-resolution X-ray photomission spectrum of valence bands of gold. Physical Review B 1972,5, (12),4709-4714.
    13. Mekki, A., XPS study of lead vanadate glasses. Arabian Journal for Science and Engineering 2003,28, (1A),73-85.
    14. Dimitrov, V.; Komatsu, T., Classification of simple oxides:A polarizability approach. Journal of Solid State Chemistry 2002,163, (1),100-112.
    15. Lopez-Suarez, F. E.; Bueno-Lopez, A.; Illan-Gomez, M. J.; Adamski, A.; Ura, B.; Trawczynski, J., Copper catalysts for soot oxidation:alumina versus perovskite supports. Environmental Science & Technology 2008,42, (20),7670-7675.
    16. He, H.; Dai, H. X.; Au, C. T., An investigation on the utilization of perovskite-type oxides La1-xSrxMO3 (M=Co0.77Bi0.20Pd0.03) as three-way catalysts. Applied Catalysis B:Environmental 2001,33,(1),65-80.
    17. Correia, V. M.; Stephenson, T.; Judd, S. J., Characterization of textile wastewaters-a review. Environmental Technology 1994,15, (10),917-929.
    18. Pagga, U.; Taeger, K., Development of a method for adsorption of dyestuffs on activated-sludge. Water Research 1994,28,(5),1051-1057.
    19. Lin, S. H.; Peng, C. F., Continuous treatment of textile wastewater by combined coagulation, electrochemical oxidation and activated sludge. Water Research 1996,30, (3),587-592.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700