用户名: 密码: 验证码:
由邻菲罗啉衍生物构筑的过渡金属配合物的合成、表征及其对染料的催化降解作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代社会的快速发展,具有特殊功能的材料,如具有光电性能优点、磁性能及环境友好的光催化功能材料,成为科学研究的热点。配合物材料,不仅具有多样性的价键形成和新颖的空间结构,而且还具有特殊的光、电、磁性及催化性能,特别是在环境污染物催化降解处理方面应用的可行性,引起研究者广泛的兴趣。过渡金属配合物整合了金属和聚合物的诸多优点,在清洁能源、智能响应材料、高性能器件制备方面具有广泛的应用潜力。水热法合成的密闭条件有利于进行那些对人体健康有毒有害的反应体系,尽可能的减少环境污染,整个实验过程属于绿色环保的过程。本论文通过水热合成的方法制备了17个结构新颖的过渡金属配合物,采用X-单晶衍射仪对配合物的结构进行了测定,并对其光学、磁学和光催化性能进行了研究。
     本课题开展了以下两个方面的研究工作:
     首先,我们利用邻菲罗啉衍生物{2-(4-甲氧基)-1氢-咪唑[4,5-f][1,10]邻菲罗啉,MOPIP和2-(9-葸)-1氢-咪唑[4,5-f][1,10]邻菲罗啉,AIP}合成了10个过渡金属配合物:[Cd4(MOPIP),2]·(H2O)9 (1), [Mn2(MOPIP)6]·(H2O)6 (2), [Cu(MOPIP)2]·(OH)2 (3), [Ni(MOPIP)3]·H2O·C6H5O3 (4), [Ag2(MOPIP)(HMOPIP)]n·nNO3·1.5n H2O (5), [Cr(MOPIP)2]Cl (6), [Co(MOPIP)(HMOPIP)2]·(OH)2·3H2O (7), [Cu2(MOPIP)2]n (8), [Zr(MOPIP)3]·(OH)·3H2O (9),[Co(AIP)(HAIP)2](OH)2 (10)。在配合物(1)、(2)、(4)、(7)、(9)、(10)中,每个金属中心离子与来自三个不同HMOPIP或MOPIP(HAIP或AIP)上的六个氮原子进行配位,形成畸变的八面体构型。在配合物(3)、(6)中,每个中心离子与来自两个不同MOPIP分子上的氮原子形成四配位的四面体结构,配合物(5)、(8)为一维链状结构,其中心离子分别与来自于不同HMOPIP和MOPIP配体上的三个氮原子配位,分别形成三配位畸变的三角形构型。利用Guassian 03程序对配合物(3)和(6)进行了自然键轨道分析(NBO)。对配合物(2)、(3)和(4)分别进行了光催化降解染料试验,结果表明配合物(3)的催化降解效果比较好,在废水处理方面具有潜在的应用价值。
     其次,我们利用邻菲罗啉衍生物(2-甲基吡嗪[3,2-f:2',3'-h]喹喔啉,Medpq)和芳香羧酸(1,2-H2BDC=1,2-苯二甲酸,1,4-H2BDC=1,4-苯二甲酸,H2PDC=2,3-吡啶二羧酸)作为共配体,与过渡金属配位,合成了7个过渡金属配合物:[Ni(1,2-BDC)(Medpq)(H2O)3] (11), [Cd(1,4-BDC)(Medpq)·H2O]n (12), [Co(1,4-BDC)(Medpq)·H2O]n (13), [Co(Medpq)(PDC)·H2O]2n·2.4nH2O(14), [Cd(Medpq)(PDC)·H2O]n·nH2O (15),{[Mn(1,2-BDC)(Medpq)(H2O)]·0.25nH2O}n (16), [Mn(Medpq)(PDC)·H2O]n·2nH2O (17)。在配合物(11)中,整个晶体由1,2-BDC-Ni-Medpq单元组成零维结构。配合物(12)-(17)均为一维无限链状结构。应用Guassian 03程序对配合物(11)进行了自然键轨道分析(NBO),结果表明Ni(Ⅱ)与配位原子间的价键类型都属于共价键范畴。在比较配合物(12)、(14)和(15)的发光性能中发现,配合物(12)和(15)具有较好的发光性能,发光峰位分别位于567.7nm(黄光)以及638.7 nm(橙色光)处。对配合物(12)和(13)进行了染料光催化降解实验,研究结果显示,(12)的催化效果要好于(13)。
With the rapid development of modern society, materials with special functions, such as optical and electrical properties, magnetic properties and photocatalytic properties, have become a hot topic of scientific research. Complex, a kind of meaterial with not only great variety of bond and novel spatial structure but the special optical, electric, magnetic and catalytic properties, especially the feasibility of application in the photocatalytic degradation of environmental pollution, has been received much attention. The transition metal complexes possess the merits of both metal and polymer and have wide potential in clean power source, smart response materials and high-performance devices. The airtight conditions of hydrothermal synthesis are in favor of processing those harmful and toxic reaction, which can reduce the environmental pollution as much as possible and the entire experimental process belongs to the one of green environmental protection. In this paper, seventeen novel transition metal complexes were prepared by hydrothermal synthesis method. Their structures were characterized by X-ray crystal diffraction. The optical, magnetic, and photocatalytic properties of these complexes were investigated.
     Two aspects of research work in this paper is shown in the following:
     Firstly, ten new compounds, namely [Cd4(MOPIP)12]·(H2O)9 (1), [Mn2(MOPIP)6]·(H2O)6 (2), [Cu(MOPIP)2]-(OH)2 (3), [Ni(MOPIP)3]·H2O·C6H5O3 (4), [Ag2(MOPIP)(HMOPIP)]n·nNO3·1.5n H2O (5), [Cr(MOPIP)2]Cl (6), [Co(MOPIP)(HMOPIP)2](OH)2·3H2O (7),[Cu2(MOPIP)2]n (8), [Zr(MOPIP)3]-(OH)·3H2O (9), [Co(AIP)(HAIP)2](OH)2 (10), based on 1,10-phenanthroline derivatives (2-(4-methoxyphenyl) -1H-imidazo[4,5-f][1,10] phenanthroline, MOPIP and 2-(9-anthryl) -1H-imidazo[4,5-f][1,10] phenanthroline, AIP) were synthesized under hydrothermal conditions. In (1), (2), (4), (7), (9) and (10), every metal ion is hexa-coordinated with six nitrogen atoms from three different MOPIP ligands in the crystal structure, showing a slightly distorted octahedral geometry. In the complexes (3) and (6), the each center ion is coordinated with four nitrogen atoms from two different MOPIP molecules, showing tetrahedronal structure. The complexes (5) and (8) are one-dimensional chains. In (5) and (8), the each center ion is three-coordinated with three nitrogen atoms from different HMOPIP and MOPIP ligands, assuming a slightly distorted triangle, respectively. The quantum chemical calculation and analysis of the natural bond orbital (NBO) of (3) and (6) was performed by using the Gaussia 03 Program. The photocatalytic activity of complexes (2), (3) and (4) was investigated by degradation of dye, respectively. The results show that the catalytic degradation rate of complex (3) is much higher than the others. Thus, complex (3) has the potential application in wastewater treatment.
     Secondly, seven new compounds, viz. [Ni(1,2-BDC)(Medpq)(H2O)3] (11), [Cd(1,4-BDC)(Medpq)·H2O]n (12), [Co(1,4-BDC)(Medpq)·H2O]n (13), [Co(Medpq)(PDC)·H2O]2n·2.4nH2O (14), [Cd(Medpq)(PDC)·H2O] n·nH2O(15),{[Mn(1,2-BDC)(Medpq)(H2O)]·0.25nH2O}n (16), [Mn(Medpq)(PDC)·H2O]n·2nH2O (17), based on 1,10-phenanthroline derivatives (2-methyldipyrido[3,2-f:2',3'-h] quinoxaline, Medpq) and aromatic carboxylic acid (1,2-H2BDC= 1,2-benzenedicarboxylic acid, 1,4-H2BDC= 1,4-benzenedicarboxylic acid, H2PDC= 2,3-pyridinedicarboxylic acid) as the mixed ligands coordinated with transition metal, were synthesized under hydrothermal conditions. Compound (11) exhibits a zero-dimensional structure with 1,2-BDC-Ni-Medpq as building units. Compounds (12)-(17) all exhibit one-dimensional infinite chain structure. The quantum chemical calculation of (11) was performed by using the Gaussian 03 Program. The results show that the valence-bond of Ni(Ⅱ) and the coordinated atoms all belong to the covalent bond category. Comparing with complex (14), the fluorescent properties of complexes (12), (15) were relatively better. The emission bands of complexes (12) and (15) are located at 567.7 nm (yellow light) and 638.7 nm (orange light), respectively. The photocatalytic activity of complexes (12) and (13) was investigated by degradation of dye, respectively. The results show that the catalytic performance of (12) is much better than (13) due to their different central ion.
引文
[1]徐志固.现代配位化学.北京:科学工业出版社,1987:12.
    [2]M. Du, Y. M. Guo, S. T. Chen, et al. Preparation of Acentric Porous Coordination Frameworks from an Interpenetrated Diamondoid Array through Anion-Exchange Procedures:Crystal Structures and Properties. Inorg Chem,2004,43:1287-1293.
    [3]A. Clearfield. Recent advances in metal phosphonate chemistry.J.Solid State & Material Science,1996,1:268-278.
    [4]徐志固,现代配位化学,北京:科学工业出版社,1987:231.
    [5]A. Werner.Beitrag zur Konstitution anorganischer Verbindungen.Zeitschrift fur anorganische Chemie,1895,9:382-417.
    [6]A. Werner, New Ideas on Inorganic Chemistry, Translated by Hedley E P, London: Longmans,Green and Co,1911.
    [7]A. F. William, C. Floriani, A. E. Merbach. Perspectives in Coordination Chemistry. Basel. Velag Helverica.Chimica Acta,1992,156-158.
    [8]G. Wilkinson, R. D. Gillard, J. A. McCleverty. Comprehensive coordination Chemistry-The synthesis, Reaction, Properties and Applications of Coordination Compounds Oxford: Pergamon Press,1987,261-278.
    [9]张琳萍,侯红卫,樊耀亭,et al.配位聚合物.无机化学学报,2001,16:1-12.
    [10]钱延龙,陈新滋主编.金属有机化学与催化.北京:化学工业出版社,1997.
    [11]M. Eddaoudi, D. B. Moler, H. L. Li, et al. Modular chemistry:secondary building units as a basis for the design of highly porous and robudt metai-organic carboxylate frameworks, Acc. Chem. Res,2001,34:319-330.
    [12]徐光宪,21世纪的配位化学是处与现代化学中心地位的二级学科,北京大学学报,2002,38:149-152.
    [13]R. Robson. A net-based approach to coordination polymers.J.Chem. Soc., Dalton Trans,2000,3735-3744.
    [14]M. Eddaoudi, J. Kim, M.O.'Keeffe, et al. [Cu2(o-Br-C6H3(CO2)]2(H2O)2·(DMF)8(H2O)2:A framework deliberately designed to have the NbO structure type.J. Am. Chem. Soc,2002,124:376-377.
    [15]K. Biradha, Y. Hongo, M. Fujita, et al. Polymers with large chiral cavities, Angew. Chem.Int. Ed,2000,39:3843-3845.
    [16]H. Li, M. Eddaoudi, T. L. Groy, et al. Establishing microporosity in open metal-organicframeworks:gas isomers for Zn(BDC) (BDC= 1,4-benzenedicer bo xylate).J. Am. Chem. Soc,1998,120:8571-8572.
    [17]R. Owen, W. Lin.Crystal engineering of NLO materials based on metal-organic coordination networks.J.Acc. Chem. Res,2002,35:511-522.
    [18]H. Li, M. Eddaoudi, M. O'Keeffe, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework.J.Nature,1999,402:276-279.
    [19]J. Tao, M. L. Tong, J. X. Shi, et al.Blue photoluminescence zinc coordination polymers with supertetranuclear cores.J. Chem. Commun,2000,20:2043-2044.
    [20]杨士姚.钴、镍、铜、锌离子与芳香羧酸配位聚合物的组装、结构和性质,[博士学位论文].福建省厦门市:厦门大学,2002.
    [21]J. S. Seo, D. Whang, H. Lee, et al., A homochiral metal-organic porousmaterial for enantioselective separation and catalysis.J. Nature,2000,404:982-986.
    [22]B. Rather, M. J. Zaworotko.A 3D metal-organic network, [Cu2(glutarate)2(4,4'-bipyridine)], that exhibits single-crystal to single-crystal dehydration and rehydration.J.Chem. Commun,2003,7:830-831.
    [23]K. Seki. Design of an adsorbent with an ideal pore structure for methane adsorption using metal complexes.J.Chem. Commun,2001,16:1496-1497.
    [24]K. Seki, W Mori.Syntheses and Characterization of Microporous Coordination Polymers with Open Frameworks.J. Phys. Chem. B,2002,106:1380-1385.
    [25]Z. K. Tang, H. D. Sun, J. N. Wang, et al. Mono-sized single-wall carbon nanotubes formed in channels of AlPO4-5 single crystal.J.Appl. Phys. Let,1998,73:2287-2289.
    [26]Z. K. Tang, L. Zhang, N. Wang, et al. Superconductivity in 4 angstrom single-walled carbon nanotubes.J.Sheng P.Science,2001,292:2462-2466.
    [27]K. Seki, S. Takamizawa, W. Mori. Design and Gas Adsorption Property of a Three-Dimensional Coordination Polymer with a Stable and Highly Porous Framwork.J.Chem. Lett,2001,30:332-333.
    [28]G. Horvath, K. Kawazoe.Method for calculation of effective pore size distribution in molecular sieve carbon.J. Chem. Eng. Jpn,1983,16:470-475.
    [29]H. K. Chae, D. Y Siberio-Perez, J. Kim, et al. A route to high surface area, porosity and inclusion of large molecules in crystals.J. Nature,2004,427:523-527.
    [30]D. Li, K. Kaneko.Molecular Geometry-Sensitive Filling in Semi-Rectangular Micropores of Organic-Inorganic Hybrid Crystals.J. Phys. Chem. B,2000,104:8940-8945.
    [31]K. Seki. Surface Area Evaluation of Coordination Polymers Having Rectangular Micropores J. Langmuir,2002,18:2441-2443.
    [32]M. Eddaoudi, J. Kim, N. Rosi, et al. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage.J.Science,2002,295:469-472.
    [33]S. Y. Chui, M. F. Samuel, P. H. Charmant, et al., A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n.J.Science,1999,283:1148-1150.
    [34]M. Kondo, M. Shimamura, S. Noro, et al. Microporous Materials Constructed from the Interpenetrated Coordination Networks. Structures and Methane Adsorption Properties.J.Chem, Mater,2000,12:1288-1299.
    [35]K. Seki, S. Takamizawa, W. Mori. Characterization of Microporous Copper(Ⅱ) Dicarboxylates (Fumarate, Terephthalate, and trans-1,4-Cyclohexanedicarboxylate) by Gas Adsorption.J.Chem. Lett,2001,30:122-129.
    [36]N. L. Rosi, J. Eckert, M. Eddaoudi, et al. Hydrogen Storage in Microporous Metal-Organic Frameworks.J.Science,2003,300:1127-1129.
    [37]O. S. Jung, Y. J. Kim, Y. A. Lee, et al. Structures and Related Properties of AgX Bearing 3,3'-Thiobispyridine (X-= NO3-, BF4-, ClO4- and PF6-).Inorg.Chem,2001,40:2105-2110.
    [38]O. S. Jung, Y. J. Kim, Y. A. Lee, et al. Unique Nanometer-Thick Layered Network.Chem. Lett,2002,31:500-501.
    [39]B. H. Hamilton, K. A. Kelly, T. A. Wagler, et al. Construction of a Functional Layered Solid Using the Tetrakis(imidazolyl)borate Coordinating Anion.Inorg.Chem,2002,41:4984-4986.
    [40]K. S. Min, M. P. Suh. Silver(Ⅰ)-Polynitrile Network Solids for Anion Exchange: Anion-Induced Transformation of Supramolecular Structure in the Crystalline State.J. Am. Chem. Soc,2000,122(29):6834-6840.
    [41]L. Pan, E. BWoodlock, X. Wang, et al. Novel silver(Ⅰ)-organic coordination polymers: conversion of extended structures in the solid state as driven by argentophilic interactions.Chem.Commun.,2001,18:1762-1763.
    [42]O. S. Jung, Y. J. Kim, Y. A. Lee, et al. Smart Molecular Helical Springs as Tunable Receptors.J. Am. Chem.Soc.,2000,122:9921-9925.
    [43]徐欣欣.基于柔性有机羧酸分子组成的无机-有机杂化化合物的合成、结构及性质研究,[东北师范大学博士学位论文].吉林省长春市:东北师范大学,2008.
    [44]B. Xing, M. F. Choi, B. Xu. Design of Coordination Polymer Gels as Stable Catalytic Systems.Chem. Eur,2002,8:5028-5032.
    [45]R. Kitaura, K. Fujimoto, S. Noro et al. A Pillared-Layer Coordination Polymer Network Displaying Hysteretic Sorption:[Cu2(pzdc)2(dpyg)]n (pzdc= Pyrazine-2,3-dicarboxylate; dpyg=1,2-Di(4-pyridyl)glycol). Angew. Chem. Int. Ed,2002,41:133-135.
    [46]O. R. Evans, H. L. Ngo, W. Lin.Chiral Porous Solids Based on Lamellar Lanthanide Phosphonates.J. Am. Chem, Soc,2001,123:10395-10396.
    [47]S. Seo, D. Whang, H. Lee, et al. A homochiral metal-organic porous material for enantioselective separation and catalysis.Nature,2000,404:982-986.
    [48]S. Tomoya, D. Takehisa, A. Yasuhiro. Immobilization of Soluble Metal Complexes with a Hydrogen-Bonded Organic Network as a Supporter. A Simple Route to Microporous Solid Lewis Acid Catalysts.J. Am. Chem. Soc,1998,120:8539-8540.
    [49]L. Pan, H. Liu, X. Lei, et al. PM-1:A Recyclable Nanoporous Material Suitable for Ship-In-Bottle Synthesis and Large Hydrocarbon Sorption.Angew Chem. Int. Ed,2003,42:542-546.
    [50]M. Tanski, P. T. Wolczanski. Covalent Titanium Aryldioxy One-, Two-, and Three-Dimensional Networks and Their Examination as Ziegler-Natta Catalysts.Inorg. Chem,2001,40:2026-2033.
    [51]B. Gomez-Lor, E. GutiYrrez-Puebla., M. Iglesias, et al. In2(OH)3(BDC)1.5 (BDC= 1,4-Benzendicarboxylate): An In(Ⅲ) Supramolecular 3D Framework with Catalytic Activity.Inorg Chem,2002,41:2429-2432.
    [52]R. Kitaura, K. Seki, C. Z. Akiyama, et al. Porous Coordination-Polymer Crystals with Gated Channels Specific for Supercritical Gases(?). Angew. Chem. Int. Ed,2003,42:428-431.
    [53]K. Uemura, S. Kitagawa, M. Kondo, et al. Novel Flexible Frameworks of Porous Cobalt(Ⅱ) Coordination Polymers That Show Selective Guest Adsorption Based on the Switching of Hydrogen-Bond Pairs of Amide Groups.Chem. Eur,2002,8:3586-3600.
    [54]R. ViSaalfrank, M. Decker, F. Hampel, et al. Coordination Polymers, Induction of Helicity via Stereogenic Centers:Asymmetric Synthesis of (P)- and (M)-Coordination Polymers(?). Chem. Ber,1997,130:1309-1313.
    [55]P. K. Bowyer, K. A. Porter, A. D. Rae, et al. From helicate to infinite coordination polymer: crystal and molecular structures of silver(Ⅰ) complexes of readily prepared di-Schiff bases.Chem.Commun,1998,10:1153-1154.
    [56]R. W. Saalfrank, H. Maid, F. Hampel et al. 1D- and 2D-Coordination Polymers from Self-Complementary Building Blocks:Co-Crystallization of (P)- and (M)-Single-Stranded Diastereoisomers. Eur. J. Inorg. Chem,1999,11:1859-1867.
    [57]K. Biradha, C. Seward, M. J. Zaworotko, Helical Coordination Polymers with Large Chiral Cavities. Angew. Chem,1999,38:492-495.
    [58]T. Konno, K. Tokuda, K. Okamoto, et al. Enantioselective Aggregation of Cobalt(Ⅲ) Octahedrons in a One-Dimensional S-Bridged CoⅢAgⅠ Array That Leads to Spontaneous Resolution. Chem, Lett,2000,11:1258-1259.
    [59]B. Wu, W. J. Zhang, S. Y. Yu, et al. Synthesis and structure of a helical polymer [Ag(R, R-DIOP) (NO3)]n{DIOP=(4R,5R)-trans-4,5-bis[(diphenylp-hosphino)methyl]-2,-dimethyl-1, 3-dioxalane}.J. Chem. Soc. Dalton Trans,1997,11:1795-1976.
    [60]C. J. Kepert, T. J. Prior, M. J. Rosseinsky. A Versatile Family of Interconvertible Microporous Chiral Molecular Frameworks:The First Example of Ligand Control of Network Chirality.J. Am. Chem. Soc,2000,122:5158-5168.
    [61]C.J. Kepert, M.J. Rosseinsky.A porous chiral framework of coordinated 1,3,5-benzenetricarboxylate:quadruple interpenetration of the (10,3)-a network. Chem. Conmmun,1998,31-32.
    [62]J. P. Collman, J. T. McDevit, C. R. Leidner, et al. Synthetic, Electrochemical, Optical, and Conductivity Studies of Coordination Polymers of Iron, Ruthenium, and Osmium Octaethylporphyrin. J. ACS,1987,109:4606-4614.
    [63]M. Hanack, S. Oer, A. Lange. Bisaxially coordinated macrocyclic transition metal complexes. Coord Chem. Rev,1988,83:115-136.
    [64]J. P. Collman, J. T. McDevitt, G. T. Yee, et al.A Little Optical and Conductive Properties of Pyrazine-Bridged Iron, Ruthenium and Osmium Octaethylporphyrin Coordination Polymers. Synth. Met,1986,15:129-140.
    [65]J. P. Collman, J. T. McDevit, G. T. Yee, et al. Conductive Polymers Derived from Iron, Ruthenium, and Osmium Metalloporphyrins-the Shish-Kebab Approach.Proc. Natl. Acad. Sci. USA,1986,83:4581-4585.
    [66]H. Kumagai, M. Akita-Tanaka, K. Moue, et al.Hydrothermal synthesis and characterization of a new 3D-network containing the versatile cis,cis-cyclohexane-1,3,5-tricarboxylate.J. Mater. Chem,2001,11:2146-2151.
    [67]D. Sun, R. Cao, J. Weng, et al.A novel luminescent 3D polymer containing silver chains formed by ligand unsupported Ag-Ag interactions and organic spacers.J. Chem. Soc., Dalton Trans,2002,3:291-292.
    [68]M. Riou-Cavellec, C. Albinet, C. Livage, et al.Ferromagnetism of the hybrid open framework K[M3(BTC)3]-5H2O (M=Fe, Co) or MIL-45.Solid State Sciences, 2002,4:267-270.
    [69]K. Barthelet, J. Marrot, D. Riou, C.Z. Ferey.A Breathing Hybrid Organic-Inorganic Solid with Very Large Pores and High Magnetic Characteristics.Angewandte Chemie-International Edition,2001,41:281-284.
    [70]R. M. Baker. Hydrothermal chemistry of zeolites. London:Academic Press,1982:132.
    [71]L. Antonio.Biogenesis:Some Like It Hot.science,1993,260:1154-1155.
    [72]R. Sieber, S. Decurtins, H. Stoeckli-Evans, et al.A Thermal Spin Transition in [Co(bpy)3][LiCr(ox)3] (ox=C2O42-; bpy=2,2'-bipyridine). Chem. Eur,2000,6:361-368.
    [73]车广波,苏子生,李文连,等.一种新型磷光铜(Ⅰ)配合物及其红光OLED液晶与显示,2006,21:185-187.
    [74]G. B. Che, Z. S. Su, W. L. Li, et al. Highly efficient and color-tuning electrophosphorescent devices based on CuⅠ complex. APPLIED PHYSICS LETTERS,2006,89:103511-103513.
    [75]Z. S. Su, G. B. Che, W. L. Li, et al.White-electrophosphorescent devices based on copper complexes using 2(-4-biphenylyl)-5-(4-tert-butyl-phenyl)-1,3,4-oxadiazole as chromaticity-tuning layer. APPLIED PHYSICS LETTERS,2006,88:213508-213509.
    [76]刘莹莹.柔性配体构筑的配位聚合物的合成、结构和性质研究,[东北师范大学博士学位 论文].吉林省长春市:东北师范大学,2007.
    [77]Z. K. Tang, L. Y. Wang, L. Zhang. et al.Heterobinuclear copper(Ⅱ)-manganese(Ⅱ) complexes behaving as three-dimensional supramolecular networks via both macrocyclic oxamido-bridges and hydrogen bonds.J. Chem Soc, Dalton Trans,2002,1607-1612.
    [78]M. D. Allendorf, C.A. Bauer, R.K. Bhakta, et al.Luminescent metal-organic frameworks.Chemical Society Reviews,2009,38:1330-1352.
    [79]樊美公,等.光化学基本原理与光子学材料科学.科学出版社,2001,8.
    [80]程晓冰.水资源保护概况.水资源保护,2001,66:8-12.
    [81]董少杰,董哲,李艳梅,等.大沽河中下游地区地下水环境特征与污染机制研究.水资源与水工程学报,2008,6:111-114.
    [82]高世洪.保护水资源防止水污染.中小企业管理与科技,2008,27:195-198.
    [83]张一兵,汪建.Ti02纳米材料的水热法制备及其在污水光催化降解中的应用.环境与健康杂志,2009,26:655-657.
    [84]时秋月,马永胜.水环境非点源污染的治理与控制对策.农机化研究,2007,7:202-204.
    [85]刘烁.含钒杂多配合物光催化降解染料废水中甲基红的研究.甘肃科技,2011,27:53-58.
    [86]李文戈,戴洁,卞国庆,等.[(ZnS)1.5NH2(CH2)2CH3]配合物的制备及其光催化活性.安徽大学学报,2002,26:80-84.
    [87]李俊莉,陈吉书,侯能邦.不同组成Cu(Ⅰ)配合物的光催化性能.化工新型材料,2010,38:132-134.
    [88]陈慧,安太成,房彦军,等.肉桂酰氧基苯基卟啉及钴配合物的合成及其光催化性质.西北师范大学学报,2000,36:32-37.
    [89]Q. R. Fang, G. S. Zhu, S. L. Qiu, et al.Crystal structure and fluorescence of a novel 3D inorganic-organic hybrid polymer with mixed ligands.Dalton T,2004,31-34.
    [90]X. J. Liu, G. S. Zhu, S. L. Qiu, et al.Crystal structure and fluorescence of a novel 3D inorganic-organic hybrid polymer with mixed ligands.Inorg Chem. Common,2004,31-34.
    [91]X. Shi, G. S. Zhu, X.H. Wang, et al.From a 1-D chain,2-D layered network to a 3-D supramolecular framework constructed from a metal-organic coordination compound. Crystal Growth & Design,2005,5:207-213.
    [92]X. Shi, G. S. Zhu, Q. R. Fang, et al.Novel supramolecular frameworks self-assembled from one-dimensional polymeric coordination chains.European Journal of Inorganic Chemistry.2004,1:185-191.
    [93]G. Wu, X. Shi, Q.R. Fang,et al.Triethylammonium benzene-1,3,5-tricarboxylato(pyridine)--zinc(II):a two-dimensional undulating mesh network. Inorganic Chemistry Communications,2003,6:402-404.
    [94]R. X. Yuan, R. G. Xiong, Z. F. Chen, et al.Crystal structure of zinc(Ⅱ) 2-sulfanilamidopyrimidine:a widely used topical burn drug.J. Chem Soc, Dalton Trans,2001,774-776.
    [95]Y. Zhao, M. Hong, Y. Liang, et al.A paramagnetic lamellar polymer with a high semiconductivity.Chem Commun,2001,1020-1021.
    [96]M. Ghosh, L. J. Lambert, P. W. Huber, et al.Synthesis, bioactivity, and DNA-cleaving ability of desferrioxamine B-nalidixic acid and anthraquinone carboxylic acid conjugates.Bioorg Med Chem Lett,1995,5:2337-2340.
    [97]L. B. Rosa, L. L. Barbara.Synthesis of a new phenanthroline derived ligand with acceptor properties.Tetrahedron Letters,1996,37:5437-5440.
    [98]F. R. Pfeiffer, H. Francis.CaseThe Preparation of some pyrido and pyridyl derivatives of phenazine and quinoxaline.J. Org.Chem,1966,10:3384-3390.
    [99]H. Sugihara, K. Hiratani.1,10-phenanthroline derive atives as inonpHores for alkali metal ions.Coordination Chemistry Reviews.1996,148:285-299.
    [100]B. Ulrich, S. Seeger, J. Wolftum.Verwendung von lumen eszi erenden Rnthenium(Ⅱ)-KomMarkierung von Antikorpern.J.Org.Chem,1997,541:401-406.
    [101]K. Hara, H. Sugihara.Lok Prapap Singh.New Ru(Ⅱ) phenan throline complexephoto-sensitizers having different number of carboxyl groups for dfe-sensitized solar cells.J.PHotochem.and PHotobio(A):Chenistry.2001,145:117-122.
    [102]Z. Maria.Synthesis and spectroscopic characteri zation of copper(Ⅱ)ternary complexes of 4-aminobenzoic acid and phenanthrolines. Polyhedron; 1996,15:277-283.
    [103]D. B. Christiane, J. M. Consuelo, Sauvage.Selective and efficient synthesis of di-, tri- and tetrasubstituted 1,10-phenanthrolines Tetrahedron Letters,1999,40:3395-3396.
    [104]C. D. Hall.Truong, base dredox-activeThi-Kim-Uyen The synthesis and complexationcryptand containing the phenanthroline unitof a ferrocene-:Journal of Organometallic Chemistry,1996,519:185-194.
    [105]S. Deroo, E. Defrancq, C. Moucheron,et al.Synthesis of an oxyamino-containing phena thro line derivative for the efficient preparation of phenanthroline oligonucleotide oxime conjugates.Tetrahedron Letters,2003,44:8379-8382.
    [106]S. Toyota, C. R. Woods, M. Benaglia, et al.Synthesis of Unsymmetrical 2,8 and 2,9-Dihalo 1,10-phenant- hrolines and Derivatives.TetrahedronLetters,1998,39:2697-2700.
    [107]B. Baldeyrou, C. Tardy, C. Bailly.Synthesis and DNA interaction of a mixed proflavine-phenanthroline Troger base, European Journal of MedicinalChemistry, 2002,37:315-322.
    [108]Y. N. Lin, T. D. Lash.Porphyrin Synthesis by the " 3+1" Methodology:A Superior Approach for the Preparation of Porphyrins with Fused 9,10-Phenanthroline Subunits.Tetrahedron Letters,1995,36:9441-9444.
    [109]N. Armaroli, M. A. J. Rodgers, P. Ceroni.Nature of the lowest energy excited state of a bis-phenanthroline 2- catenand and its Cu(Ⅰ), Ag(Ⅰ) and Co(Ⅱ) complexes Chemical. Physics Letters,1995,241:555-558.
    [110]M. C. Hitchman.Measurement of Dissovled Oxygen.NewYork:Wlley,1978:130-135.
    [111]J. C. Chambron, J. P. Collin, J. O. Dalbavie.Rotaxanes and other transition metal-assembled porphyrin arrays for long-range photoinduced charge separation.Coordination Chemistry Reviews,1998,178-180:1299-1312.
    [112]W. J. Wang, A. Sengul, C. F. Luo.Facile one-step synthesis of a thia-bridged bis-1,10-phenanthroline macrocycle.Tetrahedron Letters,2003,44:7099-7101.
    [113]P. Burger, J. M. Baumeister.Transition metal complexes with sterically demanding ligands. Synthesis and X-ray crystal structure of 1,5-cyclooctadiene palladium methyl triflate, (COD)Pd(Me)(OT) and its cationic penta-coordinate adducts with sterically demanding 2,9-diaryl-substituted 1,10-phenanthroline ligands}.Journal of Organometallic Chemistry, 1999,575:214-222.
    [114]A. M. Thomas, M. Nethaji, S. Mahadevan. S ynthesis, crystal structure, and nuclease activity of planar mono-heterocyclic base copper(Ⅱ) complexes. Journal of Inorganic Biochemistry,2003,94:171-178.
    [115]M. Roy, B. Pathak, A. K. Patra, et al.New Insights into the Visible-Light-Induced DNA Cleavage Activity of Dipyridoquinoxaline Complexes of Bivalent 3d-Metal Ions.Inorg. Chem,2007,46:11122-11132.
    [116]P. Biswas, S. Dutta, M. Ghosh.Influence of counter anions on structural, spectroscopic and electrochemical behaviours of copper(Ⅱ) complexes of dipyrido[3,2-f:2',3'-h]-quinoxaline (dpq). Polyhedron,2008,27:2105-2112.
    [117]X. L. Wang, Y. F. Bi, G. C. Liu, et al.Zn(Ⅱ) coordination architectures with mixed ligands of dipyrido [3,2-d:2',3'-f]quinoxaline/2,3-di-2-pyridylquinoxaline and benzene-dicarboxylate:syntheses, crystal structures, and photoluminescence properties. CrystEngComm,2008,10:349-356.
    [118]X. L. Wang, H. Y. Lin, G. C. Liu, et al.catena-((μ4-Benzene-1,3,5-tricarboxylato-O,O',O",O"')-(μ2-hydroxo)-bis(pyrazino(2,3-f)(1,10)phenanthroline-N,N')-di-copper(ⅱ)mon ohydrate).J. Organomet. Chem,2008,693:2767-2774.
    [119]X. L. Wang, J. N. Fang, Y. F. Bi, et al.bis(μ2-Acetato-O,O')-diaqua-bis(dipyrido (3,2-f:2',3'-h) quinoxaline)-dicopper(ii) diperchlorate.J. Solid State Chem.,2007, 180:2950-2957.
    [120]X. L. Wang, Y. F. Bi, H. Y. Lin, et al.Three Novel Cd(Ⅱ) Metal-Organic Frameworks Constructed from Mixed Ligands of Dipyrido [3,2-d:2',3'-f]quinoxaline and Benzene-dicarboxylate:From a 1-D Ribbon,2-D Layered Network, to a 3-D Architecture.Cryst. Growth Des,2007,7:1086-1091.
    [121]W. Z Zhang, Q. Xu.Poly[tris(μ-benzene-1,4-dicarboxylato)-bis(dipyrido[3,2-a:2',3'-c]phenazine)-trimanganese(Ⅱ)].Acta Cryst,2008, E64:m995.
    [122]G. B. Che, C. B. Liu, B. Liu, et al.Syntheses, structures and photoluminescence of a series of metal-organic complexes with 1,3,5-benzenetricarboxylate and pyrazino[2,3-f][1,10]-phenanthroline ligands.CrystEngComm,2008,10:184-191.
    [123]G. B. Che, J. Wang, J. Sun, et al.Poly[[[(pyrazino [2,3-f][1,10]phenanthroline-κ2N,N') cadmium(Ⅱ)]-μ3-pyridine-2,5-dicarboxylato-κ3O,O':N,O:O':O"]monohydrate].Acta Cryst,2006,E62:m3257-m3259.
    [124]G. B. Che.catena-Poly[[[(pyrazino[2,3-f][1,10]phenanthroline)zinc(Ⅱ)]-μ-cyclohexane-1,4-dicarboxylato] dihydrate].Acta Cryst,2006,E62:m1378-m1380.
    [125]G. B. Che, C. B. Liu, Z. L. Xu.Poly[[[pyrazino[2,3-f][1,10] phenanthroline] copper(Ⅰ)]-μ4-fumarato-μ2-fumarato].Acta Cryst,2006,E62:m1948-m1949.
    [126]G. B. Che, C. B. Liu.catena-Poly[[[pyrazino[2,3-f][1,10]phenanthroline] zinc(Ⅱ)]-μ4-fumarato-μ2-fumarato].Acta Cryst,2006,E62:m2036-m2038.
    [127]C. B. Liu, Y. Liu, L. Lu, et al.catena-Poly[[[(pyrazino[2,3-f] [1,10]phenanthroline) copper(II)]-μ-4,4'-oxydibenzoato] monohydrate].Acta Cryst,2007,E63:m2823.
    [128]G. B. Che, Z. L. Xu, C. B. Liu.catena-Poly[[(pyrazino[2,3-f] [1,10]phenanthroline) copper(I)]-μ2-chloro].Acta Cryst,2006,E62:m1370-m1372.
    [129]G. B. Che, C. B. Liu.A new dinuclear MnⅡ compound with intermolecular π-π interactions.Acta Cryst,2006,E62:m 1728-m 1730.
    [130]G. B. Che, Z. L. Xu.catena-Poly[aqua(pyrazino[2,3-f][1,10]phenanthroline-κ2N,N')copper(Ⅱ)]-μ-terephthalato-κ2O:O']N,N-dimethylformamide monohydrate].Acta Cryst,2006,E62:m3194-m3196.
    [131]G. B. Che, C. B. Liu, Poly[(μ4-naphthalene-1,4-dicarboxylato-K4O:O:O:O') (μ2-naphthalene-1,4-dicarboxylato-K2O:O')bis(pyrazino[2,3-f][1,10]phenanthroline-K2N,N' )dicopper(II)] tetrahydrate].Acta Cryst,2007,E63:m2984-m2985.
    [132]J.Q. Liu, Z. B. Jia, Y. Y. Wang. Syntheses, crystal structure, and luminescence properties of three new Cd(II) polymers based on different conformational carboxylates. Journal of Molecular Structure,2011,987:126-131.
    [133]M. X. Yang, S. Lin, S. N. Zheng, et al.Two 2D inorganic.organic hybrid materials constructed from (V2O6)n2n- chains linked through metal.organic units [Cd(ip)]/[Ni(ip)(H2O)].Inorganic Chemistry Communications,2010,13:1043-1046.
    [134]M. C. Hitchman.Measurement of Dissovled Oxygen.NewYork:Wlley,1978:130-135.
    [135]王秀峰,王永兰,金志浩.水热法制备纳米陶瓷粉体.稀有金属材料与工程,1995,24:1-6.
    [136]徐如人.无机合成与制备化学.北京:高等教育出版社,2001:128-163.
    [137]K. Byrappa, M. Yoshimura.Handbook of HydrothermalTechnology:A Technology for Crystal Growth and Materials Processing. New York:William AndrewPublishing, LLC Norwich,2001:1-43.
    [138]M. Yoshimura.Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants.J. Mater.Res,1998,13:94-117.
    [139]仲维卓.华素坤.纳米材料及其水热法制备.上海化工,1998,23:25-27.
    [140]M. Yoshimura.Electrochemical and Photoelectrochemical Processing for Oxide Film.MRS Bulletin,2000,25:12-13.
    [141]M. Yoshimura.In situ fabrication of morphology-controlled advanced ceramic materials by Soft Solution Processing.Solid State Ion. Diffus. React,1997,98:179-208.
    [142]A. Moghimi, R. Alizadeh, H. Aghabozorg, et al.Synthesis, Characterization and X-ray Crystal Structure of a Chromium(Ⅲ) Complex Obtained from a Proton-Transfer Compound Containing 1,10-Phenanthroline-2,9-dicarboxylic Acid and 2,6-Pyridinediamine. J. Mol. Struct,2005,750:166-173
    [143]M. Yoshimura.Electrochemical and Photoelectrochemical Processing for Oxide Film.MRS Bulletin,2000,25:17-25.
    [144]A. A. A. Abu-Hussen, A. A. A. Emara. Metal complexes of some thiocarbohydrazone ligands:Synthesis and structure.J. Coord. Chem.2004,57:973-987.
    [145]V. Yu. Kukushin, A. J. L. Pombeiro.Oxime and oximate metal complexes:unconventional synthesis and reactivity.J. Coord. Chem,1999,181:147-175.
    [146]H. Stunzi.Can chelation be important in the antiviral activity of isatin β-thiosemicarbazones.Aust. J. Chem,1982,35:1145-1155.
    [147]O. Z. Yesilel, A. Mutlu, C. Darcan, et al.Syntheses, structural characterization and antimicrobial activities of novel cobalt-pyrazine-2,3-dicarboxylate complexes with N-donor ligands. Journal of Molecular Structure,2010,964:39-46.
    [148]O. Z. Yesilel, A. Mutlu, O. Buyukgungor.A new coordination mode of pyrazine-2,3-dicarboxylic acid and its first monodentate complexes:Syntheses, spectral, thermal and structural characterization of [Cu(pzdca)(H2O)(en)2] H2O and [Cu(pzdca)(H2O)(dmpen)2]. Polyhedron,2008,27:2471-2477.
    [149]D. X. West, A. E. Libertia, S. B. Pandhey. Thiosemicarbazone complexes of copper(Ⅱ): structural and biological studies. J. Coord. Chem,1993,123:49-71.
    [150]A. Moghimi, R. Alizadeh, H. Aghabozorg, et al.Synthesis, Characterization and X-ray Crystal Structure of a Chromium(Ⅲ) Complex Obtained from a Proton-Transfer Compound Containing 1,10-Phenanthroline-2,9-dicarboxylic Acid and 2,6-Pyridinediamine. J. Mol. Struct,2005,750:166-173.
    [151]X. Y. Li, C. B. Liu, G. B. Che, et al.Four metal-organic networks based on benzene-1,4-dioxyacetic acid and dipyrido[3,2-a:2',3'-c]phenazine ligand. Inorg. Chim. Acta,2010,363:1359-1366.
    [152]M. Devereux, D. O'Shea, M. O'Connor, et al.Synthesis, catalase, superoxide dismutase and antitumour activities of copper(II) carboxylate complexes incorporating benzimidazole, 1,10-phenanthroline and bipyridine ligands:X-ray crystal structures of [Cu(BZA)2(bipy)(H2O)], [Cu(SalH)2(BZDH)2] and [Cu(CH3COO)2(5,6-DMBZDH)2] (SalH2= salicylic acid; BZAH= benzoic acid; BZDH= benzimidazole and 5,6-DMBZDH= 5,6-dimethylbenzimidazole). J. Polyhedron,2007,26:4073-4084.
    [153]X. He, Y. N. Li, G. H. Li, et al.Synthesis, crystal structure and magnetic properties of a new 1D cobalt(Ⅱ) complex with 1,10-phenanthroline and 3,5-dinitrosalicylate acid ligands.J. Inorganic Chemistry Communications,2005,8:983-987.
    [154]Z. B. Han, X. N. Cheng, X. M. Chen.Effect of the Size of Aromatic Chelate Ligands on the Frameworks of Metal Dicarboxylate Polymers:□ From Helical Chains to 2-D Networks.J. Crystal Growth & Design,2005,5:695-700.
    [155]M. L. Calatayud, J. Sletten, I. Castro, et al.Dithiosquarate (dtsq) complexes of nickel(Ⅱ). Syntheses and crystal structures of [Ni(phen)2(1,2-dtsq)]·3.5H2O, [Ni(phen)2(1,3-dtsq)] and [Ni(tren)(1,2-dtsq)] [phen= 1,10-phenanthroline; tren=tris(2-aminoethyl)amine].Inorg. Chim. Acta,2003,353:159-167.
    [156]M. Devereux, M. McCann, J.F. Cronin, et al.Binuclear and polymeric copper(Ⅱ) dicarboxylate complexes:syntheses and crystal structures of [Cu2(pda)(Phen)4](ClO4)2· 5H2O·C2H5OH, [Cu2(oda)(Phen)4](ClO4)2·2.67H2O·C2H5OH and {[Cu2(pda)2(NH3)4(H2O)2]4H2O}n (odaH2=octanedioic acid; pdaH2=pentanedioic acid; Phen= 1,10-phenanthroline).Polyhedron,1999,18:2141-2148.
    [157]Y. J. Huang, L. Ni, G. Du, et al.Synthesis, characterization and crystal structure of two metal-organic complexes with MOPIP.Chin. J. Inorg. Chem,2010,26:1267-1273.
    [158]Sheldrick G M. SHELXS 97, Program for the Solution of Crystal Structure, University of Gottingen 1997.
    [159]Sheldrick G M. SHELXS 97, Program for the Refinement of Crystal Structure,University of Gottingen 1997.
    [160]M. Ghosh, P. Biswas, U. Flo"rke,Structural, spectroscopic and redox properties of transition metal complexes of dipyrido[3,2-f:2',3'-h]-quinoxaline (dpq).Polyhedron,2007,26:3750-3762.
    [161]M. J. Krische, J. M. Lehn.The utilization of persistent H-bonding motifs in the self-assembly of supramolecular architectures.Struct. Bonding,2000,96:3-29.
    [162]Z. B. Han, X. N. Cheng, X. M. Chen.Effect of the Size of Aromatic Chelate Ligands on the Frameworks of Metal Dicarboxylate Polymers:□ From Helical Chains to 2-D Networks.Crystal growth & design,2005,5:695-670.
    [163]H. F. Chen, Y. Li, M. S. Wang, et al.A Silver Complex of 6,7-Dicyanodipyridoquinoxaline: pi-Stacking Interactions and Luminescence. Chinese J. Struct. Chem,2008,27:1398-1403.
    [164]F. H. Allen, O. Kennard, D. G. Watson, et al.Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J. Chem. Soc. Perkin Trans,1987,2:S1-S 19.
    [165]L. A. MacAdams, W. K. Kim, L. M. Liable-Sands, et al.The (Ph)2nacnac Ligand in Organochromium Chemistry.Organometallics,2002,21:952-960.
    [166]M. D. Stephenson, M. J. Hardie,Extended Structures of Transition Metal Complexes of 6,7-Dicyanodipyridoquinoxaline:π-Stacking, Weak Hydrogen Bonding, and CN…π Interactions.Crystal Growth and Design,2006,6:423-432.
    [167]M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al. Gaussian 03 Revision B.03,Gaussian, Inc, Pittsburgh PA,2003.
    [168]X. Peng, G. H. Cui, D. J. Li, et al.Synthesis, characterization, and theoretical calculations of mononuclear copper(II) benzoate complex with 2-propylimidazole, [Cu(PIM)2(PhCOO)2].J. Mol. Struct.2001,967:54-60.
    [169]O. Z. Yesilel, A. Mutlu, C. Darcan, et al.Syntheses, structural characterization and antimicrobial activities of novel cobalt-pyrazine-2,3-dicarboxylate complexes with N-donor ligands.Journal of Molecular Structure,2010,964:39-46.
    [170]O. Z. Yesilel, A. Mutlu, O. Buyukgungor.A new coordination mode of pyrazine-2,3-dicarboxylic acid and its first monodentate complexes:Syntheses, spectral, thermal and structural characterization of [Cu(pzdca)(H2O)(en)2] H2O and [Cu(pzdca) (H2O)(dmpen)2]. Polyhedron,2008,27:2471-2477.
    [171]Y. J. Huang, Y. C. Cui, G. Du. Hydrothermal Synthesis and Crystal Structure of a Zero-Dimensional Copper(Ⅰ) Complex with Isophthalic Acid and Medpq Ligands.Chin. J. Inorg. Chem,2009,25:1882-1884.
    [172]Y. C. Cui, Y. J. Huang, G. Du. Hydrothermal Synthesis and Crystal Structure of A Zinc Complex with Phthalic Acid and Medpq Ligands.Chin. J. Inorg. Chem,2009,25:734-737.
    [173]Z. L. Xu, X. Y. Li, G. B. Che, et al. Synthesis, crystal structure and magnetic behavior of a new manganese(II) coordination polymer [Mn(DPPZ)(PZDC)(H2O)] (DPPZ= dipyrido[3,2-a:2',3'-c]-phenazine and H2PZDC= pyrazine-2,3-dicarboxylic acid).Chin. J. Struct. Chem,2008,27:593-597.
    [174]G. B. Che, Z. S. Su, W. L. Li, et al.White-electrophosphorescent devices based on copper complexes using 2-(4-biphenylyl)-5-(4-tert-butyl-phenyl)-1,3,4-oxadiazole as chromaticity-tuning layer. Appl. Phys. Lett,2006,89:489-492.
    [175]Y. G. Huang, D. Q. Yuan, Y. Q. Gong, et al. Synthesis, structure and luminescent properties of lanthanide-organic frameworks based on pyridine-2,6-dicarboxylic acid.J. Mol. Struct,2008,872:99-104.
    [176]M. A. Masood, T. Storr, T. D. P. Stack. Synthesis, characterization and copper chemistry of a non-symmetric phenanthroline ligand:2-Methyl-9-(3,5-dimethyl-N- pyrazolylmethyl)-1, 10- phenanthroline.Inorg. Chim. Acta,2008,361:1142-1148.
    [177]D. X. Xue, W. X. Zhang, X. M. Chen, Synthesis, structures, and physical properties of metal flexible dicarboxylate frameworks with dipyridyl coligand.J. Mol. Struct,2008,877:36-43.
    [178]C. B. Li, S. Zhou, X. M. Li, et al.Hydrothermal Synthesis and Crystal Structure of a Cadmium(Ⅱ) Polymerwith One-dimensional Chain Structure: [Cd(MDPPz)(BDC)(H2O)]n.Chin. J. Struc. Chem,2007,26:1349-1352.
    [179]Y. Sun, X. H. Liu, X. Zhang, et al.Crystal structure and quantum chemistry calculation of bis-benzimidazolylpropane perchlorate.Chin. J. Struc. Chem,2004,23:803-807.
    [180]N. Y. Jiang, S. L. Li.Synthesis and structural characterization of a new hydrogen-bonded polyrotaxane of [Co(H2O)6]2+ with 1,1'-(propane-1,3-diyl)dipyridinium-4-carboxylate.Chin. J. Struc. Chem,2006,25:957-964.
    [181]N. Y. Jiang, S. L. Li.Characterization and Crystal Structures of Two Copper(II)Complexes Constructed by a Flexible Double Betaine Ligand.Chin. J. Struc. Chem,2007,26:199-205.
    [182]Z. L. Xu, X. Y. Li, G. B. Che, et al.Synthesis, crystal structure and magnetic behavior of a new manganese(II) coordination polymer [Mn(DPPZ)(PZDC)(H2O)] (DPPZ= dipyrido[3,2-a:2',3'-c]-phenazine and H2PZDC= pyrazine-2,3-dicarboxylic acid),Chin. J. Struc. Chem,2008,27:593-597.
    [183]S. A. Bourne, J. J. Lu, A. Mondal, et al.Self-assembly of nanometer-scale secondary building units into an undulating two-dimensional network with two types of hydrophobic cavity.J. Angew. Chem. Int. Ed,2001,40:2111-2113.
    [184]X. Peng, G. H. Cui, D. J. Li, T.F. Liu, Synthesis, characterization, and theoretical calculations of mononuclear copper(Ⅱ) benzoate complex with 2-propylimidazole, [Cu(PIM)2(PhCOO)2].J. Mol. Struct.2001,967:54-60.
    [185]T. W. Wang, Y. Z. Li.Synthesis, Crystal Structure and Magnetic Property of A Trinuclear Oxo-Centered Mixed-Valuated Manganese Complex [Mn3O(O2CCHClCH3)6(py)2(H2O)] 2/3H2O.Chin. J. Inorg. Chem,2009,25:652-655.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700