用户名: 密码: 验证码:
三峡库区紫色砂岩区柑橘地优先路径分布及其对溶质运移影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以重庆市江津区柑橘地为研究对象,进行了室外土壤优先路径染色试验,土壤特性及根系因子调查,土样采集;室内水分穿透曲线试验、原状土柱及重塑土柱的溶质穿透曲线等试验,结合以毛细管理论为基础的泊肃叶方程和稳态水流方程(土壤水分穿透曲线理论)、对流弥散理论以及两区、两流区模型对试验结果进行分析,结果显示:
     (1)染色区较非染色区有更大的稳定出流速率,大孔隙使染色区的水分渗透速率较非染色区提高了1.48倍以上,随着土层深度增加,其提高程度有增大的趋势。虽然染色区较非染色区更利于水分或溶液传导,但相比非染色区,染色区水分渗透曲线的波动更大。柑橘地大孔隙孔径范围在0.3~1.7mm之间,0.3~0.7mm孔径数量虽然为104数量级,但对染色溶液优先迁移的作用较弱;实际影响染色溶液迁移的为半径大于0.7mm的土壤大孔隙;20年林龄柑橘地10~20cm土层有效大孔隙数量高于10年林龄柑橘地。半径大于1.0mm的大孔隙在水分输入初期起到迅速排导水分的作用。柑橘地土壤大孔隙率在1.5~19.5%之间,与稳定出流速率呈极显著正相关关系,决定了稳定出流速率71.9%的变异;半径大于0.7mm的大孔隙数量与稳定出流速率呈极显著正相关关系,决定了稳定出流速率90.9%的变异。
     (2)柑橘地土壤中的优先路径改变了水分和溶质入渗过程,使得优先流染色面积较均匀下渗的基质流染色面积小,样地20-30cm土层水平剖面染色面积和垂直剖面染色面积都在7%以下。在土壤质地差异较小的两个样地内,优先路径与除饱和导水率以外的其他土壤特性关系不大,与饱和导水率之间有显著相关关系(P<0.05)。1-3mm径级范围内的根系长度与优先路径之间存在极显著相关关系(P<0.01),直径大于3mm和小于1mm的根系长度均与优先路径的关系不显著。随着林龄的增加,深根性柑橘树的根系会向垂直和水平方向延伸生长,水平范围广泛分布的根系(径级1-3mm)导致优先路径在水平方向上延伸范围加大,1-3mm径级范围内根系长度是影响优先路径分布的主要因素。
     (3)柑橘地原状土柱土壤穿透曲线表现出了上升阶段的拐点现象,是优先流与基质流共同作用的结果。原状土柱土体穿透曲线下降初期较陡并表现出了较长的拖尾特征,重塑土柱下降趋势相对稳定。存在优先路径的土体出流速率稳定性较差,变异系数较大,其平均出流速率是重塑土柱出流速率的3.5倍。优先流作用使溶质相对浓度到达峰值的时间缩短了37.7%,此时造成的溶质运移量却是平衡基质流所造成的溶质运移量的2.5倍,因此优先流能够导致土壤溶质的快速大量迁移。
Soil macropore characteristics under different citrus land in Jiangjin city of Chongqing was analyzed using brilliant blue dye method, water breakthrough curve and Poiseulle equation. The characteristic of preferential flow and preferential transport was analyzed with undisturbed and packed soil columns applied breakthrough curve (BTC). Brilliant blue dye method, water breakthrough curve, Poiseulle equation and fractal theory were applied to analyse the soil macropore quantitative characteristic and soil macropore flow hydraulic properties under different citrus land in Jiangjin city, Chongqing. The main results in this research were as follows:
     (1) The steady effluent rate of the dye-stained area was more than1.48times higher than the dye-unstained area and the ratio become higher with soil depth. Water breakthrough curves in the dye-stained area had a bigger fluctuation than that in the dye-unstained area. The radii of soil macropores were from0.3mm to1.7mm. Radii (0.3-0.7mm) had little effect on preferential flow despite the104magnitude. The macropores with radii larger than0.7mm was the main factor affecting the preferential flow. At the10-20cm soil layer, the number of soil macropores under20-year-old citrus land was larger than that under10-year-old citrus land. The macropores with radii larger than1.0mm was the main preferential flow path in the initial stage of water input. The macroporosity was positively (P<0.01) related to the steady effluent rate in the range from1.5%to19.5%which contributed71.9%to the variance of steady effluent rate. The macropores with radii larger than0.7mm was positively (P <0.01) related to the steady effluent rate which contributed90.9%to the variance of steady effluent rate.
     (2) Distribution of preferential flow path under different citrus land in Jiangjin city of Chongqing was analyzed. The relationship of the preferential flow paths to the properties of the soil, root length per soil volume was analyzed. The distribution of preferential flow path was analyzed using brilliant blue dye method and image analysis. The correlation of the preferential flow paths to the properties of the soil, root length per soil volume was analyzed with SPSS. The results showed that the percentage of both horizontal dye-stained area and vertical dye-stained area under different citrus land were below7%because of the infiltration of water and solute changed by preferential flow path. The saturated hydraulic conductivity was the only parameter of soil properties significantly (at the0.05level) related to horizontal dye-stained soil under different citrus land with similar soil texture. Preferential flow path is the important channel of water and solute despite the little dye coverage. The preferential flow path was significantly (at the0.01level) related to the root length per soil volume with root diameter in the range from1mm to3mm. The root in20-year-old citrus land was deeper and lager than the root in10-year-old citrus land. The preferential flow path was enlarged by the widely distributed roots in horizontal. The root length per soil volume with diameter in the range from1mm to3mm was the main affecting factor of preferential flow path under citrus land in Jiangjin city, Chongqing. The root length per soil volume with diameters both greater than3mm and less than1mm had no relationship with preferential flow path.
     (3) The effect of preferential flow and matrix flow was responsible for the turning point in the rising phase of BTC in undisturbed soil column. In the decreasing phase, compared with packed soil column with a relatively steady effluent rate, undisturbed soil column has a long trailing. Preferential flow was the contribution to the less stable of soil effluent rate and coefficient of variation. The average effluent rate of undisturbed soil column is3.5times higher than the average effluent rate of packed soil column. Preferential flow shortened the breakthrough time of37.7%while transported2.5times solute higher than matrix flow when the solute relative concentration reaching the peak. Preferential flow can lead a fast mass of soil solute migration.
引文
[1]陈风琴,石辉.岷江上游三种典型植被下土壤优势流现象的染色法研究[J].生态科学,2006,25(1):69-73.
    [2]郭瑞,冯起,司建华,等.土壤水盐运移模型研究进展[J].冰川冻土.2008,30(3):527-534.
    [3]何凡,张洪江,史玉虎,等.长江三峡花岗岩地区降雨因子对优先流的影响[J].农业工程学报.2005(3):75-78.
    [4]黄昌勇.土壤学[M].北京:中国农业出版社,2000.
    [5]李伟莉,金昌杰,王安志,等.长白山北坡2种类型森林土壤的大孔隙特征[J].应用生态学报,2007,18(6):1213-1218.
    [6]刘亚平,陈川.土壤非饱和带中的优先流[J].水科学进展,1996,7(1):85-89.
    [7]马东豪,王全九.土壤溶质迁移的两区模型与两流区模型对比分析[J].水利学报,2004(6):92-97.
    [8]倪余文,区自清,应佩峰.土壤优先水流及溶质优先迁移的研究[J].应用生态学报,2001,12(1):103-107.
    [9]牛健植,余新晓,张志强.优先流研究现状及发展趋势[J].生态学报,2006,26(1):231-243.
    [10]牛健植,余新晓,张志强.贡嘎山暗针叶林生态系统溶质优先运移分析[J].北京林业大学学报,2009,31(5):48-53.
    [11]区自清,贾良清,金海燕,等.大孔隙和优先水流及其对污染物在土壤中迁移行为的影响[J].土壤学报,1999,36(3):341-347.
    [12]邵明安,王全九,黄明斌.土壤物理学[M].北京:高等教育出版社,2006.
    [13]石辉,刘世荣.森林土壤大孔隙特征及其生态水文学意义[J].山地学报,2005a,23(5):533-539.
    [14]石辉,陈风琴,刘世荣.岷江上游森林土壤大孔隙特征及其对水分出流速率的影响[J].生态学报,2005b,25(3):507-5]2.
    [15]时忠杰,王彦辉,徐丽宏,等.六盘山典型植被下土壤大孔隙特征[J].应用生态学报,2007,18(12):2675-2680.
    [16]黄昌勇.土壤学[M].北京:中国农业出版社,2000.
    [17]孙龙,张洪江,程金花,等.重庆江津区柑橘地土壤大孔隙特征[J].水土保持学报,2012a,26(3):194-198.
    [18]孙龙,张洪江,程金花,等.柑橘地土壤溶质优先运移研究[J].水土保持学报.2012b,26(6):63-67.
    [19]孙龙,张洪江,程金花,等.柑橘地土壤大孔隙与优先流的关系研究[J].水土保持通报.2012c,32(6):75-79.
    [20]孙龙,张洪江,程金花,等.柑橘林地优先路径分布及其影响因素[J].东北林业大学学报.2013,41(2):65-69.
    [21]王康,张仁铎,王富庆.基于连续分形理论的土壤非饱和水力传导度的研究[J].水科学进展,2004(2):206-210.
    [22]王康.非饱和土壤水流运动及溶质迁移[M].北京:科学出版社,2010.
    [23]王全九,邵明安,郑纪勇.土壤中水分运动与溶质迁移[M].北京:中国水利水电出版社,2007.
    [24]王伟.三峡库区紫色砂岩林地土壤优先流特征及其形成机理[D].北京林业大学博士论文,
    [25]王伟,张洪江,程金花,等.四面山阔叶林土壤大孔隙特征与优先流的关系[J].应用生态学报,2010,21(5):1217-1223.
    [26]詹卫华,黄冠华.土壤水力特性分形特征的研究进展[J].水科学进展,2000,11(4):457-462.
    [27]盛丰,王康,张仁铎,等.用分形特征参数定量描述土壤水流运动的非均匀程度[J].水利学报,2009,40(12):1432-1439.
    [28]盛丰,张仁铎,刘会海.土壤优先流运动的活动流场模型分形特征参数计算[J].农业工程学报,2011,27(3):26-32.
    [29]张洪江,程金花,何凡,等.长江三峡花岗岩地区优先流运动及其模拟[M].北京:科学出版社,2006.
    [30]张洪江,王礼先.长江三峡花岗岩坡面土壤流失特性及其系统动力学仿真[M].北京:中国林业出版社,1997.
    [31]张洪江,王玉杰,北原曜,等.长江三峡花岗岩坡面管流实验研究[J].北京林业大学学报,2000(5):53-57.
    [32]赵景波,贺秀斌,邵天杰.重庆地区紫色土和紫色泥岩的物质组成与微结构研究[J].土壤学报.2012,49(2):212-219.
    [33]周明耀,余长洪,钱晓晴.基于孔隙分形维数的土壤大孔隙流水力特征参数研究[J].水科学进展,2006,17(4):466-470.
    [34]周虎,吕贻忠,李保国.土壤结构定量化研究进展[J].土壤学报,2009,46(3):501-506.
    [35]周鑫斌,温明霞,王秀英,等.三峡重庆库区柑橘园氮素平衡状况研究[J].植物营养与肥料学报,2011,17(1):88-94.
    [36]Ahuja L R, Fiedler F, Dunn G H, et al. Changes in soil water retention curves due to tillage and natural reconsolidation[J]. Soil Science Society of America Journal,1998,62(5):1228-1233.
    [37]Allaire-Leung S E, Gupta S C, Moncrief J F. Water and solute movement in soil as influenced by macropore characteristics:1. Macropore continuity [J]. Journal of Contaminant Hydrology,2000, 41(3-4):283-301.
    [38]Allaire S E, Roulier S, Cessna A J. Quantifying preferential flow in soils:A review of different techniques [J]. Journal of Hydrology,2009,378(1-2):179-204.
    [39]Baker R S, Hillel D. Laboratory tests of a theory of fingering during infiltration into layered soils [J]. Soil Science Society of America Journal,1990,54(1):20-30.
    [40]Besson A, Javaux M, Bielders C L, et al. Impact of tillage on solute transport in a loamy soil from leaching experiments [J]. Soil and Tillage Research,2011,112(1):47-57.
    [41]Beven K., Germann P. Macropores and water flow in soils [J]. Water Resources Research,1982, 18(5):1311-1325.
    [42]Bouma J, Dekker L W. A case study on infiltration into dry clay soil I. Morphological observations [J]. Geoderma,1978,20(1):27-40.
    [43]Brakensiek D L, Rawls W J, Longsdon S D, et al. Fractal description of macroporosity [J].Soil Science Society of America Journal,1992,56(6):1712-1723.
    [44]Bundt M, Albrecht A, Froidevaux P, et al. Impact of preferential flow on radionuclide distribution in soil[J]. Environmental Science and Technology,2000,34(18):3895-3899.
    [45]Bundt M, Widmer F, Pesaro M, et al. Preferential flow paths:Biological‘hot spots’in soils [J]. Soil Biology Biochemistry,2001,33(6):729-738.
    [46]Cheng J H, Zhang H J, Wang W, et al. Changes in preferential flow path distribution and its affecting factors in southwest China[J].Soil Science,2011,176(12):652-660.
    [47]Clothier B E, White I. Measurement of sorptivity and soilwater diffusivity in the field [J]. Soil Science Society of America Journal,1981,45(2):241-245.
    [48]Clothier B E, Kirkham M B. McLean J E. In situ measurements of the effective transport volume for solute moving through soil [J]. Soil Science Society of America Journal,1992,56(3):733-736.
    [49]Coats K H, Smith B D. Dead-end pore volume and dispersion in porous media [J]. Society of Petroleum Engineers Journal,1964,4(1):73-84.
    [50]Edwards W M,Norton L D,Redmond C E. Characterizing macropores that affect infiltration into nontilled soil[J].Soil Science Society of America Journal,1988,52(2):483-487.
    [51]Edwards W M, Shipitalo M J, Dick W A, et al. Rainfall intensity affects transport of water and chemicals through macropores in no-till soil [J]. Soil Science Society of America Journal,1992, 56(1):52-58.
    [52]Ellsworth T R, Jury W A, Ernst F R, et al. A three-dimensional field study of solute transport through unsaturated, layered, porous media 1. Methodology, mass recovery, and mean transport [J]. Water Resources Research,1991,27(5):951-967.
    [53]Flury M. Experimental evidence of transport of pesticides through field soils:A review [J].Journal of Environmental Quality,1996,25(1):25-45.
    [54]Flury, M., Flühler, H. Tracer characteristics of brilliant blue FCF [J]. Soil Science Society of America Journal,1995,59(1):22-27.
    [55]Flury M, Flüler H, Jury W A, et al. Susceptibility of soils to preferential flow of water:A field study [J]. Water Resources Research,1994,30(7):1945-1950
    [56]Forrer I, Papritz A, Kasteel R, et al. Quantifying dye tracers in soil profiles by image processing [J].European Journal of Soil Science,2000,51 (2):313-322.
    [57]Gish T J, Coffman C B. Solute transport under no-till field corn [J]. Transactions of the ASAE, 1987,30(5):1358-1363.
    [58]Gish T J, Jury W A. Estimating solute traveltimes through a crop root zone [J]. Soil Science,1982, 133 (2):124-130.
    [59]Hillel D. Unstable flow in layered soils:A review [J]. Hydrological Processes,1987,1(2):143-147.
    [60]Jaynes D B, Logsdon S L, Horton R. Field method for measuring mobile/immobile water content and solute transfer rate coefficient [J]. Soil Science Society of America Journal,1995, 59(2):352-356.
    [61]Li Y M, Ghodrati M. Preferential transport of solute through soil columns containing constructed macropores [J].Soil Science Society of America Journal,1997,61(5):1308-1317.
    [62]Liu H H, Zhang R, Bodvarsson G S. An active region model for capturing fractal flow patterns in unsaturated soils:Model development [J].Journal of Contaminant Hydrology.2005,80(1-2):18-30.
    [63]Logsdon S D, Allmaras R R, Wu L, et al. Macroporosity and its relation to saturated hydraulic conductivity under different tillage practices [J].Soil Science Society of America Journal,1990, 54(4):1096-1101.
    [64]Logsdon S D. Transient variation in the infiltration rate during measurement with tension infiltrometers [J]. Soil Science.1997,162(4):233-241.
    [65]Mandelbrot B B. The Fractal Geometry of Nature [M]. New York:W. H. Freeman and Company, 1983.
    [66]Malone R W,Logsdon S,Shipitalo M J,et al.Tillage effect on macroporosity and herbicide transport inpercolate[J].Geoderma,2003,116(1-2):191-215.
    [67]Mooney S J, Morris C. Morphological approach to understanding preferential flow using image analysis with dye tracers and X-ray computed tomography. Catena,2008,73(2):204-211.
    [68]Morris C, Mooney S J, Young S D. Sorption and desorption characteristics of the dye tracer, Brilliant Blue FCF, in sandy and clay soils [J]. Geoderma,2008,146(3-4):434-438.
    [69]Nielsen D R, Biggar J W.Miscible displacement in soils:I. Experimental information [J].Soil Science Society of America Process,1961,25(1):1-5.
    [70]Ohrstrom P, Hamed Y, Persson M, et al. Characterizing unsaturated solute transport by simultaneous use of dye and bromide[J]. Journal of Hydrology,2004,289(1-4):23-35.
    [71]Peyton R L, Gantzer C J, Stephen H, et al. Fractal dimension to describe soil macropore structure using X ray computed tomography [J]. Water Resources Research,1994,30 (3):691-700.
    [72]Perfect E, McLaughlin N B, Kay B D, et al. An improved fractal equation for the soil water retention curve [J]. Water Resources Research,1996,32 (2):281-287.
    [73]Perret J S, Prasher S O, Kacimov A R. Mass fractal dimension for soil macropores using computed tomography:from the box-counting to the cube-counting algorithm [J]. European Journal of Soil Science,2003,54(3):569-579.
    [74]Perrier E, Rieu M, Sposito G, et al. Models of the water retention curve for soils with a fractal pore size distribution [J]. Water Resources Research,1996,32 (10):3025-3031.
    [75]Radulovich R, Solorzano E, Sollins P. Soil macropore size distribution from water breakthrough curves [J].Soil Science Society of America Journal,1989,53(2):556-559.
    [76]Rawls W J, Brakensiek D L, Saxton K E. Estimation of soil water properties [J]. Transactions of the ASAE,1982,25(5):1316-1320.
    [77]Rawls W J, Brakensiek D L, Logsdon S D. Predicting saturated hydraulic conductivity utilizing fractal principles [J]. Soil Science Society of America Journal,1993,57(5):1193-1197.
    [78]Rieu M, Sposito G. Fractal fragmentation, soil porosity, and soil water properties:Ⅰ. Theory [J]. Soil Science Society of America Journal,1991a,55(5):1231-1238.
    [79]Rieu M, Sposito G. Fractal fragmentation, soil porosity, and soil water properties:Ⅱ. Applications [J]. Soil Science Society of America Journal,1991b,55(5):1239-1244.
    [80]Ritsema C J, Dekker L W. Preferential flow mechanism in a water repellent sandy soil [J]. Water Resources Research,1993,29 (7):2183-2193.
    [81]Shaw J N, West L T, Radcliffe D E, et al. Preferential Flow and Pedotransfer Functions for Transport Properties in Sandy Kandiudults[J]. Soil Science Society of America Journal,2000, 64(2):670-678.
    [82]Sheng F, Wang K, Zhang R, et al. Characterizing soil preferential flow using iodine-starch staining experiments and the active region model [J]. Journal of Hydrology,2009,367(1-2):115-124.
    [83]Simunek J, Jarvis N J, van Genuchten M T, et al. Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone [J]. Journal of Hydrology, 2003,272(1-4):14-35.
    [84]Simunek J, van Genuchten M T. Estimating unsaturated soil hydraulic properties from tension disc infiltrometer data by numerical inversion[J]. Water Resources Research,1996,32(9):2683-2696.
    [85]Singh P, Kanwar R S.Preferential solute transport through macropores in large undisturbed saturated soil columns [J].Journal of Environmental Quality,1991,20(1):295-300.
    [86]Skopp J,Gardner W R,Tyler E J.Solute movement in structured soils:Two-region model with small interaction [J].Soil Science Society of America Journal,1981,45(5):837-842.
    [87]Sollins P, Radulovich R.Effects of soil physical structure on solute transport in a weathered tropical soil [J].Soil Science Society of America Journal,1988,52(4):1168-1173.
    [88]Stamm C, Fluhler H, Gachter R, et al. Preferential transport of phosphorus in drained grassland soils [J]. Hournal of Environment Quality.1998,27(3):515-522.
    [89]Tyler S W, Wheatcraft S W. Application of fractal mathematics to soil water retention estimation [J]. Soil Science Society of America Journal,1989,53(4):987-996.
    [90]Tyler S W, Wheatcraft S W. Fractal processes in soil water retention [J]. Water Resources Research, 1990,26(5):1047-1054.
    [91]van Genuchten M T, Wierenga P J. Mass transfer studies in sorbing porous media:I. Analytical solutions [J]. Soil Science Society of America Journal,1976,40(4):473-480.
    [92]Wang K, Zhang R D, Yasuda H. Characterizing heterogeneity of soil water flow by dye infiltration experiments [J]. Journal of Hydrology,2006,328(3-4):559-571.
    [93]Watson K W, Luxmoore R J. Estimating macroporosity in a forest watershed by use of a tension infiltrometer [J]. Soil Science Society of America Journal.1986,50(3):578-582.
    [94]Weiler M, Naef F. An experimental tracer study of the role of macropores in infiltration in grassland soils [J]. Hydrological Processes,2003,17(2):477-493.
    [95]Weiler M, Fliihler H. Inferring flow types from dye patterns in macroporous soils[J]. Geoderma, 2004,120(1-2):137-153.
    [96]Wilson G V, Luxmoore R J. Infiltration, macroporosity, and mesoporosity distributions on two forested watersheds [J].Soil Science Society of America Journal,1988,52(2):329-335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700