用户名: 密码: 验证码:
中亚热带韶山森林的大气沉降特征及对酸沉降的生态响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,随着经济迅猛发展导致的燃料的大量消耗,使我国的酸沉降问题愈演愈烈,我国南方已成为继欧美之后的第三大酸沉降区,而且呈现不断发展的趋势,而地处中南的湖南更是受到酸沉降的严重污染,酸雨频率长期居高不下。森林生态系统为酸沉降提供了巨大的接受面,过量的酸沉降可能会对森林生态系统产生严重的影响,导致土壤酸化,甚至使森林衰退。那么,研究森林生态系统对酸沉降的生态响应过程并及时提出酸沉降的控制措施,对防止森林衰退显得至关重要。因此,本论文选择具有典型亚热带特征的湖南韶山森林为研究对象,研究了韶山的大气沉降特征和酸沉降下韶山森林生态系统的生态响应过程,可为我国乃至世界酸沉降下的森林生态响应研究积累宝贵资料,同时为韶山的酸沉降控制和森林资源管理提供决策参考,具有一定的实践意义。
     研究课题组2001年~2004年在韶山针阔叶混交林设置了4个标准样方进行气象、气体和气溶胶、降雨、林内穿透水、凋落物和地表径流的监测,研究了韶山大气干湿沉降的典型特征,采用正定矩阵方法(PMF)对韶山降雨和气溶胶的离子来源进行了解析,深入分析了韶山森林生态系统中盐基离子、营养氮及溶解性有机碳的时空动态变化规律,探讨了韶山森林冠层、亚冠层和凋落物层对酸沉降的酸化缓冲影响作用机制,并采用收支平衡理论评估了韶山森林生态系统的氮饱和状况,采用稳态模型计算了韶山森林的氮沉降临界负荷,最后尝试采用BP神经网络对韶山降水和地表水酸度进行了预测,研究取得了如下一些成果:(1)韶山降水酸性较强,年均pH值均低于5.0,酸雨频率非常高,普遍达到90%以上,大气降水中离子基本平衡,SO42-/NO3-比值在1.72-5.65之间,韶山降水仍属于硫酸型降水,该比值呈逐渐降低的趋势,表明氮氧化物的贡献在增强。采用沉降速率法和净穿透通量法估算韶山大气中硫的干沉降通量月均值分别为188 mg m~(-2) month~(-1)和105.25 mg m~(-2) month~(-1)。采用正定矩阵方法(PMF)对韶山降雨和气溶胶的离子来源解析结果表明土壤尘是韶山气溶胶和降水化学成分最主要的来源,其次是农业源,另外,交通排放源和高空远距离输送对降水成分来源也有一定的贡献。(2)韶山森林冠层及亚冠层对酸沉降均表现出了良好的缓冲作用,植被对酸性降水比较敏感,冠层的缓冲作用较亚冠层强烈。韶山森林冠层和亚冠层盐基淋溶总通量分别为259.84 meq m~(-2) a~(-1)和63.3 meq m~(-2) a~(-1),其对H~+的吸收通量分别为165.9 meq m~(-2) a~(-1)和40.9 meq m~(-2) a~(-1),冠层和亚冠层盐基淋溶总通量要高于其对H~+的吸收通量,这主要是与韶山森林的弱酸滤出消耗盐基阳离子有关。韶山森林凋落物淋滤液pH值均高于表层土壤pH值均值,但由于凋落物中盐基阳离子不足以抵消凋落物分解产生的有机酸类物质的酸化作用,在春、夏、秋季并不能降低雨水酸度,而是增加其酸度,但在冬季是一个较强的酸缓冲系统。(3)韶山森林冠层、亚冠层和凋落物层DOC浓度对降雨酸度并不敏感,亚冠层对DOC表现出一定的吸附或吸收作用,韶山森林DOC的积累主要出现在凋落物层,年总净增量达到11.08 g m~(-2) a~(-1)。地表径流中DOC浓度与其pH值呈正的相关关系,但通过地表径流输出的DOC浓度很低,输出通量亦较少。(4)韶山森林无机氮输入以NH_4~+-N为主,年均总输入量达到3.136 g m~(-2) a~(-1),但尚未超过氮沉降临界负荷估算值,地表径流中无机氮输出以NO3--N为主,输出通量平均值为0.22 g m~(-2) a~(-1),仅占输入总无机氮的7%,即有超过90%以上的无机氮被截留,尽管韶山森林有高氮的输入,但是其生态系统还没有达到氮饱和状态。(5)采用BP神经网络模型,对降水和地表径流的酸度进行了模拟预测,选择SO_4~(2-)、NO_3~-、Ca~(2+)、NH_4~+的浓度与组合因子(Ca~(2+)+NH_4~+)/(SO_4~(2-)+NO_3~-)作为输入,以降雨pH值作为输出,预测值的绝对误差均在±0.5个pH值单位之内,而选择降雨酸度和前一次地表径流酸度作为输入,以地表径流的pH值作为输出,预测值的绝对误差均在±0.15个pH值单位之内,表明BP神经网络模型精度较高,可以用来粗略预测韶山降雨和地表径流的酸度。
In recent decades, the problem of acid deposition is intensified in China due to the consumption of large quantities of fuel as a result of rapid economic development, and the South China has become the third largest acid deposition zone after Europe and America, also showed the trend of continuous development, and Hunan province located at Central-south China is even more serious, acid rain frequency is long-term high. Forest ecosystems provides a great receptor surface to acid deposition, excess acid deposition may be affected it seriously, leading to soil acidification, forest decline and even so. So, study of acid deposition on forest ecosystems, the ecological response to acid deposition process and propose the controlling method to prevent forest decline is crucial. Therefore, this paper select the typical characteristics of Shaoshan subtropical forest as research object, studying the characteristics of atmospheric deposition, the effect to Shaoshan forest ecosystems by acid deposition and feedback mechanism, can accumulate a useful data of forest ecological responses under acid deposition for China even for the world, and at the same time, can provided a practical application consultation for acid deposition controlling and forest resource management in Shaoshan.
     Four criteria plots were set in Shaoshan mixed forest, where acid deposition、rainfall below canopy and stream water were monitored from January 2001 to December 2004. We studied the characteristics of atmospheric dry and wet deposition of Shaoshan, analyzed the ion source of bulk precipitation and aerosol by employing PMF method, also analyzed the temporal and spatial dynamic change characteristics of base cations, nutrient nitrogen and dissolved organic carbon in forest ecosystems, then we discussed the acid buffering effect to acid deposition from canopy, sub-canopy and litterfall layer. We evaluated the nitrogen saturation condition by using in-out budget theory and calculated the critical loads of nitrogen by simple mass balance (SMB) method, and used BP neural network to forecast the acid of precipitation and stream water. The research results showed that: (1) The precipitation acidity in Shaoshan is strong, the annual average pH values is below 5.0, acid rain frequency is very high, generally above 90%, the basic ions in precipitation is poised, the ratio of SO42-/NO3- is between 1.72 to 5.65, so precipitation type is still a sulfuric acid precipitation, but the ratio is gradually decreased, indicating that the contribution of nitrogen oxides is increased. The mean dry deposition flux of sulfur is 188 mg m~(-2) month~(-1) and 105.25 mg m~(-2) month~(-1) estimating by sedimentation rate method and the net flux method separately. The PMF analytical method of rainfall and aerosol in Shaoshan show that the most important source is soil dust, followed by agricultural sources, and some contribution is just come from traffic sources and long-range transport. (2) The canopy and sub-canopy in Shaoshan forest have shown a good buffering effect, vegetation is sensitive to acid rain, the buffering effect of the canopy is stronger than sub-canopy. The mean net leaching fluxes of base cations is 259.84 meq m~(-2) a~(-1) and 63.3 meq m~(-2) a~(-1) from canopy and sub-canopy respectively, which is higher than the H~+ absorbing fluxes, with 165.9 meq m~(-2) a~(-1) and 40.9 meq m~(-2) a~(-1), because of weak acid leaching. The value of pH in litterfall leaching is higher than the average pH of surface soil layer, but because the base cations leaching from litterfall are not enough to counteract the organic acid produced by litterfall decomposition in spring, summer and autumn, so the pH of litterfall leaching is going down in these seasons except in winter, and litterfall in Shaoshan forest is a fine acid-buffering system in winter. (3) There is no evident influence between DOC concentration and bulk precipitation acidity, whether in canopy or in litterfall leaching. Some absorbing phenomenon of DOC has been found in sub-canopy, and accumulation of DOC mainly occurred in litterfall layer in Shaoshan forest, with net DOC fluxes of 11.08 g m~(-2) a~(-1). A posistive relationship between DOC concentration and pH in stream water is also found, but the output DOC concentration and flux by stream water is very low. (4)The input of inorganic nitrogen in Shaoshan is major in NH_4~+-N, mean fluxes of inorganic nitrogen input is 3.136 g m~(-2) a~(-1), but luckily is that it is lower than critical loads of nitrogen. The output of inorganic nitrogen in Shaoshan is major in NO3--N, mean fluxes of inorganic nitrogen output is 0.22 g m~(-2) a~(-1), just as 7% of inorganic nitrogen input, that to say, more than 90% of inorganic nitrogen is reserved in forest. Though high inorganic nitrogen emission and deposition have been found, Shaoshan forest is nitrogen-limited and far from nitrogen saturation. (5) We simulated the rainfall and stream water acidity using BP neural network model, found that when we selected the concentrations of SO42-, NO3-, Ca2+, NH_4~+ and combination of factors (Ca2++NH_4~+)/(SO42-+NO3-) as input, and pH value of precipitation as output, the absolute forecast errors are within±0.4 pH units. We selected precipitation acidity and the acidity of the previous stream water as input, and selected the pH value of stream water as output, the predicted absolute errors are within±0.1 pH units, suggesting that the BP neural network model has high precision and can be used to predict acidity of rainfall and stream water in Shaoshan.
引文
[1]唐一平,姚檀栋.气溶胶在雪面干沉积研究进展.冰川冻土, 2007, 29(5): 738-745.
    [2]张强,黄世鸿.估算大气边界层内气溶胶干沉降速度和浓度垂直分布的方法.甘肃科学学报, 1995, 7(4): 50-57.
    [3]邵敏,李金龙. AMS方法在大气气溶胶来源研究中的应用.环境科学学报, 1996, 16(2): 130-141.
    [4]汪安璞.我国大气污染化学研究进展.环境科学进展, 1994, 2(3): 1-18.
    [5]吴兑,邓雪娇,叶燕翔,等.岭南山地气溶胶物理化学特征研究.高原气象, 2006, 25(5): 878-885.
    [6] Andreae MO, Crutzen PJ. Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science, 1997, 276: 1052-1058.
    [7] Van Malderen H, Van Grieken R, Khodzher T, et al. Composition of individual aerosol particles above Lake Baikal, Siberia. Atmospheric Environment, 1996, 30(9): 1453-1465.
    [8]姚青,孙玫玲,张长春,等.潮州沿海大气气溶胶无机离子浓度分布与气象要素的相关分析.气象与环境学报, 2007, 23(7): 40-42.
    [9]万显烈.大连市区大气气溶胶的无机化学特征分析.中国环境监测, 2005, 21(1): 22-23.
    [10]于丽敏,祁建华,孙娜娜,等.南、黄海及青岛地区大气气溶胶中无机氮组分的研究.环境科学学报, 2007, 27(2): 319-325.
    [11]张养梅,颜鹏,杨东贞,等.临安大气气溶胶理化特性季节变化.应用气象学报, 2007, 18(5): 636-644.
    [12] Treiger B, Bondarenko I, Van Malderen H, et al. Elucidating the composition of atmospheric aerosols through the combined hierarchical, non-hierarchical and fuzzy clustering of large electron probe microanalysis data sets. Analytica Chimica Acta, 1995, 317(1-3): 33-51.
    [13] Keene WC, Sander R, Pszenny AAP, et al. Aerosol pH in the marine boundary layer: a review and model evaluation. Journal of Aerosol Science, 1998, 29(3): 339-356.
    [14] Williama RW. A model for the dry deposition of particles to natural watersurface. Atmosphere Environment, 1982, 16(8): 1933-1938.
    [15]张艳,王体健.典型大气污染物在不同下垫面上干沉积速率的动态变化及空间分布.气候与环境研究, 2004, 9(4): 592-640.
    [16]徐成凯,胡正义.大气沉降向林地(小叶栎)输入硫素通量的观测.中国环境科学, 2004, 24(3): 345-349.
    [17] Wyers GP, Duyzer GH. Micrometeorological measurement of the dry deposition flux of sulphate and nitrate aerosols to coniferous forest. Atmospheric Environment, 1997, 31(3): 333-343.
    [18] Gallagher MW, Beswick KM, Duyzer J, et al. Measurements of aerosol fluxes to Speulder forest using a micrometeorological technique. Atmospheric Environment, 1997, 31(3): 359-373.
    [19]张曼平,祁建华,等.大气气溶胶干沉降对海域微量金属输入的研究现状.青岛海洋大学学报:自然科学版, 2002, 32(3): 449-455.
    [20]祁建华,李培良,李先国,等.青岛近海海域气溶胶干沉降通量模拟Ⅱ——几种微量金属的干沉降通量研究.中国海洋大学学报, 2006, 36(3): 461-467.
    [21] Wu G, Xu B, Yao T, et al. Heavy metals in aerosol samples from the Eastern Pamirs collected 2004-2006. Atmospheric Research, 2009, 93(4): 784-792.
    [22] Lee CSL, Li XD, Zhang G, et al. Heavy metals and Pb isotopic composition of aerosols in urban and suburban areas of Hong Kong and Guangzhou, South China--Evidence of the long-range transport of air contaminants. Atmospheric Environment, 2007, 41(2): 432-447.
    [23] Andreae M. in Future Climates of the World. World Survey of Climatology, 1995, 16: 341–392.
    [24]于又华,曹月华. Igac计划大气气溶胶研究进展.地球科学进展, 1997, 12(5): 468-473.
    [25] Schwartz SE, Charlson RJ, Heintzenberg J, et al. Connections between aerosol properties and forcing of climate. Aerosol forcing of climate, 1995, 5: 251-280.
    [26]李连科,高广智.大连海域大气气溶胶特征分析.海洋环境科学, 1997, 16(3): 46-52.
    [27] Ferek R, Hegg D, Vobbs H, et al. Measurements of ship-induced tracks in clouds off the Washington coast. J Geophys Res, 1998, 103(18): 23199-23206.
    [28] Yum S, Hudson J. Maritime-continental microphysical contrasts in stratus. Tellus B-Chem Phys Meteorol, 2002, 54(1): 61-73.
    [29]段婧,毛节泰.华北地区气溶胶对区域降水的影响.科学通报, 2008, 23: 2947- 2955.
    [30] Huang Y, Chameides WL, Dickinson RE. Direct and indirect effects of anthropogenic aerosols on regional precipitation over east Asia. J Geophys Res, 2007, 112: 3-12.
    [31] Yin Y, Chen L. The effects of heating by transported dust layers on cloud and precipitation: A numerical study. Atmos Chem Phys, 2007, 7: 3497-3505.
    [32]王峰威,李红,柴发合,等.大气气溶胶酸度的研究进展.环境污染与防治2010, (1): 67-72.
    [33]刘俊卿,强德厚,王敏.近年来我国大气气溶胶对酸雨影响的研究进展.西藏科技, 2007, 4: 56-58.
    [34]王玮,张孟衡,王文兴.华南大气气溶胶的污染特征及其与酸性降水的关系.环境科学学报, 1992, 12(1): 7-15.
    [35]汤洁,徐晓斌,巴金,等.近年来京津地区酸雨形势变化的特点分析——气溶胶影响的探讨.中国科学院研究生院学报, 2007, 24(5): 667-673.
    [36]黄世鸿,张国君.城市降水酸度分布与气溶胶水冲刷.气象科学, 1989, 9(2): 177-183.
    [37] Tang A, Zhuang G, Wang Y, et al. The chemistry of precipitation and its relation to aerosol in Beijing. Atmospheric Environment, 2005, 39(19): 3397-3406.
    [38]曾凡刚,王玮.大气气溶胶酸度和酸化缓冲能力研究.中国环境监测, 2001, 17(4): 13-16.
    [39]王玮,王英.北京市沙尘暴天气大气气溶胶酸度和酸化缓冲.环境科学, 2001, 22(5): 25-28.
    [40] Parashar DC, Kulshreestha UC, Jain M. Precipitation and aerosol studies in India. Environmental Monitoring and Assessment, 2001, 66: 47-61.
    [41]李海燕,王可丽,江灏,等.黑河流域降水的研究进展与展望.冰川冻土, 2009, 31(2): 334-341.
    [42]张杰,李栋梁,何金梅.地形对青藏高原丰枯水年雨季降水量空间分布的影响.水科学进展, 2007, 18(3): 319- 326.
    [43]刘丙军,陈晓宏.东江流域降水空间分布模式识别.中山大学学报(自然科学版), 2009, 48(5): 148-152.
    [44] Ottar B. Organization of long range transport of air pollution monitoring in Europe. Acid Precipitation and the Forest Ecosystem Rep NE-23, Pennsylvania, 1976: 105-117.
    [45] Linzon S. Activities and results of the terrestrial effects program: A cid precipitation in Ontario Study. Water Air and Soil Pollution, 1986, 31: 295-305.
    [46]王文兴,许鹏举.中国大气降水化学研究进展.化学进展, 2009, 21(2/3): 266-281.
    [47]林雨霏,刘素美,纪雷,等.黄海西部春、夏季湿沉降常量离子化学特征研究.环境化学, 2005, 24(5): 618-619.
    [48] Ahmed AFM, Singh PR, Elmubarak AH. Chemistry of atmospheric precipitation at the western Arabian Gulf coast. Atmospheric Environment, 1990, 24A: 2927-2934.
    [49] Akkoyunlu B, Tayan M. Analyses of wet and bulk deposition in four different regions of Istanbul, Turkey. Atmospheric Environment, 2003, 37: 3571-3579.
    [50] Lee BK, Hong SH, Lee DS. Chemical composition of precipitation and wet deposition of major ions on the Korean peninsula. Atmos Environ, 2000, 34: 563-575.
    [51] Galloway JN, Likens GE, Keene WC. The composition of precipitation in remote areas of the world. Geophys Res, 1982, 87 (2): 8771-8786.
    [52]徐刚,李心清,黄荣生,等.气象因素对大气降水中有机酸浓度的影响.地球化学, 2008, 37(5): 439-444.
    [53]陈宗良,王玉保.大气有机物在酸雨形成中的作用.环境化学, 1991, 10(1): 1-13.
    [54]徐刚,李心清,黄荣生,等.贵阳市区大气降水中有机酸的研究.地球与环境, 2007, 35(1): 46-50.
    [55]章炎麟,李心清,黄代宽,等.贵州安顺雨季降水中低分子有机酸研究.环境科学, 2009, 30(3): 644-649.
    [56]刘辰,何凌燕,牛彧文,等.深圳降水中低分子量有机酸对降雨酸性的贡献.环境科学研究, 2007, 20(5): 20-25.
    [57]牛彧文,何凌燕,胡敏.深圳大气降水的化学组成特征.环境科学, 2008, 29(4): 1014-1019.
    [58] Zhang Y, Liu XJ, Fangmeier A, et al. Nitrogen inputs and isotopes in precipitation in the North China Plain. Atmospheric Environment, 2008, 42(7): 1436-1448.
    [59] Garnaud S, Mouchel JM, Chebbo G, et al. Heavy metal concentrations in dry and wet atmospheric deposits in Paris district: comparison with urban runoff. The Science of the Total Environment, 1999, 235(1-3): 235-245.
    [60] Koricheva J, Roy S, Vranjic JA, et al. Antioxidant responses to simulated acid rain and heavy metal deposition in birch seedlings. Environmental Pollution, 1997, 95(2): 249-258.
    [61] Melaku S, Morris V, Raghavan D, et al. Seasonal variation of heavy metals in ambient air and precipitation at a single site in Washington, DC. Environmental
    [62] Tarhanen S, Metsinne S, Holopainen T, et al. Membrane permeability response of lichen Bryoria fuscescens to wet deposited heavy metals and acid rain. Environmental Pollution, 1999, 104(1): 121-129.
    [63]陈喜保,章申.模拟降水—地表径流系统中重金属化学形态变化的研究.中国环境科学, 1992, 12(5): 349-354.
    [64]胡健,张国平,刘丛强.贵阳市大气降水中的重金属特征.矿物学报, 2005, 25(3): 257-262.
    [65]刘昌岭,任宏波,陈洪涛,等.黄海及东海海域大气降水中的重金属.海洋科学, 2003, 27(9): 64-68.
    [66]杨忠平,卢文喜,龙玉桥,等.长春市城区大气湿沉降中重金属及pH值调查.吉林大学学报:地球科学版, 2009, (5): 887-892.
    [67] Cheng MC, You CF. Sources of major ions and heavy metals in rainwater associated with typhoon events in southwestern Taiwan. Journal of Geochemical Exploration, 2010, 105(3): 106-116.
    [68]王文兴,庞燕波.酸雨与二氧化硫排放标准.中国环境监测, 1995, 11(5): 5-8.
    [69]周国逸,小仓纪雄.酸雨对重庆几种土壤中元素释放的影响.生态学报, 1996, 16(3): 251-257.
    [70]冯宗炜,小仓纪雄.重庆酸雨对陆地生态系统的影响和控制对策:中日酸雨合作研究总结.环境科学进展, 1998, 6(5): 1-8.
    [71]何纪力,陈宏文.江西省严重酸雨地带形成的影响因素.中国环境科学, 2000, 20(5): 477-480.
    [72]郑云有,吴甫成.长沙市酸雨污染研究.湖南师范大学自然科学学报, 2000, 23(1): 89-92.
    [73] Hettelingh JP, Hordijk L. Environmental conflicts: The case of Acid Rain in Europe. The Annals of Regional Science, 1986, 20(3): 38-52.
    [74] Bhatti N, Streets D, Foell W. Acid rain in Asia. Environmental Management, 1992, 16(4): 541-562.
    [75] Balestrini R, Arisci S, Brizzio MC, et al. Dry deposition of particles and canopy exchange: Comparison of wet, bulk and throughfall deposition at five forest sites in Italy. Atmospheric Environment, 2007, 41(4): 745-756.
    [76] Clarke JF, Edgerton ES, Martin BE. Dry deposition calculations for the clean air status and trends network. Atmospheric Environment, 1997, 31(21): 3667-3678.
    [77] Nicholson KW. The dry deposition of small particles: A review of experimental measurements. Atmospheric Environment (1967), 1988, 22(12): 2653-2666.
    [78] Park SU, Lee EH. Long-range transport contribution to dry deposition of acid pollutants in South Korea. Atmospheric Environment, 2003, 37(28): 3967-3980.
    [79] Zeller K, Harrington D, Riebau A, et al. Annual wet and dry deposition of sulfur and nitrogen in the snowy range, Wyoming. Atmospheric Environment, 2000, 34(11): 1703-1711.
    [80]周修萍,向锋.酸沉降与土壤,植被的相互作用及其对水体酸化.中国环境科学, 1993, 13(2): 90-94.
    [81]沈志来,黄美元.大气酸沉降.地球科学进展, 1991, 6(5): 61-62.
    [82]李金惠.中国降水酸沉降通量的空间特征.环境科学研究, 1998, 11(2): 18-20.
    [83]艽荣亮,吴箐.陆地生态环境酸沉降敏感性研究.环境科学进展, 1997, 5(4): 8-12.
    [84] Smith W. Air pollution and forests interactons between air contaminants and forest ecosystems. New York: Springer Verlag, 1981: 178-191.
    [85]莫天麟,顾庆超,赵亢生.酸雨判别基准值探讨.环境科学学报, 1998, 8(1): 32-38.
    [86]张光华,赵殿五.酸雨.北京:中国环境科学出版社; 1988:32-36.
    [87]刘菊秀.酸沉降背景下鼎湖山森林水和土壤化学特征[中国科学院硕士学位论文].北京, 2001:28-32.
    [88] Stensland G. Another Interpretation of pH Trend in Northeastern United States. Bulletin American Meteorological Society, 1982, 63(12): 77-84.
    [89]杨昂,孙波.中国酸雨的分布,成因及其对土壤环境的影响.土壤, 1999, 31(1): 13-18.
    [90]徐义刚,周光益.广州市典型森林区酸雨的化学组成、季节变化及其成因探讨.生态学报, 2001, 21(11): 1775-1781.
    [91]段浩,苏智先,李成柱,等.南充市酸雨的时空分布及其形成机制的初步探讨.中国环境监测, 2008, 24(3): 79-83.
    [92] Linzon SN. Activities and results of the terrestrial effects program: Acid Precipitation in Ontario Study (APIOS). Water, Air and Soil Pollution, 1986, 31(1): 295-305.
    [93] Larssen T. Acid rain in China—Input-output budgets of major ions in four forested catchments. Chinese Journal of Geochemistry, 2006, 25: 49-49.
    [94] Song X, Jiang H, Yu S, et al. Detection of acid rain stress effect on plant using hyperspectral data in Three Gorges region, China. Chinese GeographicalScience, 2008, 18(3): 249-254.
    [95] Heuvelman WJ. Spatial variability of water fluxes in soil: A field study. Soil Sci Soc Am J, 1997, 61: 1037-1041.
    [96] Hanson P, Lindberg S. Dry deposition and plant assimilation of gases and particles. Atmospheric Environment, 1991, 16(7): 889-910.
    [97] Raben G, Andreae H, Symossek F. Consequences of reduced immissions on the ecochemical conditions of forest ecosystems in Saxony (Germany). Chemosphere, 1998, 36(4-5): 1007-1012.
    [98]刘厚田,马良清.重庆南山马尾松衰亡症状的研究.植物学报, 1988, 30(3): 318-324.
    [99]刘厚田,田仁生.重庆南山马尾松衰亡与土壤铝活化的关系.环境科学学报, 1992, 12(3): 297-305.
    [100]姜文华,张晟,等.酸沉降对重庆南山森林生态系统土壤和植被的影响.环境科学研究, 2002, 15(6): 8-11.
    [101]陈楚莹,廖利平.峨眉山冷杉衰亡原因的初步研究.应用生态学报, 1992, 3(1): 1-8.
    [102]张铮.峨眉山酸雨的垂直观测.大气科学, 1991, 15(3): 31-37.
    [103]刘开玲.川东,鄂西华山松大面积死亡现象调研概述.林业科技通讯, 1991, (8): 2-4.
    [104]李凌浩,林鹏,何建源,等.森林降水化学研究综述.水土保持, 1994, 8(1): 84-95.
    [105]冯宗炜.中国酸雨对陆地生态系统的影响和防治对策.中国工程科学, 2000, 2(9): 5-11,28.
    [106]佟守恒,佟焕明.酸雨对森林的危害.黑龙江林业, 2000, (12): 26-26.
    [107]徐义刚,周光益,等.广州市森林土壤水化学和元素收支平衡研究.生态学报, 2001, 21(10): 1670-1681.
    [108]冯宗炜.中国酸雨的生态影响和防治对策.云南环境科学, 2000, 19(增刊): 1-6.
    [109] Ulrich B. Waldsterben:forest decline in West Germany. Environmental Science and Technolog, 1990, 24: 436-441.
    [110]曾凯,王尚明,张崇华,等.农田土壤酸性、酸雨、空气二氧化硫浓度的相关性研究.江西农业学报, 2008, 20(4): 70-71.
    [111]牟树森,青长乐.酸沉降物致酸土壤及其危害的研究.农业环境保护, 1990, 9(6): 1-6.
    [112]张林波.苏,浙,皖,闽,鄂,赣7省酸沉降农业危害.中国环境科学, 1998, 18(1):12-15.
    [113] Campo J, Manuelmaass J. Calcium, Potassium and Magnesium cycling in a Mexican tropical dry forest ecosystem. Biogeochemistry, 2000, 49: 21-36.
    [114] Haines T. Acidic precipitation and its consequence for aquatic ecosystems : A Review. Trans Amer Fish Belgiaue Soc, 1987, 110: 669-707.
    [115] Myllynen K. River water with high ion concentration and low pH causes mortality of lamprey roe and newly hatchea larvae. Ecotox Environ 1997, 36: 43-48.
    [116] Driscoll C. Effect of aluminium speciation on fish in dilute acidified water. Nat ure, 1980, 284: 161-164.
    [117] Andersson P. Mercury in fish muscle in acidified and limed lakes. Water Air and Soil Pollution, 1995, 80: 889-892.
    [118]杜宇国.酸雨的生态影响及防治对策.生态学杂志, 1992, 11(6): 51-54.
    [119]王德铭.酸雨对水生生物影响的研究.生态学报, 1989, 9(1): 77-83.
    [120]彭金良,严国安,沈国兴,等.酸雨对水生态系统的影响.水生生物学报, 2001, 25(3): 282-288.
    [121]冯宗炜.中国酸雨对陆地生态系统的影响和防治对策.中国工程科学, 2000, 2(9): 5-11.
    [122]陈宇炼.酸雨对人体健康的潜在危害.环境与健康杂志, 1990, 7(2): 96-97.
    [123]霍寿喜.酸雨危害人体健康.医药与保健, 2004, 12(7): 48-48.
    [124]宾克利,德里斯科尔,埃伦,等.酸性沉降与森林土壤——美国东南部的沉降环境及研究实例.北京:科学出版社, 1993.
    [125]伊兹拉埃尔.酸雨.北京:化学工业出版杜, 1983.
    [126]瑞典农业部环境委员会.环境酸化的现状与展望.北京:科学出版社, 1993.
    [127] Harriman R, Curtis C, Edwards AC. An empirical method of predicting NO3 leaching for upland catchments in the UK using deposition and runoff chemistry. Water, Air and Soil Pollution, 1998, 105: 193-203.
    [128] Kupchella CE, Hyland MC. Environmental science. Boston, 1986:589-601.
    [129] Nordo J. Long range transport of air pollutants in Europe and acid precipitation in Norway. Acid Precipitation and the Forest Ecosystem, Rep, NE-23, Pennsylvania, 1976: 87-103.
    [130] Cowling EB. Acid precipitation in historical perspective. Environ Sci Tec, 1982, 16(2): 110-123.
    [131] Qin GY, Huang MY. A study on rain acidification processes in the cities of China. Water Air and Soil Pollution, 2001, 130: 163-174.
    [132] Calvert J. Scientists collide over acid rain findings. The Energy Daily, 1983: 78.
    [133] Draaijers GPJ, Erisman JW. A canopy budget model to assess atmospheric deposition from throughfall measurements. Water, Air and Soil Pollution, 1995, 85(4): 2253-2258.
    [134] Kelly J, Strickland R. Throughfall and plant nutrient concentration response to simulated acid rain treatment. Water Air and Soil Pollution, 1986, 29(3): 219-231.
    [135]仇荣亮,于锡军.陆地生态系统酸沉降缓冲机制与缓冲能力.中山大学学报(自然科学版), 1998, 37(2): 157-161.
    [136]陈玉生,张卓文,韩兰,等.连峡河小流域不同森林类型凋落物持水特性研究.华中农业大学学报, 2005, 24(2): 207-212.
    [137]雷云飞,张卓文,苏开君,等.流溪河森林各演替阶段凋落物层的水文特性.中南林业科技大学学报:自然科学版, 2007, 27(6): 38-43.
    [138]赵鸿杰,谭家得,张学平,等.南亚热带3种人工松林的凋落物水文效应研究.西北林学院学报, 2009, 24(5): 54-57.
    [139] Mackey A, Smail G. Spatial and temporal variation in litter fall of Avicennia marina (Forssk.) Vierh in the Brisbane River, Queensland, Australia. Aquat Bot, 1995, 52: 133-142.
    [140]郭晋平,丁颖秀,张芸香.关帝山华北落叶松林凋落物分解过程及其养分动态.生态学报, 2009, 29(10): 5684-5695.
    [141]郑郁善,荣俊冬,陈礼光,等.沿海沙地小叶龙竹林凋落物分解及养分归还动态.福建农林大学学报:自然科学版, 2008, 37(5): 487-490.
    [142]郑兆飞.木荷叶凋落物的分解及养分动态分析.浙江林学院学报, 2009, 26(1): 22-26.
    [143]费鹏飞.森林凋落物对林地土壤肥力的影响.安徽农学通报, 2009, 15(13): 55-56.
    [144]逯军峰,王辉,曹靖,等.油松人工林凋落物对土壤理化性质的影响.西北林学院学报, 2007, 22(3): 25-28.
    [145]郑思俊,张庆费,吴海萍,等.上海外环线绿地群落凋落物对土壤水分物理性质的影响.生态学杂志, 2008, 27(7): 1122-1126.
    [146]彭少麟,刘强.森林凋落物动态及其对全球变暖的响应.生态学报, 2002, 22(9): 1534-1544.
    [147]宋新章,江洪,张慧玲,等.全球环境变化对森林凋落物分解的影响.生态学报, 2008, 28(9): 4414-4423.
    [148]温远光,韦盛章.杉木人工林凋落物动态及其与气候因素的相关分析.生态学报, 1990, 10(4): 367-372.
    [149]徐振锋,尹华军,赵春章,等.陆地生态系统凋落物分解对全球气候变暖的响应.植物生态学报, 2009, 33(6): 1208-1219.
    [150]樊后保,刘文飞,杨跃霖,等.杉木人工林凋落物分解对氮沉降增加的响应.北京林业大学学报, 2008, 30(2): 8-13.
    [151]莫江明,薛璟花,方运霆.鼎湖山主要森林植物凋落物分解及其对N沉降的响应.生态学报, 2004, 24(7): 1413-1420.
    [152]包和林,张艳荷,侯丹,等.氮、硫沉降下凋落物分解失重规律.中南林业科技大学学报:自然科学版, 2009, 29(5): 77-81.
    [153]方华,莫江明.氮沉降对森林凋落物分解的影响.生态学报, 2006, 26(9): 3127-3136.
    [154]汪思龙,陈楚莹.森林凋落物对土壤酸化缓冲作用的初步研究.环境科学, 1992, 13(5): 25-30.
    [155] Li ZA, Cao YS, Zou B, et al. Acid buffering capacity of forest litter from some important plantation and natural forests in South China. Acta Botanica Sinica, 2003, 45(12): 1398-1407.
    [156] Quails RG, Haines BL, Swank WT, et al. Soluble organic and inorganic nutrient fluxes in clearcut and mature deciduous forests. Soil Sci Soc Am J, 2000, 64: 1068-1077.
    [157] Michalzik B, Metzner E. Dynamics of dissolved organic nitrogen and carbon in a Central European Norway spruce ecosystem. Eur J Soil Sci, 1999, 50: 579-590.
    [158] Kaiser K, Guggenberger G, Haumaier L, et al. Seasonal variations in the chemical composition of dissolved organic matter in organic forest floor layer leachates of old-growth Scots pine (Pinus sylvestris L) and European beech (Fag us sylvatica L) stands in northeastern Bavaria, Germany. Biogeochemistry, 2001, 55: 103-143.
    [159] Meyer JL, Tate C. The effects of watershed disturbance on dissolved organic carbon dynamics of a stream. Ecology, 1983, 64(1): 33-44.
    [160] Guo JF, Yang YS, Chen GS, et al. Dissolved organic carbon and nitrogen in precipitation, throughfall and stemflow from Schima superba and Cunninghamia lanceolata plantations in subtropical China. Journal of Forestry Research, 2005, 16(1): 19-22.
    [161]杨玉盛,郭剑芬,陈光水,等.森林生态系统DOM的来源、特性及流动.生态学报, 2003, 23(3): 547-558.
    [162]代静玉,秦淑平,周江敏.水杉凋落物分解过程中溶解性有机质的分组组成变化.生态环境, 2004, 13(2): 207-210.
    [163] Eiichi K, Takahito Y. Dissolved organic carbon and nitrate concentrations in streams: a useful index indicating carbon and nitrogen availability in catchments. Ecol Res, 2005, 20: 359-365.
    [164]周薇,王兵,李钢铁.大气氮沉降对森林生态系统影响的研究进展.中央民族大学学报:自然科学版, 2010, (1): 34-40.
    [165]周国逸,闫俊华.鼎湖区域大气降水特征和物质元素输入对森林生态系统存在和发育的影响.生态学报, 2001, 21(12): 2002-2012.
    [166]马雪华.在杉木林和马尾松林中雨水的养分淋溶作用.生态学报, 1989, 9(1): 15-20.
    [167]张维娜,廖周瑜.氮沉降增加对森林植物影响的研究进展.环境科学导刊, 2009, 28(3): 21-24.
    [168] Beier T. A correlative evaluation of nitrogen cycling in the forest ecosystems of the Ecprojects NITREX and EXMAN. Forest Ecology and Management, 1995, 71: 143-151.
    [169] Baron J, Campbell D. Nitrogen fluxes in a high elevation Rocky Mountain basin. Hydrological Processes, 1997, 11: 783-799.
    [170] Jacks G, Jlesson A, Fleischer S.森林湿地中的氮持留.人类环境杂志, 1994, 23(6): 358-362.
    [171]丁国安,徐晓斌,王淑凤,等.中国气象局酸雨网基本资料数据集及初步分析.应用气象学报, 2004, 15(B12): 85-94.
    [172]肖辉林.大气氮沉降与森林生态系统的氮动态.生态学报, 1996, 16(1): 90-99.
    [173] Agren G, Bosatta E. Nitrogen saturation of terrestrial ecosystems. Environ Pollut, 1988, 54: 185-197.
    [174] Aber J, McDowell W, Nadelhoffer K, et al. Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. Bioscience, 1998, 48: 921-934.
    [175] Mitchell MJ, Iwatsubo G, Ohrui K. Nitrogen saturation in Japanese forests: an evaluation. Forest Ecology and Management, 1997, 97: 39-51.
    [176] Ohte N, Mitchell MJ, Shibata H. Comparative evaluation on nitrogen saturation of forest catchments in Japan and Northeastern United States. Water Air and Soil Pollution, 2001, 130: 649-654.
    [177] Aber JD, Nadelhoffer KJ, Steudler P, et al. Nitrogen saturation in northern forest ecosystems. Bioscience, 1989, 39: 378-386.
    [178] Fang Y, Yoh M, Mo J, et al. Response of Nitrogen Leaching to Nitrogen Deposition in Disturbed and Mature Forests of Southern China. Pedosphere, 2009, (1): 111-120.
    [179]吕超群,田汉勤,黄耀.陆地生态系统氮沉降增加的生态效应.植物生态学报, 2007, 31(2): 205-218.
    [180]郝吉明,段雷,谢绍东.临界负荷在中国酸沉降控制中的应用.环境科技进展---中国环境科学学会成立20周年论文选.北京:中国环境科学出版社, 1999: 225-229.
    [181]郝吉明,齐超龙,段雷,等.用smb法确定中国土壤的营养氮沉降临界负荷.清华大学学报(自然科学版), 2003, 43(6):849-853.
    [182]赵殿五,张晓山,熊际翎.应用MAGIC模式确定酸沉降临界负荷.中国环境科学, 1992, 12(2): 93-97.
    [183]谢绍东,郝吉明,周中平.柳州地区各种红壤土种的酸沉降临界负荷研究.环境科学学报, 1999, 6: 3-8.
    [184]刘厚田,杜晓明.闽南地区生态环境对酸沉降的临界负荷研究.环境科学研究, 1996, 5: 23-27.
    [185] Akratos CS, Papaspyros J, Tsihrintzis VA. An artificial neural network model and design equations for BOD and COD removal prediction in horizontal subsurface flow constructed wetlands. Chemical Engineering Journal, 2008, 143(1-3): 96-110.
    [186] Chen Z, Ren N, Wang A, et al. A novel application of TPAD-MBR system to the pilot treatment of chemical synthesis-based pharmaceutical wastewater. Water Research, 2008, 42(13): 3385-3392.
    [187]李晓东,曾光明,黄国和,等.城市污水量短时预测的混沌神经网络模型.环境科学学报, 2006, 26(3): 416-419.
    [188]刘永,郭怀成.城市大气污染物浓度预测方法研究.安全与环境学报, 2004, 4(4): 60-62.
    [189]楼文高,王延政,刘遂庆.基于概率论和bp网络的水质评价与灰色动态预测模型.上海环境科学, 2003, 22(10): 673-676.
    [190]罗定贵,郭青,王学军.基于RBF神经网络的地下水动态模拟与预测.地球学报, 2003, 24(5): 475-478.
    [191]李祚泳,丁恒康. BP网络应用于大气颗粒物的源解析.中国环境监测, 2005, 21(2): 74-83.
    [192]刘罡,李昕.大气污染物浓度的神经网络预报.中国环境科学, 2000, 20(5): 429-431.
    [193]刘乐,王洪国,王宝伟.基于PCA和改进BP网络的降雨预报模型研究.计算机工程与应用, 2008, 44(12): 234-237.
    [194]黄奇峰,马克山.人工神经网络在滁州市酸雨多维预测中的应用.安徽农业科学, 2008, 36(26): 11504 - 11505.
    [195]程新金,黄美元.降水化学特性的一种分类分析方法.气候与环境研究, 1998, 3(1): 82-88.
    [196] Kulshrestha UC, Sarkar AK, Srivastava SS, et al. Wet-only and bulk deposition studies at New Delhi (India). Water Air and Soil Pollution, 1995, 85: 2137-2142.
    [197] Yamulki S, Harrison RM. Ammonia surface-exchange above an agricultural field in Southeast England. Atmospheric Environment, 1996, 30: 109-118.
    [198] Tang A, Zhuang GS, Wang Y, et al. The chemistry of precipitation and its relation to aerosol in Beijing. Atmospheric Environment 2005, 39: 3397-3406.
    [199]张仁健,浦一芬,徐永福,等.青岛大气气溶胶的浓度分布和干沉降的观测研究.气候与环境研究, 2004, 9(2): 390-395.
    [200] Feliciano MS, Pio CA, Vermeulen AT. Evaluation of SO2 dry deposition over short vegetation in Portugal. Atmospheric Environment 2001, 35: 3633-3643.
    [201] Wieringa J. A revaluation of the Kansas mast influence on measurements of stress and cup - anemometer overspeeding Boundary - layer. Meteorol Soc, 1980, 18: 411-430.
    [202] Voldner EC. A literature review of dry deposition of oxides of sulfur and nitrogen with emphasis on long-range transport modelling in north Americ. Atmos Environ, 1986, 20(11): 2101-2123.
    [203]石春娥,王水,黄美元,等.用mm5模式和阻力模型计算硫化物的干沉降速度.中国科学技术大学学报, 2003, 33(6): 692-700.
    [204]杨浩明,王体健,程炜,等.华东典型地区大气硫沉降通量的观测和模拟研究.气象科学, 2005, 25(6): 560-568.
    [205]张艳,王体健,胡正义,等.典型大气污染物在不同下垫面上干沉积速率的动态变化及空间分布.气候与环境研究, 2004, 9(4): 591-604.
    [206]徐敬,张小玲,徐晓斌,等.上甸子本底站湿沉降化学成分变化与来源解析.环境科学学报, 2008, ??(5): 1001-1006.
    [207]宋宇,唐孝炎,方晨,等.北京市大气细粒子的来源分析.环境科学, 2002, 23(6): 11-16.
    [208] Eddie L, Chak K, Pentti P. App lication of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. AtmosphericEnvironment, 1999, 33: 3201-3212.
    [209] Paatero P, Tapper U. Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 1994, 5: 111-126.
    [210] Zimmermann S, Braun S, Conedera M, et al. Macronutrient inputs by litterfall as opposed to atmospheric deposition into two contrasting chestnut forest stands in southern Switzerland. Forest Ecology and Management, 2002, 161: 289-302.
    [211] Zhang G, Zeng GM, Du CY, et al. Estimation of Exchange of Proton and Major Elements in Two-layer Canopies under Acid Rain in a Subtropical Evergreen Forest in Central-south China. Journal of Integrative Plant Biology, 2006, 48(8): 1154-1162.
    [212] Zhang G, Zeng GM, Jiang YM, et al. Effects of weak acids on canopy leaching and uptake processes in a coniferous-deciduous mixed evergreen forest in Central-south China. Water Air and Soil Pollution 2006, 172(1-4): 39-55.
    [213]杜春艳,曾光明,张龚,等.韶山针阔叶混交林凋落物层的淋溶及缓冲作用.生态学报, 2008, 28(2): 508-516.
    [214] Wang YH, Rademacher P, Folster H. Influence of water content and temperature on the pH-values of solution extracted from acidified forest floor materials of Norway Spruce. For Sci Res, 1997, 11(1): 16-23.
    [215] Guo LB, Sims REH, Horne DJ. Biomass production and nutrient cycling in Eucalyptus short rotation energy forests in New Zealand: II. Litter fall and nutrient return. Biomass and Bioenergy, 2006, 30: 393-404.
    [216] Zhao J, Shao YQ, Kong XH. Decomposition of litters and its effects on soil biological environment in Huangfuchuan basin. Agro-environmental Protection, 2002, 21(6): 543-545.
    [217] Zech W, Guggenberger G, Schulten HR. Budgets and chemistry of dissolved organic carbon in forest soils: effects of anthropogenic soil acidification. Sci Total Environ, 1994, 152: 49-62.
    [218] Hafner SD, Groffman PM, Mitchell MJ. Leaching of dissolved organic carbon, dissolved organic nitrogen, and other solutes from coarse woody debris and litter in a mixed forest in New York State. Biogeochemistry, 2005, 74: 257-282.
    [219] Michalzik B, Kalbitz K, Park JH, et al. Fluxes and concentrations of dissolved organic carbon and nitrogen - a synthesis for temperate forests. Biogeochemistry, 2001, 52(2): 173-205.
    [220] Zhang JS, Guo JF, Chen GS, et al. Concentrations and seasonal dynamics of dissolved organic carbon in forest floors of two plantations (Castanopsis kawakamii and Cunninghamia lanceolata) in subtropical China. Journal of Forestry Research, 2005, 16(3): 205-208.
    [221] Huang WZ, Schoenau JJ. Distribution of water soluble organic carbon in an aspen forest soil. Canadian Journal of Forest Research, 1996, 26: 1266-1272.
    [222] McDowell WH, Likens GE. Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook Valley. Ecological Monographs, 1988, 58: 177-195.
    [223] Guggenberger G, Zech W. Composition and dynamics of dissolved organic carbohydrates and lignin-degradation products in two coniferous forests, N.E. Bavaria, German. Soil Biology and Biochemistry, 1994, 26: 19-27.
    [224]张娜,张心昱,高鲁鹏.长期监测水体可溶性有机碳变化趋势与影响因子研究进展.水土保持研究, 2009, 16(3): 286-290.
    [225] Monteith DT, Stoddard JL, Evans CD, et al. Dissolved organic carbont rends resulting from changes in atmospheric deposition chemistry. Nature, 2007, 450(22): 537-541.
    [226] Evans CD, Chapman PJ, Clark WM, et al. Alternative explanations for rising dissolved organic carbon export f rom organic soils Global Change Biology, 2006, 12: 2044-2053.
    [227] Stoddard JL, Karl JS, Deviney FA, et al. Response of surface water chemistry to the Clean Air Act Amendments of 1990. 2003 Report EPA 620/R - 03/ 001United States Environmental Protection Agency, North Carolina.
    [228] Skjelkvale BL, Stoddard JL, Jeffries D. Regional scale evidence for improvement s in surface water chemistry 1990-2001 Environmental Pollution, 2005, 137: 165-176.
    [229] Galloway JN. The global nitrogen cycle: changes and consequences. Environ Pollut, 1998, 102: 15-24.
    [230] Wright RF, Breemen N. The NITREX project: an introduction. Forest Ecology and Management, 1995, 71(1-2): 1-5.
    [231] Ohrui K, Mitchell MJ. Nitrogen saturation in Japanese forested watersheds. Ecol Appl, 1997, 7: 391-401.
    [232] Dise NB, Matzner E, Forsius M. Evaluation of organic horizon C: N ratio as an indicator of nitrate leaching in conifer forests across Europe. Environ Pollut, 1998, 102: 453-456.
    [233]郝吉明,谢绍东,段雷,等.酸沉降临界负荷及其应用.北京:清华大学出版社, 2001.
    [234] Tamn C. Nitrogen in terrestrial ecosystems. Ecological Studies, 1992: 115.
    [235]段雷,郝吉明,谢绍东,等.中国硫沉降目标负荷的研究.清华大学学报(自然科学版), 1999, 39(6): 95-98.
    [236]叶雪梅,郝吉明,段雷,等.中国南方80个地表水体的酸沉降临界负荷计算.清华大学学报(自然科学版), 2001, (12): 89-91.
    [237] Schulze ED, Gebauer G, Ziegler H. Estimates of nitrogen fixation by trees on an aridity gradient in Namibia. J Oecologia, 1991, 88: 451- 455.
    [238] Butler TJ, Likens GE. A direct comparison of throughfall plus stemflow to estimates of dry and total deposition for S and N. Atmos Environ, 1995, 29: 1253-1565.
    [239] Lovett GM, Nolan SS, Driscoll CT, et al. Factors regulating throughfall flux in a New Hampshire forested landscape. Canadian Journal of Forest Research, 1996, 26(11): 2134 - 2144.
    [240] Lovett GM, Lindberg SE. Dry deposition and canopy exchange in a mixed oak forest as determined by analysis of throughfall. J Appl Ecol, 1984, 21(8): 1013-1027.
    [241] Zhang G, Zeng GM, Du CY, et al. Seasonal dry deposition and canopy leaching of base cations in a subtropical evergreen mixed forest, China. Silva Fennica, 2006, 40(3): 417-427.
    [242] Bredemeier M, Black K, Xu YJ. Input-output budgets at the NITREX sites. Forest Ecology and Management, 1998, 101: 57-64.
    [243] Van-Breemen N, Mulder J, Driscoll CT. Acidification and alkalinization of soil. Plant Soil, 1983, 75: 283-308.
    [244]段雷,郝吉明,谢绍东,等.用稳态法确定中国土壤的硫沉降和氮沉降临界负荷.环境科学, 2002, 23(2): 7-12.
    [245]段雷,郝吉明,叶雪梅,等.中国土壤风化速率的初步研究.环境科学学报, 2000, 20: 1-7.
    [246]张龚,蒋益民,曾光明. GM (1, 1)模型在酸性降水pH值预测中的应用.重庆环境科学, 2003, 25(11): 121-123.
    [247]李金惠.中国降水酸度预测模型.中国环境科学, 1998, 18(1): 8-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700