用户名: 密码: 验证码:
高强可焊7A52铝合金板材热处理及其相关基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以7A52铝合金制备过程中的热处理工艺优化和焊接接头组织性能演变方面的基础科学问题为研究对象,采用近代物理研究方法着重研究了均匀化处理对7A52合金铸锭组织和性能的影响、固溶—时效处理方式和工艺对7A52合金板材组织与性能的影响,在此基础上还研究了7A52合金板材焊接及焊接接头组织与性能。主要结论如下:
     1.7A52合金半连续铸锭中存在比较严重的枝晶偏析,需要进行均匀化处理。铸锭均匀化过程中,400℃以下主要是亚稳过饱和铝基固溶体分解析出η相,400℃以上枝晶偏析逐渐消除、分解析出的η相重新溶入固溶体。与此同时,固溶体分解析出Al_6Mn初晶相。
     2.铸锭均匀化过程中,合金硬度和电导率随均匀化温度和时间的增加出现规律性的变化,这种变化主要由过饱和铝基固溶体分解析出η相和分解析出的η相重新溶入固溶体来控制。发现固溶体基体点阵常数与基体固溶度、宏观铸造应力和微观应力密切相关,可以通过点阵常数测量来监控铸锭均匀化过程。
     3.7A52合金半连续铸锭合宜的均匀化处理工艺为470℃保温24h。在此条件下,枝晶偏析消除、分解析出的η相重新溶入固溶体、Al_6Mn初晶相充分析出、固溶体基体点阵常数趋于稳定、宏观铸造应力和微观应力也基本消除。
     4.双级强化固溶能使7A52合金的固溶温度超过多相共晶点温度、更有效地减小和消除粗大的过剩相和增加淬火后固溶体的过饱和度。7A52合金板材合宜的双级固溶工艺为460℃/2h+480℃/1h。
     5.7A52铝合金有很强的时效强化效应,合金板材经460℃/2h+480℃/1h强化固溶之后的120℃/24h峰值时效,合金的抗拉强度、屈服强度、延伸率和电导率分别达到495MPa、438MPa、11.3%和29.16%IACS。但是,抗应力腐蚀性能差,主要原因是η相在晶界连续分布,晶界成为腐蚀通道,在外应力的作用下,裂纹容易在晶界处萌生和扩展。
     6.强化固溶-105℃/8h+130℃/14h双级时效是7A52铝合金最佳热处理工艺。在此条件下,合金的抗拉强度、屈服强度、延伸率、布氏硬度和电导率分别为500MPa、444MPa、11.1%、157和31.9%IACS。
     7.影响7A52铝合金腐蚀性能的主要因素为G.P.区、η′、η和无沉淀析出带(PFZ)。G.P.区、η′、η电极电位比较低,容易与铝基体和PFZ构成微电池成为阳极而溶解。晶界析出相尺寸越大分布越不连续,合金的抗蚀性能越好,反之晶界析出相尺寸越小且呈链状分布,则合金的抗蚀性能越差。双级时效处理后,合金的抗蚀性能显著改善。
     8.采用Sc、Zr和Ti复合微合金化的Al-Mg-Sc-Zr焊丝对固溶-时效态的7A52合金板材进行焊接,在氩弧焊条件下,焊接接头σ_b=358MPa,σ_(0.2)=238MPa,δ_5=6.6%,焊接系数为0.72,达到了7A52铝合金板材焊接设计的目标。
     9.7A52铝合金板材焊接接头上存在焊缝区、半熔化区、热影响区和基材区,其中热影响区又分为淬火区和软化区。焊缝的强度主要来源于Sc、Zr和Ti产生的晶粒细化强化以及焊缝凝固过程中形成的Al_3Sc、Al_3Zr和TiAl_3等初晶相的弥散强化。软化区是由于焊接加热时沉淀强化相粗化的结果。
In the present work, the foundational science issues of the heat-treatment process optimization and the welding joint structure evolution in the process of the preparation of 7A52 aluminum alloy have been extensively studied. Major attention have been paid to the effects of homogenization treatments process on the 7A52 alloy cast structure and properties and the effects of the process of solid solution and ageing treatment on the 7A52 alloy plate structure and properties by means of the modern physical research methods. In addition, the welding procedure and welding joint microstructure and properties of 7A52 aluminum alloy plate have also been investigated. The main conclusions were as follows:
     1. There was very severity dendrite segregation in the ingots of 7A52 aluminum alloy prepared by half-continuous casting method, it was necessary to deal with the ingots using homogenization treatment. In the homogenization process, at the temperature lower than 400℃, theη-phases were precipitated from the metastable super-solubility aluminum solid solution matrix; and at the temperature higher than 400℃, the dendrite segregations were gradually eliminated, theη-phases precipitated from metastable super-solubility aluminum solid solution matrix were re-dissolved into aluminum matrix. At the same time, the Al_6Mn primary crystals were precipitated from solid solution.
     2. In the homogenization process, the variations of hardness and specific conductivity of the alloys were regularity with the increase of homogenization temperature and time, which were mainly controlled by that theηphase precipitated from the super solubility aluminum solid solution matrix and theηphases re-dissolved into aluminum matrix. It has been found that the aluminum matrix lattice constant was closely connected with solid solubility, casting macro-stress and micro-strain. The homogenization process could be monitored by means of the measurement of aluminum matrix lattice constant.
     3. Annealing at 470℃for 24h was a suitable homogenization process for the 7A52 aluminum alloy ingots prepared by semi-continuous casting method. Under this condition, the dendrite segregations were eliminated, theη-phases were re-dissolved into aluminum matrix, the Al_6Mn primary crystals were completely precipitated from the matrix, the aluminum matrix lattice constant became stable and the casting macro-stress and micro-strain were basically eliminated.
     4. The solid solution temperature of 7A52 aluminum alloy could be enhanced effectively by two-stage strengthening solid solution treatment, which was higher than the multi-phase eutectic temperature; the remainder eutectic structure could be decreased effectively and the super-saturation degree of 7A52 alloy solid solution could be increased after quenching because of the increase of solid solution temperature of the alloy. Annealing at 460℃for 2h and then 480℃for 1h was a suitable two-stage solution treatment condition for the alloy.
     5. 7A52 aluminum alloy showed remarkable ageing hardening characteristic. the alloy plate, subjected to strengthening solid solution-treatment at 460℃for 2h and 480℃for 1h followed by ageing at 120℃for 24h, had a tensile strength of 495MPa, yield strength of 438MPa, elongation percent of 11.3% and specific conductivity of 29.16% IACS. However, the stress corrosion properties of the plates were poor, the reason was that theηphases precipitated continuously along the grain boundaries, the grain boundaries became the corrosion channels and the crack would be easy to initiate and grow in the grain boundary under an external stress.
     6. The strengthening solid solution treated at 460℃for 2h and 480℃for 1h followed by two-stage ageing at 105℃for 8h and 130℃for 14h was the best heat treatment condition for 7A52 aluminum alloy. Under this condition, the alloy had a tensile strength of 500MPa, yield strength of 444MPa, elongation percentage of 11.1 %, HB of 157and specific conductivity of 31.9%IACS.
     7. The corrosion properties of 7A52 alloy were controlled by G.P. zone,η'、η, and PFZ. The electrode potential ofη' andηwere lower than that of the aluminum matrix and PFZ of the alloy, the micro-battery could be formed between theη' (orη) and aluminum matrix (or PFZ), andη' (orη) phase was dissolved as the anode. The corrosion resistance of the alloy was good as the precipitations along grain boundaries were discontinuous and coarse; otherwise, corrosion resistance of the alloy was poor as it was continuous and fine. The corrosion resistance of the alloy could be enhanced noticeably by two-stage aging.
     8. The solid solution-aged state 7A52 aluminum alloy plates were welded using argon-arc welding and Al-Mg welding wires with Sc, Zr and Ti additions, the welding joint had a tensile strength of 358MPa, yield strength of 238MPa, and elongation percentage of 6.6%. The welding coefficients reached to 0.72, which achieved the design objective of 7A52 aluminum alloy welding plate.
     9. The weld joint of the 7A52 aluminum alloy plate was composed of weld seam zone, semi fusion zone, heat-affection zone and base-material zone. The heat-affection zone could be divided into two zones, quenching zone and softening zone. The strength of seam was attributed to the fine-crystal and dispersion strengthening. The crystal grains of the seam could be refined by the Sc, Zr and Ti in the weld and the fine Al_3SC, Al_3Zr and TiAl_3 primary crystal phases could be dispersion precipitated during solidifying of seam. The soften zone was due to the coarsening of precipitation phase caused by the welding heating.
引文
[1]林赵琦,孙贵经,陈长沼等.中强Al-Zn-Mg合金焊接接头应力腐蚀断裂特点的观察[J].东北工学院学报,1980(3):22-28.
    [2]Liao C M.Al-3.7%Zn-2.5%Mg(质量分数)合金在3.5%NaCI溶液中焊接前后的SCC性能[J].铝加工技术,1994(4):43-45.
    [3]Liu J,Kulak M.A new paradigm in the design of aluminum alloys for aerospace applications[J].Materials Scicncc Forum,2000 331-337:127-140
    [4]Spcidel M O.The Theory of Stress Corrosion Cracking in Alloys[M].Brusscls NATO Scientific Affairs Division 1971:289.
    [5]朱祖芳等编著.有色金属的耐腐蚀性及其应用[M].北京:化学工业出版社,1995.
    [6]Najjar D,Magnin T,Warner T J.Influence of critical surface defects and localized competition Sctwccn anodic dissolution and hydrogen effects during stress corrosion cracking of a 7050 aluminum alloy[J].Materials Science and Engineering A,1997,238(2):293-302.
    [7]Ringer S P,Hono K.Microstructural evolution and age hardcning in aluminum alloys atom probe field-ion microscopy and transmission electron microscopy studies[J].Materials Characterization,2000 44:101-131.
    [8]Heinz A,Haszler A,Moldenhauer A,etc.Recent development in Aluminum alloys for aerospace applications[J].Materials Science & Engineering A,2000,A280:102-107.
    [9]弗利德良杰尔.高强度变形铝合金[M].吴学译.上海:上海科学技术出版社,1963.
    [10]I.J.波尔米尔.轻合金[M].陈昌麒等译.北京:国防工业出版社,1980.
    [11]Senkov O N,Senkova S V.Shagiev M R.Effect of Sc on Aging Kinetics in a Direct Chill Cast Al-Zn-Mg-Cu Alloy[J].Metallugical and materials transactions A,2008,39A:1034-1053.
    [12]Senkov O N,Bhat R B,Senkova S V,Schloz J D.Microstructure and Properties of Cast Ingots of Al-Zn-Mg-Cu Alloys Modified with Sc and Zr[J].Metallugical and materials transactions A.,2005,36A:2115-2126.
    [13]Li Hai,Cao Dahu,Wang Zhixiu,Zheng Ziqiao.High-pressure homogenization treatment of Al-Zn-Mg-Cu aluminum alloy[J].J Mater Sci,2008,43:1583-1586.
    [14]DONG Jie,CUI Jiang-zhong,YU fu-xiao,BAN chun-yan,ZHAO Zhi-hao.Effect of Low-Frequency Electromagnetic Casting on the Castability,Microstructure,and Tensile Properties of Direct-Chill Cast Al-Zn-Mg-Cu Alloy[J].Metallugical and materials transactions A.,2004,35A:2487-2493.
    [15]李艳霞.新型超高强高韧铝合金组织与性能的研究[D].沈阳:东北大学,2004.
    [16]刘刚,陈康华.含有不同尺度量级第二相的高强铝合金断裂韧性模型[J].中国有色金属学报,2002,12(4):706-713.
    [17]卢剑,殷京瓯,何瑜,等.Al-Zn-Mg合金超低温高速大变形中超细晶组织演化行为的研究[J].稀有金属材料与工程,2005,34(5):742-745.
    [18]侯振庆.时效制度对7005合金板材组织与性能的影响[J].轻合金加工技术,1998,26(10):39-42.
    [19]周鸿章,李念奎.超高强铝合金强韧化的发展过程及方向[A].铝-21世纪基础研究与技术发展研讨会论文集(第一分册)[C].2002,56-57.
    [20]沈健,谢水生,唐京辉.Al2Zn2Mg合金的热变形组织演化[J].金属学报,2000,36(10):1033-1036.
    [21]李松.高温预析出对Al-Zn-Mg系合金强韧化的作用[D].长沙:中南大学,2003.
    [22]LI Song,CHEN Kang-hua,LIU Hong-wei,et al.Effect of high temperaturepre precipitation on mechanical properties and stress corrosion cracking of Al-Zn-Mg alloys[J].Nonferrous Met.Soc.China,2003,13(3):585-589.
    [23]FAN Xi-gang,JIANG Da-ming,MEN Qing-chang,et al.Influence of quench on ageing response and mechanical properties of Al-Zn-Mg-Cu-Zr alloy[J].Nonferrous Met.Soc.China,2005,15(3):18-22.
    [24]李春梅.Al-Zn-Mg-Cu系超高强铝合金热处理工艺的研究[D].重庆:西南师范大学,2005.
    [25]Sharma M M,Amateau M F,Eden T J.Hardening mechanisms of spray formed Al-Zn-Mg-Cu alloys with scandium and other elemental additions [J].Journal of alloys and compounds 2006,416:135-142.
    [32]Chinh N Q,Kovacs Z S,Reich L.New approach to the electric aging of dielectrics[J].Mater.Sci.Forum,1996,217:1293- 1298.
    [34]Deschamps A,Brechety.Influence of quench and heating rates on the ageing response of anal-Zn-Mg-(Zr) alloy[J].Materials Science and Engineering,1998,A251:200-207.
    [35]YIN Zhi-min,YANG Lei,PAN Qing-lin,et al.Effect of minor Sc and Zr on microstructures and mechanical properties of Al-Zn-Mg based alloys[J].Nonferrous Met.Soc.China,2001,11(6):822-825.
    [36]Senkov O N,Shagiev M R,Senkova S V,Miracle DB.Precipitation of Al3(Sc,Zr) particles in an Al - Zn - Mg - Cu - Sc - Zr alloy during conventional solution heat treatment and its effect on tensile properties[J].Acta Materialia 2008,56:3723 - 3738.
    [37]Rokhlin L L,Dobatkina T V,Bochvar N R,Lysova EV.Investigation of phase equilibria in alloys of the Al-Zn-Mg-Cu-Z-Sc system,J.Alloys Compd.,2004,367:10.
    [38]蔡元华,郝斌,崔华,杨滨,张济山.锰在7000系铝合金中的作用及机理[J].材料科学与工艺,2008,16(4):531-534.
    [39]肖亚庆,谢水生,刘静安,等.铝加工技术实用手册[M].北京:冶金工业出版社,2005.
    [40]Holl H A.Corrosion,1967,23:173.Song R G,Zhang B J,Tseng M K.Mater Chem Phys,1996,45:84.
    [41]宋仁国,曾梅光等.中国腐蚀与防护学报,1996,16(1):1.
    [42]张君尧.航空结构用高纯高韧性铝合金的进展(1)[J].轻金属,1994,(6):54-58.
    [43]Hadjadj L,Amira R,Hamana D,Mosbah A.Characterization of precipitation and phase transformations in Al-Zn-Mg alloy by the differential dilatometry [J].Journal of Alloys and Compounds,2008,462:279-283.
    [44]谢优华,杨守杰.含锆超高强铝合金的研究及发展概况[J].中国有色金属学报,2003,3(2):87.
    [45]张勤,崔建忠.CREM7075铝合金的微观组织和性能[J].材料导报,2002,3(1):61-65.
    [46]余永宁.金属学原理[M],冶金工业出版社,2003.
    [47]Mondolfo L F.Aluminium Alloys Structure and Propertie[M].London-Boston:Butter Worths,1976,25.
    [48]Engdahl T,Hansen V,Warren P J,etal.I nvestigation of fine precipitates in Al-Zn-Mg alloys after various heat treatments[J].MaterSciEng,2002,A327:59-64.
    [49]Maloney S K,Hono K,Polmear I J,etal.The chemistry of precipitates in an aged Al-2.1Zn-1.7Mg at.%alloy[J].Scripta Materialia,1999,41:1031-1038.
    [50]L.E蒙多尔福.铝合金的组织和性能[M].北京:冶金工业出版社,1988,516-529.
    [51]Li,V.Hansen J,Gjonnes,etal.Hrem study and structure modeling of the η'phase,the hardening precipitates in commercial Al-Zn-Mg alloys[J].Acta Mater.1999.47:2651-2659_
    [52]张永刚,陈国良.金属间化合物结构材料[M].北京:国防工业出版社,2001,156-160.
    [53]Ferragut R,Somoza A,Tolley A.Microstructural evolution of 7012 alloy during the earlys tages of artificial aging[J].ActaMater,1999,47:4355-4364.
    [54]杨武,顾睿祥,肖京先等编.金属的局部腐蚀、点腐蚀、缝隙腐蚀、晶间腐蚀、成分选择腐蚀[M].北京:化学工业出版社,1993.
    [55]中国腐蚀与防护学会主编.金属腐蚀手册[M].上海:上海科学技术出版社,1987.
    [56]肖纪美.金属及合金的晶间腐蚀问题[J].全国腐蚀与防护学术会议报告集.科学出版社,1966,3-13.
    [57]苏景新,张昭等.铝合金的晶间腐蚀与剥蚀[J].中国腐蚀与防护学报,2005,06(3).181-191.
    [58]Brown R H,Fink W L,Hunter M S.Measurement of irreversible potentials as a metallurgical research tool[J].Trans.AIVIE,1941,143:115.
    [59]Galvcle,J R,De Micheli S M.Mechanism of intergranular corrosion of Al-Cu alloys[J].Corros.Sci.,1970,10:795.
    [60]Maitra S,English G C.Mechanism of localized corrosion of 7075 alloy plate[J].Met.Trans.,1981,12A:535.
    [61]Buchheit R G,Morgan J P,Stoner G E.Elecarochemical behavior of the Tl(Al zCuLi) intermetallic compound and its role in localized corrosion of Al- 2%Li- 3%Cu alloys[J].Corrosion,1994,50:120.
    [62]Buchheit R G,Wall F D,Stoner G E.Anodic dissolution-based mechanism for the rapid cracking,preesposure phenomenon demonstrated by aluminumlithium -copper alloys[J].Corrosion,1995,51:417.
    [63]Reboul M C,Bouvaist J.Exfoliation mechanisms in the 7020 aluminum alloys[J].Werkstoffe and korrosion 1979,30:700-701.
    [64]Posada Maria,Murr L E.Exfoliation and related microstructures in2024aluminum body skins on aging aicraft[J],Mater.Chara,1997,38:259-272
    [65]杜爱华,龙晋明,裴和中.高强铝合金应力腐蚀研究进展[J].中国腐蚀与防护学报,2008,28(4):251-256.
    [66]吴荫顺,方智,何积铨,等.腐蚀试验方法与防腐蚀检测技术[M].北京:化学工业出版社.1996.104-123.
    [67]Deshais G,Nnewcomb S B.The influence of microstructure on the formation of stress corrosion cracks in 7xxx series aluminum alloys[J].Mater Sci Forum,2000,331-337:1635-1640.
    [68]Tsai W T,Duh J B,Yeh J J,et al.Effect of pH on stress corrosion cracking of 7050-T7451 aluminum alloy in 3.5%NaCl solution[J].Corrosion,1990,46(5):444-449.
    [69]Braun R.Slow strain rate testing of aluminum alloy7 050 in different tempers using various synthetic environments[J].Corrosion,1997,53(3):467-474.
    [70]Tangu Y D,Bayle B,Dif R,et al.Hydrogen effects during SCC propagation of Al-Mg in 30g/L NaCl solutions[J].Mater SciForum,2000,331-337:1659-1664.
    [71]LI Xiao-mei,Starink M J.Analysis of precipitation and dissolution in over aged 7xxx aluminum alloys using DSC[J].Mater Sci Forum,2000,331- 337:1071-1076.
    [72]Riontino g,Abis S,Mengucci P.DSC investigation of natural ageing in high copper AlCuMg alloys[J].MaterSciForum,2000,331-337:1025-1030.
    [73]Robinson J S,Cudd R L..Electrical conductivity variations in X2096,8090,7010 and an experimental aluminum lithium alloy[J].Mater Sci Forum,2000,331-337:971-976.
    [74]周鸿章.高强铝合金的研究进展[J].稀有金属材料与工程,2001,30(6):87-92.
    [75]LI Nian-kui(李念奎),CUI Jian-zhong(崔建忠).Microstructural evolution of high strength 7B04 ingot during homogenization treatment[J].Trans.Non ferrous Met.Soc.China,2008,18:769-773.
    [76]钟皓,韩逸,陈琦,邓祯祯,翁文凭,乐永康.7150铝合金铸态组织中第二相的形貌及相组成[J].特种铸造及有色合金,2008,28(2):106,108.
    [77]刘晓涛,崔建忠.铝合金均匀化扩散动力学研究[J].材料导报,2004,18(6):102-104.
    [78]宁爱林,曾苏民,蒋寿生等.7A04铝合金高温固溶的微观组织和力学性能[J].轻合金加工技术,2005,33(5):45-51.
    [79]李杰,尹志民,王涛等.固溶-单级时效处理对7055铝合金力学和电学性能的影响[J].
    [80]刘海江.单级时效对7475合金组织和性能的影响[J].轻合金加工技术,2004,32(5):41-45.
    [81]宁爱林,曾苏民.时效制度对7B04铝合金组织和性能的影响[J].中国有 色金属学报,2004,14(6):923-927.
    [82]侯太学.热处理对LC9铝合金锻件性能的影响[J].航天工艺,992,(5):19.
    [83]Burleigh T D.The postulated mechanisms for stress corrosion cracking of aluminum alloy:a review of the literature 1980-1989[J].Corrosion,1991,47(2):89.
    [84]大西忠一.降低Al-Zn-Mg开裂敏感性热处理方法[J].张林平,译.轻合金加工技术,1989,(12):32.
    [85]Islam W U,Wallace W.Retrogression and dreaging response of 7475aluminum alloy[J]Metals Technology,1983,10:386.
    [86]李西铭.7475铝合金的逆转变和再时效之敏感性[J].轻金属,1985,(5):49.
    [87]李红英,程勇胜,郑子樵.时效制度对7475铝合金挤压件组织与性能的影响[J].2001,(4):394-397.
    [88]段水亮,刘志义,段安静,周杰.双级时效对7475铝合金组织与性能的影响[J].金属热处理,2008,33(8):112-115.
    [89]李志辉,熊柏青,张永安,朱宝宏,王锋,刘红伟.7804铝合金双级时效的微观组织与性能[J].稀有金属材料与工程,2008,37(3):521-524.
    [90]张华,谢延翠于洪伟.7075-T7651铝合金厚板热处理工艺研究[J].轻合金加工技术,2002,30(3):11-14.
    [91]Cina B.reducing the susceptibility of alloy,particular aluminum alloys to stress corrosion cracking[P].US pat:3856584,1974.
    [92]李海,郑子樵,王芝秀.含银7055铝合金回归再时效过程中的组织与性能变化[J].稀有金属材料与工程,2004,33(7):718-722.
    [93]宁爱林,刘志义,冯春,曾苏民.回归时间对RRA处理超高强铝合金力学性能的影响[J].材料研究学报,2008,22(4):357-361.
    [94]Ashish Thakur,R.Raman,S.N.Malhotra.Hydrogen embrittlement studies of aged and retrogressed-reaged Al-Zn-Mg alloys[J].Materials chemistry and physics,2007,101:441-447.
    [95]孟昭富,郑勇,龙厚文.在时效-回归-再时效处理过程中Al-Zn-Mg系合金硬度的改变[J].金属学报,1997,33(5):479-484.
    [96]Tadakazu Ohnishi,Yoshiaki Ibaraki,Taichiro Ito.Improvement of fracture toughness in 7475 aluminum alloy by RRA[J].Mater Trans JIM,1989,30(8): 601.
    [97]Park J K.Influence of retrogression and reaging treatments on the strength and stress corrosion resistance of aluminum alloy 7075-T76[J].Mater Sci Eng,1988,A103:223.
    [98]陈康华,黄兰萍,郑强,胡化文.高温预析出对7A52合金应力腐蚀性能的影响[J].中国有色金属学报2005,15(3):441-445.
    [99]郑强,陈康华,黄兰萍,胡化文.高温预析出和固溶温度对7A52合金应力腐蚀开裂的影响[J].金属热处理,2005,30(7):14-17.
    [100]李松,陈康华,黄兰萍,张茁.高温预析出结Al-Zn-Mg系合金时效硬化和应力腐蚀的影响[J].粉末冶金材料科学与工程,2003,8(2):168-173.
    [101]水野政夫等着,许慧姿等译,铝及其合金的焊接[M].冶金工业出版社,1985.
    [102]唐朝明.铝合金的焊接技术[J].机车车辆工艺,1994,(6):1.
    [103]李桂生.铝母线焊接填充焊丝的选择.电力建设[J].2000(2):51-55.
    [104]Krishnan K N.On the formation of on ionring sin friction stir welds[J].Materials Science and Engineering A,2002,327:246-251.
    [105]Colligan K J,Konkol P J,Fisher J J,et al.Friction stir welding demonstrated for comb at vehicle construction[J].Welding Journal,2003,82(3):34-40.
    [106]尹志民,郭飞跃,李周,等.7005铝合金型材焊接接头组织与性能[J].铝加工,2000,23(4):51-55.
    [107]Nicolas M,Ddschamps A.Precipitate Microstructures and Resulting Properties of Al-Zn-Mg Metal Inert Gas-Weld Heat-Affected Zones[J].Metallugical and materials transactions A.,2004,35A:1437-1448.
    [108]陈小祝,匡永祥.铝及铝合金在交通运输业中的应用[J].铝加工,1993,22(2):1-7.
    [109]傅志红,贺地求,周鹏展,胡爱武.7A52铝合金搅拌摩擦焊焊缝的组织分析[J].焊接学报,2006,27(5):65-68.
    [110]吴欣凤.关于GB3190变形铝合金化学成分的说明[J].冶金标准与质量,1996,11:25-27.
    [111]刘玲霞,成建国.LC52铝合金锻造工艺及性能[J].锻压技术,1999,(2):13-15.
    [112]潘青林,黄继武等编.金属材料科学与工程实验教程[M].湖南:中南大学出 版社,2006.
    [113]李国锋,张新明,朱航飞,李鹏辉.7850高强铝合金的均匀化[J].中国有色金属学报,2008,18(5):764-770.
    [114]Hahn G T,Rosenfield A R.Metallurgical factors affecting fracture toughness of aluminum alloys[J].Metall.Trans.A,1975,6 A:653.
    [115]高凤华,李念奎,,丛福官,,田妮,赵刚.7050合金半连续铸锭中结晶相及其均匀化处理[J].稀有金属,2008,32(3):274-278.
    [116]金相图谱编写组.变形铝合金金相图谱[M].北京:冶金工业出版社,1975.
    [117]Keams M A.The mechanism of phase transformations in crystalline solids[J].Light metals,1999,713-720.
    [118]刘小涛,董杰,崔建中,等.高强铝合金均匀化热处理[J].中国有色金属学报,2003,13(4):909-913.
    [119]张万金,王美琪.LD11铸锭均匀化实验及过烧温度的确定[J].轻合金加工技术,1998,26(7):40-42.
    [120]Nakai M,Takehiko E.New aspects of development of high strength Al alloys for aerospace applications[J].Mater Sci Eng A,2002,A285:62-68.
    [121]Schaffer G B,Huo S H.The effect of trace element on the sintering of an Al-Zn-Mg-Cu-Zr alloy[J].Act Mater,2001,49:2671-2678.
    [122]方俊鑫,陈栋.固体物理[M].北京,高等教育出版社,1981:156.
    [123]田莳.合金物理性能[M].北京,航空工业出版社,1994:36.
    [124]Dugdale J S著,朱道康,吕世骥译.金属和合金的电学性质[M].北京,高等教育出版社,1988.
    [125]科瓦索夫,弗里德良捷尔.工业铝合金[M].北京:冶金工业出版社,1981.
    [126]曾渝.超高强Al-Zn-Mg-Cu-Zr合金组织与性能研究[D].长沙:中南大学,2006.
    [127]贺永东,张新明,游江海.7A55合金均匀化处理[J].中国有色金属学报,2006,16(4):638-644.
    [128]陈康华.7xxx系高强铝合金强化相形成及其强韧化作用研究.铝-21世纪基础研究与技术发展研讨会论文集.湖南张家界,2002,10.
    [129]张新明,黄振宝,刘胜胆,刘文辉,张翀,杜予暄.双级固溶处理对7A55铝合 金组织与力学性能的影响[J].中国有色金属学报,2006,16(9):1527-1533.
    [130]胡德林,张帆.三元合金相图[M].西安:西北工业大学出版社,1995.
    [131]Shercliff H R,Ashby M F.Acta Metallurgy,1990,38(10):1789-1802.
    [132]曾渝,尹志民.超高强铝合金的研究现状及发展趋势[J].中南工业大学学报,2002,33(6):592-596.
    [133]陈康华.升温固溶对Al-Zn-Mg-Cu合金组织与力学性能的影响[J].中南工业大学学报,2000,31(4):339-341.
    [134]陈康华,刘允中,刘红卫.7075和2024铝合金的固溶组织与力学性能[J].中国有色金属学报,2000,10(6):819-822.
    [135]林高用,彭大暑,魏圣明,等.强化固溶处理对7075铝合金组织的影响[J].金属热处理,2002,27(11):30-32.
    [136]Zwickau E C,Freiberg U T.Possiblities for the calculation heat treatment diagrams for industrial AlZnMg(Cu) alloys[J].Aluminium,1999,75:90-96.
    [137]Ferragut R,Somoza A,Tolley A,Torriani I.Precipitation kinetics in Al-Zn-Mg commercial alloys[J].Journal of Materials Processing Technology,141(2003),35-40.
    [138]Gang Sha,Alfred Cerezo.Early-stage precipitation in Al - Zn - Mg - Cu alloy(7050)[J].Acta Materialia.52(2004),4503-4516.
    [139]Feng Wang,Baiqing Xiong,Yongan Zhang,Baohong Zhu,Hongwei Liu,Zixing Wang,Xiaoqing He.Microstructure and mechanical properties of spray-deposited Al - 10.8Zn - 2.8Mg - 1.9Cu alloy after two-step aging treatment at 110 and 150 ℃[J].Materials Characterization,58(2007),82-86.
    [140]谷亦杰,李永霞,张永刚,黄正,陈昌麒.7050合金RRA沉淀析出的TEM研究[J].航空材料学报.2002,20(4),1-7.
    [141]Park J K,Ardell A J.Effect of retrogression and reaging treatments on the microstructure of Al-7050-T651,Metall Trans.1984,15A:1531-1543.
    [142]Dumont D,Deschamps A,Brechet Y:Mater.Sci.Eng A356(2003),326.
    [143]Mabuclui M:Acta Materialia,1996,Vol.44(1996),4611.
    [144]肖纪美,曹楚南着.材料腐蚀学原理[M].北京:化学工业出版社,2002.
    [145]Ohnishi T,Ibarakiy,Ito T.Improvement of fracture toughness in 7475aluminum alloy by the RRA(retrogression and re-ageing) process[J].Materials Transactions,JIM,1989,30(8):601-607.
    [146]中国腐蚀与防护学会主编.有色金属的耐腐蚀性及其应用[M].北京:化学工业出版社,1997.
    [147]Mcnaughtan M,et al.Corrosion product force measurements in the study of exfoliation and stress corrosion cracking in high strength aluminium alloys.Corrosion Science,45(2003):2377-2389.
    [148]王国军,吕新宁.7055铝合金的化学成分、物相组成及其性能特点[J].上海有色金属,2008,29(13):118-122.
    [149]张录泉.7xxx系合金的双级时效[J].轻合金加工技术,1986,(12):16.
    [150]吴世钊.7050合金挤压制品双级时效制度的研究[J].轻金属,1988,(6):53-57.
    [151]汪锡孝.试验研究方法[M].长沙:湖南科学技术出版社,1989.
    [152]Lorimer G W,Nicholson R B.Further results on the nucleation of precipitates in the Al-Zn-Mg system[J].Acta Meall.,1966,14:1009.
    [153]Lorimer G W,Nicholson R B.The mechanism of phase transformations in crystalline solids[J].Inst.Metals,London,1968:36.
    [154]Ber L B.Accelerated artificial ageing regimes of commercial aluminum alloys[J].Materials Science and Engineering,2000,A280:91-96.
    [155]Kverneland A,Hansen V,Vincent R,Gjφnnes K,Gjφnnes J.Structure analysis of embedded nano-sized particles by precession electron diffraction.η'-precipitate in an Al-Zn-Mg alloy as example[J].Ultramicroscopy 106(2006) 492-502.
    [156]Ma T,Ouden G D.Softening behavior of Al-Zn-Mg alloys due to welding.Materials Science and Engineering A266(1999):198-204.
    [157]郭飞跃,尹志民,姜锋等.大型铝型材焊丝、焊接工艺及焊接接头组织与性能[J].电力机车技术,2001,24(3):35-38.
    [158]郭飞跃,尹志民.7005铝合金型材焊接接头组织与性能[J].合金与热处理,2001,23(4):51-55.
    [159]陈苏里,姜锋,尹志民,雷学锋,聂波.含钪与不含钪铝镁钪合金焊接接头的组织与性能[J].中国有色金属学报,2006,16(5):835-840.
    [160]曹明盛,物理冶金基础[M].北京:冶金工业出版社,1991.
    [161]潘青林,Al-Mg-Sc和Al-Mg-Sc-Zr合金的性能与组织结构研究[D],长沙:中南工业大学,2000.
    [162]王生,李周,尹志民等.钪锆微合金化焊丝焊接头的组织与性能[J].兵器材料科学与工程,2005,28(3),26-29.
    [163]YIN Zhimin,PAN Qing-lin,JIANG Feng.Effect of minor Sc and Zr on the microstructure and mechanical properties of Al-Mg based alloys[J].Materials Science and Engineering,2000,A,280:151-153.
    [164]Savage W F,Aronson A H.Welding Journal,1966,(45):85-89.
    [165]Admas C M.Cooling rate and peak temperature in fusion welding[J].Welding journal,1958,37:210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700