用户名: 密码: 验证码:
基于共代谢作用微曝气SBR处理难降解有机废水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工农业的迅速发展,人们合成并应用了越来越多的有机物,其中难降解有机物占了很大比例。难降解有机废水污染物毒性大、成份复杂、化学耗氧量高,一般生物处理工艺对其几乎没有降解效果,如果这些物质不加治理即向环境排放,势必严重污染环境和威胁人类的身体健康,是目前水污染防治研究的热点与难点。五氯酚(Pentachlorophenol,PCP)废水是一种具有代表性的难降解有机废水。尽管当前国内外对含PCP废水处理方法的研究取得了一定进展,但是这些方法普遍存在能耗高、难以控制以及易造成二次污染等方面的问题。本研究针对PCP废水处理技术的研究现状,基于微生物共代谢作用优选适于处理含难降解有机废水的低能耗、低运行费用、低污泥产率的处理工艺,即采用微曝气的SBR工艺(序批式活性污泥法,Sequencing Batch Reactor, SBR)。通过试验,系统地研究了基于共代谢作用微曝气SBR工艺处理水中PCP的处理效能、污泥活性及影响因素,优化了稳定运行的最佳工况,对驯化前后微好氧颗粒污泥的宏基因组进行测定,构建了微曝气SBR共代谢处理PCP废水的基因文库,考察了驯化前后系统内微生物种群丰度、多样性变化、群落分布及系统发育,结合试验结果和动力学模型拟合结果,对PCP去除过程进行了系统分析。为PCP及其它有毒难降解有机物的生物降解提供理论基础和技术储备,为指导实际工程设计提供技术支持。
     采用异步接种法对微曝气SBR共代谢系统微好氧颗粒污泥培养与驯化。取自城市污水处理厂二沉池的絮状污泥经模拟废水培养30d可实现完全颗粒化,所形成的微好氧颗粒污泥结构性明显。投加共代谢基质、在进水PCP浓度为1mg/L驯化时,未投加共基质碳源的反应器细菌大量溶解死亡;投加海藻糖、葡萄糖、乙酸和酵母膏的反应器内微好氧颗粒污泥具有一定耐受能力。驯化期间逐步提高PCP浓度,经80d左右可完成PCP进水浓度50mg/L的驯化,出水效果由好到差依次为海藻糖、葡萄糖、酵母膏、乙酸。海藻糖作为共代谢基质,可以获得较高活性的生物量,同时可以刺激脱氯反应,每个PCP驯化浓度下,海藻糖可将驯化降解时间缩短近一倍,且PCP去除率、CODCr去除率及AOX去除率均可达98%以上。
     微曝气SBR共代谢系统长期运行结果表明,环境因素及运行控制参数都会影响系统PCP去除效果。当DO浓度控制在0.3mg/L、ORP维持在-100mV、pH值在6.7-7.5范围、PCP负荷为20×10-3kg/(m3·d)、海藻糖投加量为10mg/L、系统温度为30℃、NaHCO3投加量为800mg/L、反应时间控制为6h时,PCP及其他污染物的去除效果同时达到最佳状态,其中DO浓度须严格控制,过高的DO浓度易导致微好氧颗粒污泥解体,由此可推测DO为微好氧颗粒污泥系统运行控制的关键参数。
     借助高通量测序技术对驯化前后微好氧颗粒污泥的宏基因组进行测定,构建了PCP驯化前后微曝气SBR系统内细菌的16S rDNA克隆文库。结果表明驯化前后反应器细菌文库容量均能够满足预测需要。OTU聚类分析微生物菌落结构表明,驯化后反应器优势OTU主要属于变形菌门的β-变形菌纲脱氯菌属(Dechloromonas),其OTU所代表的微生物种类在数量上占有相当优势,属于降解PCP的优势菌群,且与PCP降解菌Phanerochate chrysosporium和Desulfitobaterium dehalogenus菌的序列具有最高的同源性,可能是PCP生物降解过程中的作用主体。与驯化前反应器相比,PCP驯化后的微好氧颗粒污泥中微生物多样性和菌落丰度降低,分析其原因可能与底物的改变和PCP毒性影响有关。
     基于莫诺方程式,建立了微曝气SBR共代谢降解PCP的动力学模型和微好氧颗粒污泥的通用动力学模型,并应用两模型对本研究中微曝气SBR微好氧反应过程进行拟合,理论拟合结果与试验结果吻合度均大于97%;微好氧颗粒污泥降解PCP的通用模型对微曝气SBR系统的进行预测表明,粒径增加有利于提高厌氧区与好氧区体积比,有助于PCP及中间降解产物的矿化降解;DO浓度增加不利于PCP、TeCP、TCP等高氯酚的矿化降解,有利于低氯酚DCP的矿化;过量的海藻糖与氯酚类物质竞争关键酶上的活性位置,将抑制PCP及其中间产物的矿化降解;PCP负荷过高对共代谢关键酶活性的抑制作用越明显,这将导致PCP降解不完全,中间产物大量积累,废水脱毒化作用不彻底。
The composition of refractory organic wastewater are complex, toxicity and their chemical oxygen consumption are very high. The general microbialal most no degradation effect on this kind of wastewater, if these substances without governance discharge to the environment, it will seriously pollutes the environment and threaten human health. With the rapid development of industry and agriculture, increasing amounts of organic matter have been synthesized, there fractory organic matter accounted for a large proportion, is a important question of research on the prevention and control of water pollution. Pentachlorophenol (PCP) wastewater is one kind of representative high toxicity, stable structure, and refractory organic industrial wastewater. Despite the current domestic and international research on the methods of treatment of wastewater containing PCP has made some progress, most of these methods have high energy consumption, it is difficult to control and easily loading to secondary pollution problems. The aim of this study is to propose SBR(Sequencing Batch Reactor) overcome the current method’s drawback, which is preferably suitable for processing of refractory organic wastewater with low energy consumption, low operation cost, low sludge yield biological co-metabolism technology, micro aeration SBR cometabolism. Through the experiment, the factors which influence micro aeration SBR process co-metabolism process PCP treatment efficiency and sludge activity were studied; the optimum operating conditions for stable operation was optimized; the acclimation of micro aerobic granular sludge metagenome library was constructed; micro aeration SBR cometabolism of PCP wastewater treatment, the acclimation in microbial population abundance, diversity, community distribution and phylogeny were studied. With the help of simulation test results and the system dynamic model, the amplification was successfully applied in practical engineering. This study would provide theoretical basis and technical reserves for biodegradation of PCP and other toxic and refractory organics, and provide technical support for the practical engineering design.
     The asynchronous inoculation method was employed to culture and domesticate granular sludge in the micro aeration SBR cometabolism system. Having been cultured for30d, floc sludge from city sewage treatment secondary sediment tank with synthetic wastewater can reach the full particles, the formation of which has obvious structural characters. With cometabolism substrate, the influent PCP concentration was1mg/L acclimation, not adding cosubstrate carbon source reactor bacteria dissolve dead; reactor adding trehalose, glucose, acetate and yeast extract in the micro aerobic granular sludge has a certain tolerance. The concentration of PCP was gradually increased during acclimatization, the effluent effect from good to poor were trehalose, glucose, yeast extract, acetic acid, when acclimation was completed by the influent PCP concentration of50mg/L in80d. Trehalose as cometabolism substrate, which can obtain higher biomass activity, can produce the dechlorination rate higher stimulation dechlorination reaction resulting in the system. In each PCP acclimation concentration, trehalose could be acclimated degradation time which shortens nearly half time, and the removal rates of PCP, CODCr removal rate and AOX removal rate can reach98%or more.
     Micro aeration SBR co-metabolism system in long-term operation results showed that restrictive ecological factors, environmental factors and operation parameters would influence the removal rate of PCP. When the concentration of DO in0.3mg/L, ORP maintained at-100mV, adjusting the pH value within the range of6.7-7.5, PCP load is20×10-3kg/(M3·d), trehalose dosage is10mg/L, temperature is30℃, NaHCO3dosage is800mg/L, reaction time is6h, the removal effect of PCP and other pollutants reach the best state. Especially, the DO concentration must be controlled strictly, since the high concentration of DO can cause the micro aerobic granular sludge disintegration. It suggests that the DO is a key factor for operation and control of aerobic granular sludge system.
     Through the measuring of metagenomem in high-throughput sequencing technology on domestication and micro aerobic granular sludge before and after the acclimation, the PCP micro aeration bacteria in SBR system16S rDNA clone library was consructed. The results showed that bacterial library capacity after acclimation reactor can meet the requirements of prediction. The OTU clustering analysis indicated that microbial community structure, the domestication of reactor advantages of OTU mainly belong to Proteobacteria beta Proteobacteria dechlorinating bacteria (Dechloromonas), microbial species represented by OTU has many advantages in quantity, which belongs to PCP degradation dominant bacteria, and the sequence and PCP degrading bacteria Phanerochate Chrysosporium and Desulfitobaterium dehalogenus bacteria has the highest homology, may be the main role in the process of biodegradation of PCP. Compared to the domestication of reactor, microbial diversity and colony abundance decreased PCP acclimated micro aerobic granular sludge may be related with the changes and PCP toxicity effects of substrate.
     Based on the Monod equation, a dynamic model of the SBR micro aeration cometabolic degradation of PCP and micro good general dynamic model of aerobic granular sludge were built. The simulation and application of the models in two micro aeration SBR micro was good at the oxygen evolution reaction, the theoretical simulation results and the experimental results are in good agreement, which is above97%; the model of aerobic granular sludge degrading PCP micro aeration SBR system to predict that the increase of particle size is conducive to the improvement of the anaerobic zone and the aerobic zone volume ratio, contributes to PCP degradation and intermediate degradation products; the increase of the concentration of DO is not conducive to the degradation of PCP, TeCP, TCP hig-hchlorophenol, conducive to low-chlorophenol DCP mineralization; active position in excess of trehalose and chlorophenols competition key enzyme, will inhibit the degradation of PCP and its intermediate product; PCP load on key enzymes of co-metabolism and inhibited is more obvious, which will lead to the degradation of PCP incompletely, to accumulate a large number of intermediate products, wastewater and toxic effect degradation incompletely.
引文
[1]许保玖,龙腾锐.当代给水与废水处理原理[M].北京:高等教育出版社,2000:1-10.
    [2] Kao C M, Chai C T, Liu J K, et al. Evaluation of natural and enhanced PCPbiodegradation at a former pesticide manufacturing plant[J]. Water Research,2004,38:663-672.
    [3]薛建良.五氯酚的厌氧生物降解特性及对系统的反馈影响[D].哈尔滨:哈尔滨工程大学,2009:16-20.
    [4] Armenante Piero M., Kafkewitz David, Lewandowski Gordon A., et al.Anaerobic-aerobic treatment of halogenated phenolic compounds[J]. WaterResearch,1999,33(3):681-692.
    [5]宋卫华,郑正,杭德生等.电子加速器辐照降解氯酚的研究[J].南京大学学报(自然科学),2001,37(6):730-734.
    [6]钱易,汤鸿霄,文湘华.水体颗粒物和难降解有机物的特性与控制技术原理(F卷)[M].北京:中国环境科学出版社,2000:33-35.
    [7] Hao Oliver J, Kim Michael H, Seagren Eric A, et al. Kinetics of phenol andchlorophenol utilization by Acinetobacters pecies[J]. Chemospheer,2002,46:797-807.
    [8]安淼.氯代酚类化合物的生物降解与污染控制技术研究[D].上海:同济大学,2003:13-15.
    [9] Christiansen N, Hendriksen H.V, Jarvinen K.T, et a1. Degradation ofchlorinated aromatic compounds in UASB reactors[J]. Wat Sci Tech.,1995,31(1):249-259.
    [10] Yu Gang, Huang Jun, Zhang Pengyi. Persistent Organic Pollutants: One of theImportant Global Environmental Problems[J]. Environmental Protection,2001,(4):37-39.
    [11] Weng Xiaocheng, Ren Lige, Weng Liwei, et al. Synthesis and biologicalstudies of inducible DNA cross-linking agents[J]. Angewandte ChemieInternational Edition,2007,42(46):8020-8023.
    [12] Meek D W. Tumour suppression by p53: a role for the DNA damage response?[J]. Nature Reviews Cancer,2009,9(10):714-723.
    [13] Helton E S, Chen X. p53modulation of the DNA damage response[J]. Journalof Cellular Biochemistry,2007,100(4):883-896.
    [14] Engwall Margaret A, Pignatello Joseph J, Domenico Grasso. Degradation anddetoxification of the wood preservatives creosote and pentachlorophenol inwater by the photo-Fenton reaction[J]. Water Research,1999,33(5):115l-1158.
    [15] Frances Orton, Ilka Lutz, Werner Kloas, et al. Endocrine Disrupting Effects ofHerbicides and Pentachlorophenol; In Vitro and in Vivo Evidence[J].Environmental Science&Technology,2009,43(6):2144-2150.
    [16]金相灿.有机化合物污染化学-有毒有机物污染化学[M].北京:清华大学出版社,1990:10-14.
    [17] Arcand Yves, Hawari Jalal, Guiot Serge R. Solubility of pentachlorophenol inaqueous solutions: the pH effect[J]. Water research,1995,29(1):131-136.
    [18]迟杰.五氯酚在区域水环境中归趋的研究[D].天津:南开大学,2000:5-10.
    [19] Yander G, Halsey H, Kenna M, et al. Amplification and elevated expression ofc-myc in a chemically induced mouse colon tumor[J]. Cancer Research,1985,45(9):4433-4438.
    [20] Stein C A, Cheng Y C. Antisense oligonucleotides as therapeutic agents-is thebullet really magical?[J]. Science,1993,261:1004-1009.
    [21] Jenks S. RAC approves policy for single-patient use of gene therapy(news)[J].Journal of the National Cancer Institute,1993,85(4):266-278.
    [22]杨淑贞,韩晓东,陈伟.五氯酚对生物体的毒性研究进展[J].环境与健康杂志,2005,22(5):396-398.
    [23] Wang Y J, Ho Y S, Chu S W, et al. Induction of glutathione depletion, p53protein accumulation and cellular transformation by tetrachlorohydroquinone,a toxic metabolite pentachlorophenol[J]. Chemico-Biological Interactions,1997,105:1-16.
    [24] Lin P H, Nakamura J, Yamaguchi S, et al. Oxidative damage and directadducts in calf thymus DNA induced by the pentachlorophenol metabolites,tetrachlorohydruoquinone and tetrachloro-1,4-benzoquixione[J].Carcinogenesis,2001,22(4):627-634.
    [25] Lin C H, Leow H T, Huang S C, et al. Induction of cytotoxicity, aldehydicDNA lesions, and poly(ADP-ribose) polymerase-1activation by catecholderivatives of pentachlorophenol in calf thymus DNA and in human breastcancer cells[J]. Chemical Research in Toxicology,2005,18:257-264.
    [26] Zhou Q H, Yang P. Crystal structure and DNA-binding studies of a new Cu(II)complex involving benzimidazole[J]. Inorganica Chimica Acta,2006,359(4):200-206.
    [27]郭玉华,陈晓岚,张婷等.7-羟基黄酮及磷酰化7-羟基黄酮与DNA的弱互作用荧光法研究[J].光谱学与光谱分析,2006,26(3):475-479.
    [28]聂晶磊,刘锋,周春玉等.氯酚类化合物对金鱼的急性和亚急性毒性研究[J].环境科学研究,2001,14(3):6-8.
    [29]彭俊峰,凌建亚,张含星等.虫草素与DNA作用的光谱研究[J].光谱学与光谱分析,2004,24(7):858-861.
    [30] Huang C Y. Determination of binding stoichiometry by the continuousvariation method; the Job plot[J]. Methods Enzymol,1982,87:509-525.
    [31] Zhang Y Z, Zhou B, Zhang X P, et al. Interaction of malachite green withbovine serum albumin: determination of the binding mechanism and bindingsite by spectroscopic methods[J]. J. Hazard. Mater,2009,163:1345-1352.
    [32] Tiemann U. In vivo and in vitro effects of organochlorine pesticides DDT,TCPM, methoxychlor, and lindane on the female reproductive tract ofmammals: a review[J]. Reprod Toxicol,2008,25:316-326.
    [33] Engst R. The metabolis of hexachlorobenzene in rats, In:Bull[J]. Environ.Contam. Toxico1,1976,16:248-252.
    [34] Garner E, Raj K. Protective mechanisms of p53-p21-pRb proteins againstDNA damage-induced cell death[J]. Cell Cycle,2008,7(3):277-282.
    [35] Audrey Petitjean, Ewy Mathe, Shunsuke Kato, et al. Impact of mutant p53functional properties on TP53mutation patterns and tumor phenotype:Lessons from recent developments in the IARC TP53database[J]. HumanMutation,2007,28(6):622-629.
    [36] Do T N, Rosal R V, Drew L, et al. Preferential induction of necrosis in humanbreast cancer cell by a p53peptide derived from the MDM2binding site[J].Oncogene,2003,22(10):1431-1444.
    [37] Collins S J, Groudine M. Amplification of endogenous myc-related DNAsequences in a human myeloid leukaemia cell line[J]. Nature,1982,298:679-684.
    [38] Muir J, Eduljee G. PCP in the freshwater and marine environment of theEuropean Union[J]. The Science of the Total Environment,1999,236:41-56.
    [39] Zheng M H, Zhang B, Bao Z C, et al. Analysis of pentachlorophenol fromwater, sediments and fish bile of Dongting Lake in China[J]. Bull EnvironContaim Toxicol,2000,64:16-19.
    [40] Hong H C, Zhou H Y, Luan T G, et al. Residue of pentachlorophenol infreshwater sediments and human breast milk collected from the Pearl RiverDelta[J]. China Environ Int,2005,31:643-649.
    [41] Mandelbaum R T, Allan D L, Wackett L P. Isolation and Characterization of aPseudomonas sp. That Mineralizes the s-Triazine Herbicide Atrazine[J].ApplEnviron Microbiol,1995,61(4):1451-1457.
    [42]姜梅,牛世全,展惠英,等.氯酚类化合物的微生物降解研究进展[J].应用生态学报,2003,14(6):1003-1006.
    [43]许文青,樊柏林,陈明,等.五氯苯酚和五氯苯酚钠毒性作用研究进展[J].中国药理学与毒理学杂志,2011,6(25):596-600.
    [44] Jacobsen BN, Nyholm N. Microbial degradation of pentachlorophenol andlindane in laboratory scale activated sludge reactors[J]. Water Science andTechnology,1991,23:349-356.
    [45] Nascimento N R D, Nicola S M C, Rezende M O O, et al. Pollution byhexachlorobenzene and pentachlorophenol in the coastal plain of Sao PauloState, Brazi[J]. Geoderma,2004,121:221-232.
    [46] Ylva Persson, Staffan Lundstedt, Lars Oberg, et al. Levels of chlorinatedcompounds(CPs, PCPPs, PCDEs, PCDFs and PCDDs) in soils at contaminatedsawmill sites in Sweden[J]. Chemosphere,2007,66:234-242.
    [47] Shieh W K, Puhakka J A. Immobilized-cell degradation of chlorophenols[J].Journal of Environmental Engineering,1990,116(4):683-697.
    [48] Park Jeong-Hun, Zhao Xianda, Voice Thomas C. Comparison ofbiodegradation kinetic parameters for naphthflene in batch and sand columnsystems by Pseudomonas putida[J]. Environ Progr,2001,20(2):93-102.
    [49] Liu Ying, Wen Bei, Shan Xiaoquan. Determination of pentachlorophenol inwastewater irrigated soils and incubated earthworms[J].Talanta,2006,69:1254-1259.
    [50] Stapleton Michael G, Sparks Donald L, Dentel Steven K.Sorption ofpentachlorophenol to HDTMA-Clay as a function of ionic strength and pH[J].Environ Sci Technol,1994,28:2330-2335.
    [51] Edgehill R.U, Max Lu G.Q. Adsorption characteristics of carbonized bark forphenol and pentachlorophenol[J]. J Chem Technol Biotechnol,1998,71(1):27-34.
    [52] Viraraghavan T, Slough K. Sorption of pentachlorophenol on peat-bentonitemixture[J]. Chemosphere,1999,39(9):1487-1496.
    [53] Diaz-Flores Paola E, Leyva-Ramos Roberto, Guerrero-Coronado Rosa M, etal. Adsorption of pentachlorophenol from aqueous solution onto activatedcarbon fiber[J]. Ind Eng Chem Res,2006,45:330-336.
    [54] Kiyohara H, Hatta T, Ogawa Y, et a1. Isolation of pseudomonas pickettiistrains that degrade2,4,6-trichlorophenol and their dechlorination ofchlorophenols[J]. Appl EnvKiron Microbiol,1992,58(4):1276-1283.
    [55] Umemura Takashi, Kodama Yukio, Kanki Keita et a1. Pentachlorophenol(butnot phenobarbital)promotes intrahepatic biliary cysts induced bydiethylnitoriethylnitorsa mi neto ch olangiocy sticn eoplasmsin B6C3Fl micepossiblyd uetoo xi dativestress[J]. Toxicol Pathol,2003,31:10-13.
    [56] Manilal V B, Haridas Ajit, Alexander Regi, et al. Photocatalytic treatment oftoxic organics in wastewater: toxicity of phodegradation products[J]. Wat.Res.,1992,26(8):1035-1038.
    [57]蓝惠霞,王乐乐,陈元彩,等.不同溶解氧浓度下微氧颗粒污泥降解五氯酚的特性[J].造纸科学与技术,2010,29(4):65-67.
    [58]叶鹏,张剑波,陈嵩,等.固定化辣根过氧化物酶催化去除五氯酚[J].北京大学学报(自然科学版),2005,41(6):918-925.
    [59]李慧蓉,陈建海.黄孢原毛平革菌对五氯苯酚生物降解研究[J].江苏石油化工学院学报,1999,11(2):24-27.
    [60]黄俊,余刚,成捷,等.白腐真菌生物降解五氯苯酚的动力学研究[J].农业环境科学学报,2004,23(1):167-169.
    [61]瞿福平,杨义燕,冯旭东,等.定量结构-生物降解性能关系(QSBR)研究原理及进展[J].中国环境科学,1999,19(1):18-21.
    [62] Wang Sijing, Kai Chee Loh. Growth kinetics of pseudomonas putida incometabolism of phenol and4-chlorophenol in the presence of a conventionalcarbon source[J]. Biotechnology,2000,68(4):437-447.
    [63] Magar V S, Stensel H D, Puhakka J A, et al. Sequential anaerobicdechlorination of pentachlorophenol: competitive inhibition effects and akinetic model[J]. Envion Sci Technol,1999,33:1604-1611.
    [64] Boyd S A, Shelton D R, Berry D, et al. Anaerobic biodegradation of phenoliccompounds in digested sludge[J]. Applied and Environmental Microbiology,1983,46(l):50-54.
    [65]沈东升,徐向阳,冯孝善.五氯酚(PCP)对厌氧颗粒污泥生物活性的影响[J].浙江农业大学学报,1996,22(l):19-24.
    [66] Khodadoust A P, Wagne J A, Suidan M T, et al. Anaerobic treatment of PCPin fluidized-bed GAC bioreactors[J]. Wat.Res.,1997,31(7):1776-1786.
    [67] Bryant F O, Hale D D, Rogers J E. Regiospecific dechlorination ofpentachlorophenol by dichlorophenol-adapted microorganisms in freshwater,anaerobic sediment slurries[J]. Applied and Environmental Microbiology,1991,57(8):2293-2301.
    [68] Hendriksen H V. Influence of a supplemental carbon source on anaerobicdechloronation of PCP in granular sludge[J]. Appl. Environ. Microbiol.,1992,58(1):365-370.
    [69] Nicholson D K. Reductive degradation of chlorophenols by a PCP-acclimatedmethanogenic consortium[J]. Appl. Environ. Microbiol.,1992,58(1):2280-2286.
    [70]李俊,舒为群,陈济安,等.降解DBP菌株CQO302的分离鉴定及其降解特性[J].中国环境科学,2005,25(l):47-51.
    [71]徐向阳,杜宇峰,郑平,等.降解五氯酚(PCP)厌氧生物反应器起动过程的特性研究[J].太阳能学报,1999,20(4):408-416.
    [72]任南琪,马放,杨基先,等.污染控制微生物学(第二版)[M].哈尔滨:哈尔滨工业大学出版社,2004:35-40.
    [73]韦莉元.微量水平下生物共代谢4-氯酚特性研究[D].长沙:湖南大学,2005:15-18.
    [74]周群英,高廷耀.环境工程微生物学(第五版)[M].北京:高等教育出版社,2000:30-43.
    [75]张锡辉,R.Bajpai.微生物共降解动力学模型解析[J].环境科学学报,2000,20(增刊):58-63.
    [76]张锡辉编著.高等环境化学与微生物学原理与应用[M].北京:化学工业出版社,2001:56-61.
    [77]张锡辉,白志徘.难降解有机污染物共降解机理解析[J].上海环境科学,2000,19(7):297-301.
    [78]李萍,刘俊新.共代谢基质驯化活性污泥降解五氯酚[J].中国给水排水,2004,20(6):35-37.
    [79] Fisher S.W., Hwang H., Atanasoff M., et al. Lethal body residues forpentachlorophenol in Zebra Mussels(Dreissena polymor)under varying,conditions of temperature and pH[J]. Ecotoxicology and Environmental Safety,1999,43:274-283.
    [80] Valo R Apajalahti J, Salkinoja-Salonen M. Studies on the physiology ofmicrobial degradation of pentachlorophenol[J]. Applied Microbiology andBiote chnology,1985,21(5):313-319.
    [81] Premalatha A, Rajakumar G Suseela. Pentachlorophenol degradation byPseudomonas aeruginosa[J]. World Journal of Microbiology andBiotechnology,1994,10(3):334-337.
    [82]刘洋,陈双基,刘建国.生物强化技术在废水处理中的应用[J].环境污染治理技术与设备,2002,3(5):36-40.
    [83]唐有能,程晓如,王晖.共代谢及其在废水处理中的应用[J].工程与技术,2004,10:22-25.
    [84]李建华.五氯酚的厌氧降解特性及机理研究[D].湘潭:湘潭大学,2006:15-18.
    [85]周洪波,陈坚,邱冠周.厌氧颗粒污泥对五氯苯酚脱氯过程中的影响因素[J].应用与环境生物学报,2006,12(6):846-849.
    [86] Yang Chufang, Lee Chimei. Pentachlorophenol Contaminated GroundwaterBioremediation Using Immobilized Sphingomonas Cells Inoculation in theBioreactor System[J]. Journal of Hazardous Materials,2008,(152):159-165.
    [87]山丹,马放,王金生,等.低温下生物强化SBR工艺处理苯胺废水的研究[J].中国环境科学,2009,29(8):844-849.
    [88] Tartakovsky B, Levesque M J, Dumortiter R, et al. Biodegr-adation ofPentachlorophenol in a Continuous Anaerobic Reactor Augmented withDesulfitobacterium frappieri PCP-1[J]. Applied and EnvironmentMicrobiology,1999,65(10):4357-4362.
    [89] Babcock Roger W, Ro Kyoung S, Hsieh Chu-Chin, et al. Development of anOff-Line Enricher-Reactor Process for Activated Sludge Degradation ofHazardous Waste[J]. Wat. Environ. Res.,1992,64(6):782-788.
    [90] Miethling R, Karlson U. Accelerated Mineralization of Pentachlorophenol insoil upon inoculation with mycobacterium chlorophenolicum PCP1andsphingomonas chlorophenolica RA2[J]. Applied and EnvironmentMicrobiology,1996,62(12):4361-4366.
    [91] Nico B, Johan G, Aul D V, et al. Bioaugmentation of Activated Sludge by anIndigenous3-Chloroaniline-Degrading Comamonas testosterone Strain,I2gfp[J]. Applied and Environmental Microbiology,2000,26(7):2906-2913.
    [92] Jiang Xiaoyun, Zeng Guangming, Huang Danlian, et al. Remediation ofPentachlorop-henol-Contaminated Soil by Composting with ImmobilizedPhanerochaete Chrysosporium[J]. World Journal of Microbiology&Biotechnology,2006,22:909-911.
    [93]张自杰主编.排水工程(第四版)[M].北京:中国建筑工业出版社,2000:185-190.
    [94] Abdessalem A K, Oturan N, Bellakhal N, et al. Experimental designmethodology applied to electro-Fenton treatment for degradation of herbicidechlortoluron[J]. Applied Catalysis B: Environment,2008,78:334-341.
    [95] Sheng H. Lin, Cho C. Lo. Fenton process for treatment of desizingwastewater[J]. Water Research,1997,31(8):2050-2056.
    [96] Francisco A Rodríguez, José M Poyatos, Patricia Reboleiro-Rivas. Rodriguez.Kinetic study and oxygen transfer efficiency evaluation using respirometricmethods in a submerged membrane bioreactor using pure oxygen to supply theaerobic conditions[J]. Bioresource Technology,2011,2:1-28.
    [97] Felix Garcia-Ochos, Emilio Gomez. Bioreactor scale-up and oxygen transferrate in microbial processes: An overview[J]. Biotechnology Advances,2009,27:153-176.
    [98]王绍文,王琦,王鹤立.高分散系高传质好氧生化系统的研究与实践[J].中国市政工程,2000,1(88):45-50.
    [99] Daniela de Araújo Viana Marques, Beatriz Rivas Torres, Ana Lúcia FigueiredoPorto, et al. Comparison of oxygen mass transfer coefficient in simple andextractive fermentation systems[J]. Biochemical Engineering Journal,2009,47:122-126.
    [100] Wan L, Alvarez-Cuenca M, Upreti S.R, et al. Development of a three-phasefluidized bed reactor with enhanced oxygen transfer[J]. Chemical Engineeringand Processing:Process Intensification,2010,49:2-8.
    [101] Zhang Xiaowei. Efficient oxygen transfer by surface aeration in shakencylindrical containers for mammalian cell cultivation at volumetric scales upto1000L[J]. Biochemical Engineering Journal,2009,45:41-47.
    [102] Li Jun, Zhu Liping, Xu You-Yi, et al. Oxygen transfer characteristics ofhydrophilic treated polypropylene hollow fiber membranes for bubblelessaeration[J]. Journal of Membrane Science,2010,362:47-57.
    [103] Ryo Mineta, Zeinab Salehi, Hidemi Yoshikawa, et al. Oxygen transfer duringaerobic biodegradation of pollutants in a dense activated sludge slurry bubblecolumn: Actual volumetric oxygen transfer coefficient and oxygen uptake ratein p-nitrophenol degradation by acclimated waste activated sludge[J].Biochemical Engineering Journal,2011,53:266-274.
    [104]陈恒宝,王申. Fe/Cu体-CAST工艺处理草甘膦废水的研究及改造方案[J].环境科技,2011,24(1):35-41.
    [105]李永连,朱明成,陆文俊,等.铁炭内电解-SBR组合工艺处理橡塑钙、油墨钙混合废水[J].化学世界,2011增刊:141-142.
    [106]唐宝奎,强光初,李玲,等.中小型油厂废水处理和实现零排放的工艺设备[J].中国油脂,2006,31(12):71-73.
    [107]刘海峰,刘元.UV/H2O2/微曝气处理微污染水中苯胺的试验研究[J].供水技术,2008,12(6):15-17.
    [108]赵世嘏,高乃云,楚文海.UV/H2O2/微曝气降解三氯乙酸的试验研究[J].给水排水,2009,35(5):139-143.
    [109]李若愚,高乃云,徐斌,等.UV/H2O2/微曝气联用工艺对BP的去除[J].中国环境科学,2007,27(2):160-164.
    [110]吴玉,田刚,司亚安,等.兼氧调节-曝气-混凝沉淀工艺处理印染废水[J].给水排水,2009,35(10):67-69.
    [111]何志明,李秀芬,堵国成,等.微曝气Fenton氧化法处理模拟双酚A废水的效果及其生物验证[J].环境工程学报,2009,3(9):1573-1578.
    [112]曾小勇,王红武,马鲁铭,等.微曝气催化铁内电解法预处理化工废水[J].中国给水排水,2005,21(12):1-4.
    [113]袁宏林.微曝气在铁屑法处理印染废水中的作用探讨[J].西安建筑科技大学学报,1997,29(3):250-253.
    [114]魏复盛.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002:25-103.
    [115]范苓,夏豪刚.气相色谱/质谱法测定水中五氯酚[J].环境监测管理与技术,2001,13(1):32-34.
    [116]水质五氯酚的测定气相色谱法(GB8972-1988)[S].北京:中国质检出版社,2003.
    [117] Wennrich L, Popp P, M der M. Determination of chlorophenols in soils usingaccelerated solvent extraction combined with solid phase microextration[J].Anal Chem,2000,72:546-551.
    [118]谭学军.污水生物处理系统电子传递体系活性检测与应用研究[D].哈尔滨:哈尔滨工业大学,2005:16-37.
    [119] Blenkinsopp S.A., Lock M.A. The Measurement of Electron Transport SystemActivity in River Biofilms[J]. Wat. Res.1990,24(4):441~445.
    [120] López-D e z E.C, Bone S. The interaction of trypsin with trehalose: aninvestigation of protein preservation mechanisms[J]. Biochimica etBiophysica Acta (BBA)-General Subjects,2004,1673:139-148.
    [121](日)微生物研究法讨论会.微生物学实验法[M].北京:科学技术出版社,1981:199-200.
    [122] Chang I S, Lee C H. Membrane filtration characteristics in membrane-coupledactivated sludge system-the effect of physiological states of activated sludgeon membrane fouling[J]. Desalination,1998,120(3):221-223.
    [123] Wingender J, New T R, Flemming H C. Microbial extracellular polymericsubstances, characterization, structure and function[M]. Berlin:Springer,1999.
    [124] Wu W, Bhatnagar L, Zeikus J.G. Perofrmance of anaerobic granules fordegradation of pentachlorophenol[J]. Appl. Environ. Microbiol,1993,59(2):389.
    [125] Eid J, Fehr A, Gray J, et al. Real-time DNA sequencing from singlepolymerase molecules[J]. Science,2009,323:133-138.
    [126] Clarke J, Wu H C, Jayasinghe L, et al. Continuous base identification forsinglemolecule nanopore DNA sequencing[J]. Nature nanotechnology,2009,4:265-270.
    [127] Ozsolak F, Platt A R, Jones D R, et al. Direct RNA sequencing[J]. Nature,2009,461:814-818.
    [128] Weavers L.K, Malmstadt N, Hoffmann M.R. Kinetics and mechanism ofpentachlorophenol degradation by sonication, ozonation, and sonolyticozonation[J]. Environmental Science and Technology,2000,34(7):1250-1255.
    [129] Toh S K, Tay J H, Moy B Y P, et al. Size-effect on the physical characteristicsof the aerobic granule in a SBR[J]. Appl Microbiol Biotechnol,2003,60:687-695.
    [130] Yang Shufang, Tay Joo-Hwa, Liu Yu. A novel granular sludge sequencingbatch reactor for removal of organic and nitrogen from wastewater[J].Journalof Biotechnology,2003,106:77-86.
    [131] Koh S, McCullar M V, Focht D D. Biodegradation of2,4-dichlorophenolthrough a distal mta-fission pathway[J]. Appl. Environ. Microbiol,1997,63:2054-2057.
    [132] Alexander M. Biodegradation and bioremediation[M]. New York:AcademicPress,1994:95-100.
    [133] Caporaso J G, Kuczynski J. QIIME allows analysis of high-throughputcommunity sequencing data[J]. Nature Methods,2010,7(5):335-336.
    [134] Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene databaseproject: improved data processing and web-based tools[J]. Nucl. Acids Res,2013,41(D1): D590-D596.
    [135] Katherine R Amato, Carl J Yeoman. Habitat degradation impacts black howlermonkey (Alouatta pigra) gastrointestinal microbiomes[J]. The ISME Journal,2013,7:1344-1353.
    [136] Wang Yu, Sheng Huafang. Comparison of the Levels of Bacterial Diversity inFreshwater, Intertidal Wetland, and Marine Sediments by Using Millions ofIllumina Tags[J]. Appl. Environ. Microbiol,2012,78(23):8264.
    [137] Folsom B R, Chapman P J, Pritchard P H. Phenol and trichoroethylenedegradation byPseudomonas cepaciaG4:kinetics and interactions betweensubstrates[J]. Appl Environ Microbiol,1990,56:1279.
    [138] Shah Nilesh N, Hanna M. Leslie, Taylor Robert T. Batch cultivation ofMethylosinus trichosporium OB3b: V. characterization ofpoly-B-hydroxybutyrate production under methane-dependent growthconditions[J]. Biotechnol Bioeng,1996,49:161.
    [139] Chang H L, Alvarez-Cohen L. Model for the cometabolic biodegradation ofchlorinated organics[J]. Environ Sci Technol,1995,29:2357.
    [140]周洪波.有毒化合物对厌氧颗粒污泥生物学特性的影响[D].无锡:江南大学,2000:18-20.
    [141] Ranjard L, Poly F, Nazaret S. Monitoring complex bacterial communitiesusing culture-independent molecular techniques: application to soilenvironment[J]. Res. Microbiol,2000,151:167-177.
    [142]黄玉峰.SBR反应器中好氧颗粒污泥的培养[D].上海:上海交通大学,2005:15-17.
    [143]阮文权.好氧颗粒污泥同步硝化反硝化过程研究[D].无锡:江南大学,2004:13-17.
    [144] Kira A, Hector M, Campbell W. Effect of temperature on the inhibitionkinetics of phenol biodegradation by pseudomonas putida Q5[J].Biotechnology,2000,70(3):291-299.
    [145] Lowe S E, Jain M K, Zeikus J G. Biology, ecology and biotechnologicalapplications of anaerobic bateria adapted to environmental stressed intemperature, pH, salinity or subdtrates[J]. Microbiol. Rev.,1993,57(2):451.
    [146] Ye Fenxia, Shen Dongsheng. Acclimation of anaerobic sludge degradingchlorophenols and the biodergradation kinetics during acclimation period[J].Chemosphere,2004,54:1573-1580.
    [147] Aleksandar D Kostic, Dirk Gevers. Genomic analysis identifies association ofFusobacterium withcolorectal carcinoma[J]. Genome Research,2012,22:292-298.
    [148] Anderson K, Koopman B, Bitton G. Evaluation of INT-dehydrogenase Assayfor Heavy Metal Inhibition of Activated Sludge[J]. Wat. Res.,1988,22(3):349-353.
    [149] Guido Vogel, Oliver Fiehn, Louis Jean-Richard-dit-Bressel, et al. Trehalosemetabolism in Arabidopsis: occurrence of trehalose and molecular cloning andcharacterization of trahalose-6-phosphate synthase homologues[J]. Journal ofExperimental Botany,2001,52(362):1817-1826.
    [150]周秀玲.利用宏基因组方法获得新酯酶基因及酶学性质研究[D].杭州:杭州师范大学,2012:5-10.
    [151] ThomPson J R, Mareelino L A, Polz M F. Heteroduplexes in mixed-templateamplifieations: formation, consequence and elimination by reconditioningPCR[J].Nucleic Acids Researeh,2002.30(9):2083-2088.
    [152]侯涛.宏基因组中DNA片段物种多样性鉴定研究[D].长春:吉林大学,2013:3-8.
    [153] Lisa Oberauner, Christin Zachow, Stefan Lackner, et al. The ignored diversity:complex bacterial communities in intensive care units revealed by16Spyrosequencing[J]. Scientific Reports,2013,3:1413.
    [154] Srinivasan S, Hoffman N G, Morgan M T, et al. Bacterial Communities inWomen with Bacterial Vaginosis: High Resolution Phylogenetic AnalysesReveal Relationships of Microbiota to Clinical Criteria[J]. PLOS ONE,2012,7(6): e37818.
    [155] Alvarez-Cohen L, McCarty P L. Effects of toxicity, aeration and reductionsupply on trichloroethylene transformation by a mixed methanotrophicculture[J]. Appl Environ Microbiol,1991,57:228.
    [156] Tschantz M F, Bowman J P, Donaldson T L. Methanotrophic TCEbiodegradation in a mult-i stage bioreactor[J]. Environ Sci Technol,1995,59:2073.
    [157]林英姿.复合ABR-人工湿地处理硝基苯废水的效能及微生物群落研究[D].哈尔滨:哈尔滨工业大学,2010:10-12.
    [158]蓝惠霞.微好氧颗粒污泥同时好氧-厌氧降解废水中五氯酚(PCP)的研究[D].广州市:华南理工大学,2005:109-113.
    [159] Marsili-Libelli S, Tabani F. Accuracy Analysis of a Respirometer for ActivatedSludge Dynamic Modeling[J]. Wat. Res.2002,36:1181-1192.
    [160] Tzoris A, Caneb D, Maynard P, et al. Tuning the Parameters for FastRespirometry[J]. Analytica Chimica Acta.2002,460:257-270.
    [161]陈涛,张国亮.化工传递过程基础[M].北京:化学工业出版社(第二版),2002:205-225.
    [162]修伍德.TK,皮克福特.RL,威尔基.C.R.传质学[M].北京:化学工业出版社,1988:344-355.
    [163] Hollender J, Hopp J, Dott W. Degradation of4-chlorophenol via the metacleavage pathway by Comamomas testosteroni.JH5[J]. Appl. Environ.Microbiol,1997,63:4567-4572.
    [164] Chen YS, Zhuang YY, Dai SG. Asurvey on the microbial degradation ofchlorinated aromatic compounds[J]. Ady. Environ. Sei.,1997,5(2):17-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700