用户名: 密码: 验证码:
修枝对欧美杨107及林下作物生长和生理的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是杨树人工林面积最大的国家。近十年来,我国杨树栽植面积不断扩大。欧美杨107(Populus×euramericana cv.'74/76')因其具有优质、速生、丰产等特点,在山东、河北、河南等多省大面积栽植,并且在林木生长前期多进行农林间作。然而在实际生产当中,普遍存在缺乏有效的科学管理措施的问题。修枝作为重要的抚育措施,能够培育优质良材,有效地提高出材率。目前对于欧美杨107的修枝缺乏系统的研究,存在修枝随意性和盲目性等问题。因此,本研究以确定合理修枝强度为目的,分别在河北衡水市和保定市、山东德州市、河南孟州市对欧美杨107(4-5a)进行四种不同强度的修枝处理,分别为轻度修枝(修去冠长1/6)、中度修枝(修去冠长2/6)、强度修枝(修去冠长3/6)和重度修枝(修去冠长4/6),以不修枝为对照,对欧美杨107和林下小麦、玉米的生长生理进行了研究,结果表明:
     (1)修枝后胸径生长率显著降低,四种修枝强度在修枝两年后的胸径生长率均低于对照,修枝后第一年,胸径生长率基本随着修枝强度的增加而降低,且差异显著(P<0.5)。修枝第二年强度修枝、重度修枝胸的胸径生长率高于对照,轻度修枝、中度修枝与对照接近。修枝对高生长仅在修枝第一年具有一定促进作用,增幅随着修枝强度的增加而增大,但差异并不显著(P>0.5)。
     (2)修枝对材积生长有一定影响。修枝两年后,强度修枝的材积相对生长率最大,比不修枝增加了1.25%-4.52%。在修枝当年,中度修枝或者强度修枝会促进材积生长,其它修枝强度则会减缓材积生长。修枝后第二年,强度修枝对材积生长仍有明显的促进作用,而其余修枝强度则均会影响材积的生长,但与第一年相比,降幅减小。修枝能有效促进树干中上部径生长,降低树干的尖削度,能有效提高木材出材率。且这这种促进作用仅在修枝第一年较为明显。
     (3)相同含节率的死节对木材顺纹抗压强度及抗弯强度的降低程度均比活节大;木节对抗弯强度的降低程度大于抗压强度;无论死节还是活节,含节率越高,木材顺纹抗压强度和抗弯强度降低程度越大。由于修枝能有效减少木材中死节的数量并减小活节的直径,因而修枝后能有效增加木材的抗弯强度与抗压强度,提高木材质量。
     (4)修枝后总叶面积显著减少,效叶面积指数分别为不修枝的58.59%-94.34%修枝后树冠总蒸腾量显著降低。重度修枝的树干液流速率仅相当于不修枝的1/3,中度修枝仅相当于不修枝的2/3。
     (5)欧美杨107不同冠层叶片的光合速率、蒸腾速率、气孔导度、瞬时水分利用效率均表现为上部>中部>下部。修枝后叶片光合速率、蒸腾速率、气孔导度等光合特性均呈不同程度的增加,增加幅度受修枝强度、树龄、叶片部位及土壤水分状况等因素影响。修枝强度越大,叶片所在枝条部位越靠近树冠顶部,树龄越大,增加幅度也越大。
     (6)修枝能有效增加林下光合有效辐射。能有效增加林下作物光合速率、蒸腾速率、气孔导度,且增幅随着修枝强度的增加而增加。修枝后日平均净光合速率分别比不修枝提高2.34%~62.63%,玉米提高41.84%~90.78%。修枝能显著促进小麦、玉米增高、增粗、增重,且越到作物生长后期修枝对作物生长的促进作用越明显。另外,修枝对玉米生长的促进作用大于小麦。修枝能使林下作物大幅增产,轻度修枝、中度修枝、强度修枝、重度修枝下小麦分别增产11%、77%、125%、171%,玉米分别增产46%、100%、232%、399%;修枝后玉米主要通过增加穗数,小麦主要通过增加粒重和穗粒数增产;修枝后玉米增产幅度大于小麦。
The effects of pruning on poplar and crops were investigated to demonstrate whether pruning could act as an optimization measure for promoting growth of them. Four and Five-year-old poplar(Populus X euramericana cv.'74/76') were pruned to remove 0,1/6,2/6,3/6 and 4/6 of the green crown length in Hebei,Henan and Shandong province of China.The growth and physiological characteristic of poplar and crops (wheat and mazie) planted under the trees were investigated.The results indicated that:
     1. The difference of relative tree height growth rate in different pruning treatment was not significant, this demonstrated that the nutrition for apex growth mainly came from the branches and leaves of top layer; the difference of relative growth rate of DBH was significant, that is, the higher pruning intensity, the lower DBH relative growth rate.
     2. The influence from different pruning intensity on the net photosynthetic rate and other physiological parameters was significant. The pruning improved net photosynthesis of the single leaf on the middle and top layer of crown in some degree, and with the increased pruning intensity, the net photosynthetic rate also increased. At the same time, pruning increased the transpiration rate, particularly around the noon time, some pruning treatments trees can still keep the relatively higher transpiration rate. The results showed that pruning reduced the saturation water deficit of individual foliage, and increased the leaf stoma conductance, which was propitious to improving net photosynthesis and transpiration rate. As to the water-using efficiency of single leaf, the differences form all pruning treatments were not obviously, even some water-using efficiency of individual leaf from pruned was lower than that from control.
     3. The difference of relative volume growth rate from different pruning intensity is significant. That means the suitable pruning intensity can increase the volume growth rate, but excessive pruning is disadvantageous to the volume growth.The volume growing rate increase 1.25%-4.52%by pruning intensity of 3/6 of green crown length removed.
     4. The Effect of different Pruning intensity on the effective leaf area index was significant. Along with the increasing of pruning intensity, the effective leaf area index decreased gradually.
     5. The difference of trunk flow rate under different pruning intensity was significant. Based on the data in Site I, the data of trunk flow rate from relative high-intensity pruning trees were just as half as these of control trees in May, June, and July. This indicated that the pruning can effectively reduced the transpiration water volume of whole individual tree in some degree. Although there was no difference between the pruned trees and unpruned trees in terms of the instantaneous water use efficiency at single leaf level, as to the flow rate at whole tree level, the pruning effectively reduced water consumption of trees, and improved the water use efficiency.
     6. The radial growth of the analyzed trunk discs at different heights was different along with the various pruning intensity. Based on the analysis data from the trunk height from 0 to 11 m, the radial growth decreased in the lower part and increased at the higher part along with the increase of pruning density.Pruning effectively decreased the taper of trunk, that means the relative taper of logs became smaller, and the trunks became full and straight, this increase the timber volume.
     7. Net photosynthetic rate and transpiration rate of crops increased after pruning,which was less remarkable in the afternoon than in the morning. The height,ground diameter and aboveground biomass of winter wheat and summer maize both increased remarkably, and that of summer maize was higher than that of winter wheat. The yield of crops also increased substantially after pruning, and that of wheat mainly came from thousand grain weight and the number of grain per spike, but that of maize mainly came from spike number. The increased yield of maize was higher than that of wheat, but the total yield was lower than that of wheat. So winter wheat was more suitable for agroforesty system than summer maize.
引文
1. 白云岗,宋郁东,周宏飞,张江辉.热脉冲法对胡杨树干液流的监测与蒸腾过程模拟[J].水土保持学报,2007,21(3):188-192.
    2. 程朝阳.杉木人工林无节材培育技术研究[J].林业科学研究,2005,18(5):530-534.
    3. 陈孝丑.不同修枝强度对杉木干形的影响[J].林业科技开发,2007,21(3):87-88.
    4. 陈孝丑.修枝对杉木幼林生长和林下植物多样性的影响[J].亚热带与环境学报,2008,3(3):47-52.
    5. 陈卿芝,陈佩珍,连俊和,等.修枝间伐对松突圆蚧抑制作用的研究[J].林业科学研究,1989,2(4):388-394.
    6. 戴晓琴,郭兴强,李鹏,等.平原农区幼龄杨树间作农作物的产量表现[J].生态学杂志,2006,25(12):1515-1519.
    7. 董金伟,白世红,李杰,等.日本落叶松林修枝技术研究[J].山东林业科技,2008,175(2):18-19.
    8. 丁献玺.杨树的整形修枝和清干[J].中国林业,1991,(4):29-30.
    9. 方升佐,吕士行,徐锡增,等.南方地区杨树胶合板材定向培育技术[J].林业科学,1999,35(6):120-124.
    10.方升佐,徐锡增,严相进,等.修枝强度和季节对杨树人工林生长的影响[J].南京林业大学学报,2000,24(6):6-10.
    11.冯今朝,江天然,刘新民.C3和C4植物的水分利用效率[J].西北植物学报,1997,17(6):27-30.
    12.冯俊义,包文生,陈海庆.杨树修枝对树木生长影响的观察与分析[J].青海农林科技,2000,(04):4-5.
    13.傅锡儒.杨树修枝技术浅谈[J].河北林业科技,1986,(01):41-42.
    14.冯玉龙,熬红,王文章,等.长白落叶松净光合速率和呼吸速率的日变化及时空影响[J].河北大学学报,1998,18(2):183-188.
    15.高岩,张汝民,刘静.应用热脉冲技术对小美旱杨树干液流的研究[J].西北植物学报,1991,21(4):644-649.
    16.高军,顾宇书,关明东,等.欧美107杨速生丰产林不同修枝强度的研究[J].防护林科技,2009,91(4):23-24.
    17.龚垒.树木的光合作用与物质生产[M].北京:科学技术出版社,1989:1-210.
    18.郭学斌,李新平,王宗汉.修枝对杨树生长的影响[J].山西林业科技,1993,(4):35-42.
    19.黄闰泉,涂光新,李凤莲.三峡库区农林复合系统根系分布及分形研究[J].湖北林业科技.2006,(4):1-4.
    20.黄冶,袁玉峰,孔红娃.修枝对红松人工林林木生长和木材力学性质的影响[J].东北林业大学学报,2002,30(1):76-77.
    21.黄衍庆.间伐修枝措施对松突圆蚧的控制效果[J].华东昆虫学报,2005(4):93-96.
    22.胡慕任,张寿槐.落叶松木节对木材力学性质的影响[R].北京:中国林业科学研究院木材工业研
    究所,1961:1-12.
    23.廖宝义,陈卿芝,连俊和,等.修枝间伐对被松突圆蚧危害的马尾松生长及虫口密度的影响[J].林业科技通讯,1992(5):5-9.
    24.蒋高明,何维明.一种在野外自然光照下快速测定光合作用-光响应曲线的新方法[J].植物学通报,1999,16(6):712-718.
    25.金发根,罗洪,邹伟.修枝强度对乐昌含笑幼树生长的影响[J].江西林业科技,2006,(3):26-27.
    26.李芳东,王保平,傅大立.桐麦间作系统内光量分布及其对小麦产量的影响[J].北京林业大学学报,1998,20(3):101-107.
    27.李芳东,傅太立,王保平. 桐麦间作系统辐射光谱成分变化规律的研究[J].生态学报,2000,20(1):109-1 17.
    28.李启明.作物光合效率与产量的关系及影响光合效率的内在因子[J].植物生理学通讯,1980,(2):1-8.
    29.李荣岐,姜秀志.红松人工林修枝效果的调查[J].林业科技,2001,26(5):11-12.
    30.李坚.生物木材学.哈尔滨:东北林业大学出版社,1993.
    31.李潮海,栾丽敏,尹飞,等.弱光胁迫对不同基因型玉米生长发育和产量的影响[J].生态学报,2005,25(4):824-830.
    32.李源哲,胡慕任,张寿槐.红松、鱼鳞云杉木节对木材强度的影响[R].北京:中国林业科学研究院木材工业研究所,1965:1-9.
    33.李华祯,姚保强,杨传强,等.4种经济树木水分生理及抗旱特性研究[J].山东林业科技,2006,163(2):9-11.
    34.刘奉觉,郑世锴,巨关升.用热脉冲速度记录仪测定树干液流[J].植物生理学报,1993,29(2):110-114.
    35.刘奉觉,郑世锴.用测定木质部液流速度的方法确定树木的蒸腾耗水量[J].林业科技通讯,1 989,30(4):30-32.
    36.刘贤赵.论水文尺度问题[J].干早区地理,2004,27(1):61-65.
    37.刘云.修枝抚育对林木干形的影响[J].河北林业科技,1987,(04):44-48.
    38.刘中山.谈北方几个阔叶用材树种的修枝技术[J].河南林业,1993,(01):26-27.
    39.刘盛,倪成才.红松人工林修枝技术对林木生长和干形的影响[J].吉林林学院学报,1997,13(2):80-84.
    40.刘西军,黄庆丰,徐小牛,等.修枝对滩地杨树生长和养分的短期影响[J].水土保持学报,2009,23(5):195-199.
    41.马履一,王华田,林平.北京地区几个造林树种耗水性比较研究[J].北京林业大学学报,2003,25(2):1-7.
    42.孟庆英,田砚亭.用14C研究杨树苗期光合产物的运输和分配[J].北京林学院学报,1984,(01):11-20.
    43.孟宪宇.测树学[M].北京:中国林业出版社,1996:158-204.
    44.牛正田,张绮纹,彭镇华,等.国外杨树速生机制与理想株型研究进展[J].世界林业研究,2006,19(2):23-27.
    45.彭正萍,李春俭,门明新.缺磷对不同穗型小麦光合生理特性和产量的影响[J].作物学报,2004,30(8):739-744.
    46.沈国舫.森林培育学[M].北京:中国林业出版社,2001:270-276.
    47.沈允钢,施教耐,许大全.动态光合作用[M].北京:科学出版社,1998:1-153.
    48.施昆山.当代世界林业[M].北京:中国林业出版社,2001:745-747.
    49.孙时轩.造林学[M].北京:中国林业出版社,1992:221-313.
    50.孙鹏森,马履一.水源保护树种耗水特性研究与应用[M].北京:中国科技文献出版社,2002:1-16.
    51.孙鹏森,马履一,王光平,等.油松树干液流的时空变异性研究[J].北京林业大学学报,2000,22(5):1-6.
    52.孙志虎,王庆成,梁淑娟.间伐和修枝对白桦天然林林木生长的影响[J].东北林业大学学报,2004,32(6):11-18.
    53.邵锦锋,魏柏松.湿地松林抚育间伐与修枝技术[J].南京林业大学学报,2005,29(5):69-72.
    54.田晶会,贺康宁,王百田,等.黄土半干旱区气体交换和水分利用效率日变化研究[J].北京林业大学学报,2005,27(1):42-46.
    55.许大全.光合作用速率[J].植物生理学通讯,1988,(05):1-7.
    56.许大全,张玉忠,张荣铣;植物光合作用的光抑制[J].植物生理学通讯,1992,28(4):237-243.
    57.许大全,沈允钢.植物光合作用效率日变化[J].植物生理学报,1997,23(4):410-416.
    58.许玉彬.作物水分利用效率研究进展[J].陕西农业科学,1998,(04):13-17.
    59.肖祥希.修枝对福建柏林分生长及无节材形成的影响[J].林业科学研究,2005,18(1):22-26.
    60.徐立军,傅大平,郑连阁,等.修枝对杨粮间作系统中光照及作物产量和生物量的影响[J].河北林果研究,2002,17(1):1-6.
    61.尹伟伦.不同种类杨树苗木的生长和光合性能的比较研究Ⅰ[J].北京林学院学报,1982,(04):93-105.
    62.尹伟伦.不同种类杨树苗木的生长和光合性能的比较研究Ⅱ[J]北京林学院学报,1983,(02):41-45.
    63.尹伟伦.面向21世纪发展中国杨树[C].中国林学会第六届全国杨树学术讨论会.北京:中国林学会,1999:1-4.
    64.尹伟伦.国际杨树研究新进展[M].黑龙江:东北林业大学出版社,2001:1-230.
    65.尹伟伦.中国杨树栽培与利用研究[M].北京:中国林业出版社,2005:45-50.
    66.袁玉欣,裴保华,王文全,等.杨粮间作条件下的作物产量和生物量[J].河北农业大学学报,1996,19(2):24-30.
    67.袁玉欣,裴保华,王九龄,等.国外混农林业系统中林木与农作物的相互关系研究进展[J].世界林
    业研究,1999,12(6):13-17.
    68.袁玉欣,裴保华,王文全,等.杨粮间作条件下的作物产量与生物量[J].河北农业大学学报,1996,19(2):24-30.
    69.杨一,吴际友,程勇,等.四川桤木无性系采穗圃修枝与施肥试验初报[J].湖南林业科技,2005,32(1):23-24.
    70.王如新,建飞,任宝琮.油松林不同修枝强度对林木生长的影响[J].河北林业科技,1991,(01):37-38.
    71.王沙生,王世绩,裴保华.杨树栽培生理研究[M].北京:北京农业大学出版社,1991:1-385.
    72.王世绩,刘雅荣.杨树失叶对生长超越补偿作用的研究[J].林业科学研究,1993,36(3):294-298.
    73.王正秋.谈刺槐林的修枝、间伐及更新[J].中国水土保持,1981,(04):44-45.
    74.王金满,郭明辉.生长空间对人工林红松建筑材材质的影响[J].东北林业大学学报,2002,30(2):35-37.
    75.王贵霞,王海明,李传荣,等.2003.五角枫金银木刺槐水分生理特性及抗旱性研究[J].山东林业科技,148(5):11-13.
    76.温达志.大气二氧化碳增高与植物水分利用效率[J].热带亚热带植物学报,1997,5(3):83-90.
    77.吴克.树木应合理修枝[J].河北林业科技,1983,(4):32-33.
    78.吴建勤.修枝对日本龟蜡蚧虫口密度及树木生长的影响[J].中国森林病虫,2008,27(5):35-38.
    79.曾小平,赵平,彭少麟,等.三种松树的生理生态学特性研究[J].应用生态学报,1999,10(3):275-278.
    80.曾波,张小萍,钟章成.切枝对三峡库区两种榕属乔术生物量积累和枝供给的影响[J].生态学报,2006,26(5):1382-1389.
    81.张劲松,孟平,宋兆民,等.我国平原农区复合农林业小气候效应研究概述[J].中国农业气象,2004,25(3):52-55.
    82.张劲松,孟平.农林复合系统水分生态特征的模拟研究[J].生态学报,2004,24(6):1172-1177.
    83.张绮纹,李金花.杨树工业用材林新品种[M].北京:中国林业出版社,2003:43-61.
    84.张廊玉.修枝的学问[J].新疆林业,1988,(03):20-21.
    85.张英.杨树产业步入黄金时代[J].中国林业,2007,(7):18-22.
    86.赵天锡.杨树工业用材林的修枝抚育[J].湖南林业科技,1988,(2):12-15.
    87.赵兴征,卢剑波.农林系统研究进展[J].生态学杂志,2004,23(2):127-1 32.
    88.郑文翰.杨树幼林的修枝[J].山东林业科技,1972,(05):50-52.
    89.中国林业科学院林业科学研究所.国外杨树栽培[M].北京:北京南效印刷厂,1982:1-150.
    90.朱春全.红松及伴生树种光合呼吸生理生态学研究[D].哈尔滨:东北林业大学,1991:1-53.
    91.翟进升,王明珠,张斌,等.低丘红壤南酸枣与花生复合系统种间水肥光竞争的研究[J].中国生态农业学报,2006,14(2):82-84.
    92.赵兴征,卢剑波.农林系统研究进展.生态学杂志,2004,23(2):127~132.
    93.赵英,张斌,王明珠.农林复合系统中物种间水肥光竞争机理分析与评价[J].生态学报,2006,26(6):1792-1801.
    94.赵忠宝.徐淮平原农林复合系统小气候效应研究[D].南京:南京林业大学,2006.
    95. Linder S.林静芳摘译.针叶树的光合作用与呼吸作用[J].林业文摘,1980,(2):1-3.
    96. Bayala J,Teklehaimanot Z,Quedraogo S J. Millet production under pruned tree crowns in a parkland system in Burkina Faso[J].Agroforestry Systems,2002,54(3):203-214.
    97. Berniger F,Salas E. Biomass dynamics of Erythrina lanceolata as influenced by shoot-pruning intensity in Costa Rica[J].Agroforestry Systems,2003,57(1):17-26.
    98. Berry J,Bjorkman O.Photosynthetic response and adaptation to temperature in higher plants[J]. Annual Review of Plant Physiology,1980,31(1):491-543.
    99. Buckley T N,Mott K A.Dynamics of stomatal water relations during the humidity response:implications of two hypothetical mechanisms[J].Plant Cell&Environment, 2002,25(3):407-419.
    100. Burgess P J,Incoll L D,Corry D T,et al.Poplar (Populus spp.) growth and crop yields in a sivoarable experiment at three lowland sites in England[J].Agroforestry Systems,2005,63(2):157-169.
    101. Ceulemans R J.Photosynthesis[C].In:A S Kaghvendra. eds. Physiology of Tree[M]. New York:wiley-interscience,1991:21-50.
    102. D I Dicknann,J G Isebrands,J E Eckenwalder,et al.Poplar Culture in North America[M]. Ottawa Canada:NRC Research Press,2001:323-462.
    103. Farquhar GD,Sharkey TD.Stometal conductance and photosunthesis[J]. Annual Review of Plant Physiology,1982,33(1):317-345.
    104. Gambles R L,Zsuffa L.Conversion and use of poplar and willow hiomass for food,forage and energy in North America[M]. Ottawa Canada:International Poplar Commission,1984:1-86.
    105. Givnish T J.Adaptation to sun shade:A whole-plant perspective[J]. Australian Journal of Plant Physiology,1988,15(1):63-92.
    106. Gramnatikopoulos G,Manetas Y.Diurnal changes in phosphoenolpyruvate carboxylase and pyruvate,orthophosphate dikinase properties in the natural environment:interplay of light and temperature in a C4 thermophile[J]. Physiologia Plantarum,1990,80(4):593-597.
    107. Habermann G,Machado E C,Rodrigues J D,etal.Gas exchange rates at different vapor pressure deficits and water relation of sweet orange plants with citrus variegated chlorosis[J].Scientia Horticulturae,2003,98(3):233-245.
    108. Huang W. Influence of different taxodium ascendens stands on the open ranges and system performance in Jiangsu province,China[J]. Agroforestry Systems,1997,37(3):241-252
    109. Huber B.Observation and measurements of sap flow in plant[J].Berichteder Deutscher Botanishcen Gesseifschaft,1932,50(1):89-109.
    110. Johnson R L.Pruning collonwood[R].South Lum herman,1959,198(1):28-29.
    111. Kalt-Torres W,Kerr P S,Usuda H,etal.Diurnal changes in maize leaf photosynthesis I.Carbon exchange rate,assimotate export rate,and enzyme activeties[J].Plant Physiology,1987,83(2):283-288.
    112. Kramer P J.The role of physiology in forestry[J].Tree Physiology,1986,(2):1-16.
    113. Krinard R M.Growth and branching of young cottonwood after pruning [R]. Albany:USDA Forest Service Research,1976:1-20.
    114. Kostychene S,Kudriavzewa M.Photosynthesis[J].Planta,1926,1(5):679-699.
    115. Larcher W.Physiological Plant Ecology[M].Berlin and New York:Springer-verlag,1980:303-305.
    116. Marshall D C.Measurement of sap flow in conifers by heat transport[J].Plant Physiology,1958,33(6):385-396.
    117. Megraw R A. Wood quality factors in loblolly pine[M]. Georgia:TAPPI Press Atlanta,1985:89
    118. Nabb K M,Vanderschaaf C.Growth of graded Sweetgum 3 years after root and shoot pruning[J].New forests,2005,29(3):313-320.
    119. Neilsen W A,Pinkard E A.Effects of green pruning on growth of Pinus radiate[J].Canadian Journal of Forest Research,2003,33(11):2067-2073.
    120. Norman J M.Scaling,process between leaf and canopy levels[C].In:Ehleringer J R.and Field C B.eds.Scaling Physiological Process:leaf to Globe[M].San Diego:Academic Press,1993:41-76.
    121. Osmond C B.In:Turner N C,Kraner P Jed.Adaptation of Plants to Water and Higher Temperature Stress[M].New York:Wiley-interscience,1980:139-141.
    122. Pinkard E A,Battaglia M,Beadle C L,etal.Modeling the effect of physiological responses to green pruning on net biomass production[J].Tree physiology,1999,19(1):1-12.
    123. Pinkard E A,Beadle C L.Regulation of photosynthesis in Eucalyptus nitens (Deane. and Maiden) Maiden following green pruning[J].Trees,1998,12(6):366-376.
    124. Pinkard E A,Beadle C L,Davidson N J,etal.Photosynthetic response of Eucalyptus nitens (Deane. and Maiden) Maiden to green pruning[J].Tree Physiology,1998,12(3):119-129.
    125. Panshin A J, Carl de Zeeuw. Textbook of wood technology. Mcgraw Hill Book Company,1980
    126. Schmidt T L,Wardle T D.Impact of pruning Eastern Redcedar(Juniperus virginiana) [J].Western Journal of Applied Forestry,2002,17(4):189-193.
    127. Schroth G,et al.2001.Plant-soil interactions in multistrata agroforestry in the humid tropics[J].Agroforestry Systems,53(2):85-102.
    128. Sierria J,et al.2002.Soil nitrogen as affected by Gliricidia sepiumin a silvopastoral system in Guadeloupe,French Antilles [J].Agroforestry Systems,54(2):87-97.
    129. Swanson R H.Water transpired by trees is indicated by heat pulse velocity[J]. Agricultural Meteorology,1972,(10):277-281.
    130. Vertessy R A,Benyon R,O'Sullivan S K,et al.Relastionship between diameter,sapwood area,leaf area and transpiration in a young mountain ash[J].Tree Physiology,1995,15(10):559-568.
    131. Wykr S D,Meinzer F C,Vertessy R A. A review of whole-plant water use studies in trees[J].Tree Phisiology,1998,18(8/9):499-512.
    132. Willey R W, Reddy M.A field technique for separating above and below-ground interactions in intercropping:an experiment with pearl millet/groundnut[J].Exper.Agric,1981,17:257-264.
    133. Yu Qiang,Wang Tianduo.Simulation of the physiological responses of C3 Plant leaves to environmental factors by a model which combines stomatal conductance, photosynthesis and transpiration[J].Acta Botanica sinica,1998,40(8):740-754.
    134. Yin R, He Q. The spatial and temporal effects of Paulown-ia intercropping.the case of northern China[J].AgroforestrySystems,1997,31(1):91-109.
    135. Zelitch I.The close relationship between net photosynthesis and crop yield[J]. Bioscience,1982,32(10):796-797.
    136. Zobel B J, Van Buijtenen J P. Wood variation its causes and control.Springer-Verlag,1989
    137. Zwiazek J J,Blake T J.Effects of preconditioning on subsequent water relations, stomatal sensitivity and photosynthesis in black spruce[J].Canadian Journal of Botany,1989,67(8):2240-2244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700