用户名: 密码: 验证码:
仿刺参(Apostichopus japonicus)分子标记开发及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仿刺参主要分布于我国北方,日本,朝鲜半岛及俄罗斯远东地区,由于其具有较高的食用和保健价值,成为我国海水养殖的重要物种。为了实现仿刺参养殖业稳定发展,选择快速生长及抗病性强的刺参新品种是迫切需要的。分子标记辅助选择(Marker-assisted selection,MAS)能加快育种进程,促进刺参遗传改良和新品种的培育。本研究探讨了仿刺参分子标记的有效筛选方法及其在仿刺参分子育种中的应用。
     1仿刺参分子标记的筛查及标记开发
     本文利用仿刺参EST文库的序列共得到含有微卫星的序列730条(2.1%)。将所得序列独立的212条微卫星序列设计引物,成功扩增率为78.8%。成功扩增的位点在一个群体的48个个体中检测多态性并利用GENE-POP4.0统计主要遗传学参数,结果显示137对具有不同程度的多态性,多态比例为82%。等位基因数为2-7个,平均等位基因3.3个。群体观测杂合度和期望杂合度分别为0.0667-0.6670,0.1769-0.7200。经过Bonferroni校正之后26个标记偏离哈迪温伯格平衡。经过基因注释(BLASTX比对)显示,共有12个标记有注释信息,分别位于不同的12个已知基因。另外通过转录组测序共获得54,185个候选SNP位点。利用高分辨率溶解曲线技术(High Resolution Melting,HRM)技术对其中678个候选SNP进行标记的筛查并在群体的48个个体中进行主要遗传学参数的估计。结果显示249个为多态位点。群体观测杂合度Ho和预期杂合度He的分布范围分别为0.050-0.833和0.073-0.907。33个位点偏离哈代-温伯格平衡。经过基因注释显示,共有70个标记有注释信息。这些来源于EST的分子标记为将来仿刺参遗传连锁图谱的构建提供基础。
     2基于微卫星标记的仿刺参家系鉴定
     本研究利用软件模拟及实际混养家系分析,建立了一套可以用于仿刺参家系鉴定的微卫星分子标记系统。我们利用12个微卫星标记来模拟排除率,结果显示9个标记的排除率是和12个标记相当的,均达到99%以上。并用9个微卫星标记在九个已区分家系的180个幼虫中进行评价。最终所有幼虫均准确地分到各自的家系。说明这个标记组合足以达到区分个体的目的。我们又利用9个微卫星标记在混合家系的1000头仿刺参进行家系鉴定,最终共有810头仿刺参确定了各自的亲本,混养家系的鉴定率81.0%。
     3仿刺参遗传图谱的构建及QTL定位
     本文采用两个F1作图群体均是根据拟测交策略构建遗传连锁图谱。利用的微卫星标记313个,SNP标记249个。我们分别构建雌雄连锁图谱,连锁群数目均为22,与最近报道的仿刺参单倍染色体数目一致。雌性图谱重组率显著比雄性图谱的高(G检验P<0.01)。家系间重组率的比较通过连锁群之间共享标记间隔的差异来显示,结果表明,大部分标记是相似的,但是也有差异显著的连锁群如(LG2-M, LG11-M,LG9-F, L13-F,L18-F)。性别平均图谱总共含有215个标记(121个微卫星和94个SNP),图谱总长为1498.9cM,平均密度为7.0cM。连锁群长度为44.4cM到121.4cM不等,连锁群标记数目为5-18个不等。雌雄性遗传连锁图谱的基因组覆盖率分别为74.8和72.8%,整合连锁图谱的图谱覆盖率为79.2%。所有EST来源的分子标记进行基因注释,结果显示16个包含标记的EST序列与已知功能的基因同源,而其他的没有注释信息。并对其进行Tblastx比对,结果显示在134条比对序列中,24条序列(17.9%)在海胆海参中同源(e <10-7)。采用两个家系作为材料,以构建的遗传连锁图谱为基础,对仿刺参体重性状进行QTL定位,但无明显结果,可能是表型测量误差较大引起的。
The sea cucumber, Apostichopus japonicus, is a common species distributed inshallow waters along northern Asian coasts in China, Japan, Russia and Korea, and isregarded as one of the most valuable aquaculture species due to its potential as adelicacy and traditional medicine. In order to achieve sustainable development of A.japonicus culture industry, selection of bloodstocks with the desired traits, such asrapid growth and disease resistance are urgently needed. It is generally accepted thatmarker-assisted selection (MAS) could provide valuable information to efficientlyimprove desirable traits and accelerate progress in selective breeding. In the presentstudy, we developed and characterized a panel of SSR (Simple Sequence Repeat) andSNP (Single Nucleotide Polymorphism) markers, and also studied their application inparentage assignment and genetic mapping of A.japonicus.
     1. SSR and SNP mining and marker development for A.japonicus
     EST (Expressed Sequence Tags) database mining was used to develop novelmicrosatellite markers for A. japonicus. A total of730ESTs containing SSRs wereidentified. Primers were designed for212EST-SSRs according to the flankingsequences using Primer Premier5program. Polymorphism of these loci wereevaluated in48individuals collected from the coast of Shandong province, China.The results showed that expected products were amplified with167of the212primerpairs, of which137loci were polymorphic. The number of alleles ranged from2to7,and the observed and expected heterozygosities varied from0.0667to0.6670andfrom0.1769to0.7200, respectively. Twenty-six of the137loci significantly deviatedfrom the Hardy-Weinberg equilibrium after Bonferroni correction. Gene annotation(BLASTX comparison, e-value threshold of1e-6) indicated that twelve of137polymorphic SSR-bearing ESTs matched to genes with known functions, while otherseither have no significant matches or matched to uncharacterized genes. Throughanalyzing the A. japonicus transcriptome, a large number of putative SNPs were previously identified, among which678were selected for marker development usinghigh-resolution melting (HRM) method. In the analyzed population,249SNP lociwere polymorphic. The observed and expected heterozygosities varied from0.050to0.833and from0.073to0.907, respectively. Thirty-three loci significantly deviatedfrom the Hardy-Weinberg equilibrium. Seventy of249polymorphic SNP-bearingESTs matched to genes with known functions.
     2Application of SSR markers in parentage assignment of the sea cucumberA.japonicus
     We first conducted computer simulation analyses using the developed EST-SSRmarkers to establish guidelines for effective parentage analysis. Real mixed familieswere also utilized for evaluation of the performance of SSR-based parentage analysisin practice. Simulation results demonstrated that the exclusion probability of theselected nine microsatellite markers was0.99which was still satisfactory comparedwith12microsatellites. To evaluate the performance of parentage analysis in a realcase, a total of180larvae from distinguished nine families were genotyped for thepreviously-selected9microsatellite loci. Eventually all the larvae were accuratelyassigned to each family. Then1000offsprings from mixed families were assigned forparentage assignment for9microsatellite loci. The exclusion probability of progenyto their parental couple was81.0%.
     3Construction of genetic linkage map and identification of quantitative trait loci forthe sea cucumber, A.japonicus
     We constructed the genetic linkage map in two F1outbred families of A.japonicususing pseudo-testcross strategy. The sex-specific linkage maps for two mappingfamilies were constructed separately using313microsatellites and249SNPs.22linkage groups (LGs) were identified, which were consistent with the haploidchromosome number of A. japonicus. A significantly higher recombination rate wasobserved in the female map. Significant family-specific differences in recombinationratios were also observed for some LGs between two female maps and two male mapssuch as(LG2-M, LG11-M,LG9-F, L13-F,L18-F). The sex-averaged mapconsisted of215markers (121microsatellite markers and94SNPs) covering1498.9 cM with an average inter-marker spacing of7.0cM. The length of the linkage groupsranged from44.4cM to121.4cM and the number of markers varied from5to18perlinkage group. On the basis of the expected genome lengths, genome coverage for theconsensus, female, male maps including the triplets was79.2,74.8and72.8%. Geneannotation (BLASTX comparison, e-value threshold of1e-7) indicated that16ESTscontaining markers in maps matched to genes with known functions, while otherseither have no significant matches or matched to uncharacterized genes. Tblastxcomparisons revealed that24hits of the134blasted sequences were significantlyconserved between A. japonicus and sea urchin. Preliminary QTL mapping wereconducted for the growth traits of A.japonicus but no significant results have beendetected. It is possibly due to phenotypic errors caused by measurement.
引文
[1]蔡清秀,林柳,潘文婧,等.勐养保护区亚洲象微卫星位点筛选及种群遗传多样性分析.兽类学报,2008,28(2):126-134.
    [2]陈天国,易华峰,张廷科,等.分子标记与动物遗传育种.畜牧市场.2006,(8):47-51.
    [3]丛培东.大连沿海刺参的生物学特性及养殖.丹东师专学报,1998,20(4):38-39.
    [4]崔龙波,董志宁,陆瑶华.仿刺参消化系统的组织学和组织化学.动物学杂志,2000,35(6):2-4.
    [5]董秋芬,刘楚吾,郭星篙,等.9种石斑鱼遗传多样性和系统发生关系的微卫星分析.遗传,2007,29(7):537-843.
    [6]董世瑞,孔杰,张天时,等.中国对虾微卫星家系鉴定的模拟分析与应用.水产生物学报,2008,32-1.
    [7]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.科学出版社,中国,北京,2001,pp.16.
    [8]高焕,孔杰,于飞,等.人工控制自然交尾条件下中国对虾父本的微卫星识别,海洋水产研究,2007,28(1):1-5.
    [9]韩富天,薛俊,林炳承,等.毛细管电泳DNA片段多态性分析.色谱,1997,15(4):301-304.
    [10]李宝泉,杨红生,张涛,等.温度和总重对刺参呼吸和排泄的影响.海洋与湖沼,2002,33(2):182-187.
    [11]李成林,宋爱环,胡炜等.山东省刺参养殖产业现状分析与可持续发展对策.渔业科学进展,2010,31,8.
    [12]李宏俊.海湾扇贝微卫星标记的开发及遗传连锁图谱的构建.2009.中国科学院博士学位论文.
    [13]李莉,郭希明.遗传图谱及其在主要水产动物的研究进展.海洋科学,2003,27(11):14-19.
    [14]李玉梅,姚纪元,吴静,等. PCR-SSCP技术的研究及应用进展.生物技术通讯,2007,6:71-74
    [15]廖玉麟.我国的海参.生物学通报,2001,35:1-4.
    [16]刘祖洞1990.遗传学.高等教育出版社;北京.
    [17]刘锡胤,姜成嘉,王国华,等.推进刺参养殖业可持续发展的战略思考.中国水产.2012,2.
    [18]卢超,包振民,彭薇,等.富集文库菌落原位杂交法筛选仿刺参微卫星标记.青岛:中国海洋大学,2010.
    [19]潘传燕,臧云鹏,廖梅杰.仿刺参微卫星标记的筛选及群体遗传结构分析.渔业科学进展.2012,33-4.
    [20]亓海刚.皱纹盘鲍基因组单核苷酸多态标记开发与应用.中国科学院研究生院(海洋研究所;2008.青岛.
    [21]阮晓红.大菱鲆(Turbot)微卫星标记的筛选及应用.2009.中国海洋大学;青岛.
    [22]石耀华,洪葵,郭希明,等.马氏珠母贝EST微卫星的筛选.水产学报,2008,32(2):174—181.
    [23]孙振兴,陈书秀,陈静,等.四种重金属对刺参幼参的急性致毒效应.海洋通报,2007,26(5):80-85.
    [24]王海山.仿刺参优良品系的筛选及杂交育种的初步研究.2009.辽宁师范大学硕士学位论文
    [25]王师.栉孔扇贝遗传图谱的构建及重复元件的进化分析.2007.中国海洋大学博士学位论文.
    [26]王艳红,胡超群,张吕平,等.凡纳滨对虾EST微卫星标记初步筛选[J].水产学报,2011,35(7):970-976.
    [27]许伟定,隋锡,胡庆明,等.刺参染色体的初步研究分析.水产科学,1997,16(5):9-11.
    [28]徐云碧,朱丽煌,分子数量遗传学.北京:中国农业出版社,1994.
    [29]姚韩韩,林志华,董迎辉,等.海洋经济贝类遗传图谱的相关研究进展.水产科学,2010,29(3):178-183.
    [30]叶茂,申望,王日昕,等.日本蟳微卫星位点的分离及遗传多样性分析.海洋与湖沼,2011,42(1):86-93.
    [31]张振中,吴逸明,吴如金.毛细管电泳在基因突变分析中的应用.药学进展,1997,21(4):207-211.
    [32] Anderson, E.N. The food of China. New Haven, CT: Yale University Press.1988.
    [33] Anderson E and Garza J. The power of single-nucleotide polymorphisms for large-scaleparentage inference, Genetics,2006,172,2567-2582.
    [34] Arevalo E, Holder D, Derr J, et al. Caprine microsatellite dinucleotide repeatpolymorphisms at the SR-CRSP-1, SR-CRSP-2, SR-CRSP-3, SR-CRSP-4and SR-CRSP-5loci. Animal genetics,1994,25:202-205.
    [35] Agresti JJ, Seki S, Cnaani A, et al. Breeding new strains of tilapia: development of anartificial center of origin and linkage map based on AFLP and microsatellite loci.Aquaculture,2000,185(1-2):43-56
    [36] Arias A, Freire R, Boudry P, et al. Single nucleotide polymorphism for population studies inthe scallops Aequipecten opercularis and Mimachlamys varia. Conserv Genet,2009,10:1491-1495
    [37] Audzijonyte A, Vrijenhoek RC. Three nuclear genes for phylogenetic, SNP and populationgenetic studies of molluscs and other invertebrates. Mol Ecol Resour,2010,10(1):200-204
    [38] Baird NA, Etter PD, Atwood TS, et al. Rapid SNP discovery and genetic mapping usingsequenced RAD markers. PLoS One,2008,3(10): e3376
    [39] Baranski M, Loughnan S, Austin C, et al. A microsatellite linkage map of the blacklipabalone, Haliotis rubra. Animal Genetics,2006,37,563-70.
    [40] Battaglene S, Seymour J, Ramofafia C. Survival and growth of cultured juvenile seacucumbers, Holothuria scabra. Aquaculture1999,178,293–322.
    [41] Bell J, Rothlisberg P, Munro J. Restocking and stock enhancement of marine invertebratefisheries. Adv. Mar. Biol,2005,49,1–370.
    [42] Boudry P, Collet B, Cornette F, et al. High variance in reproductive success of thePacificoyster (Crassostreagigas Thunberg) revealed by microsatellite based parentageanalysis of multifactorial crosses [J]. Aquaculture,2002,204:283-296.
    [43] Burr B, Burr F, Thompson K, et al. Gene mapping with recombinant inbreds in maize.Genetics,1988,118,519-526.
    [44] Bester AE, Roodt-Wilding R, Whitaker HA. Discovery and evaluation of single nucleotidepolymorphisms (SNPs) for Haliotis midae: a targeted EST approach. Anim Genet,2008,39:321-324
    [45] Bester AE. Population genetic structure and demographical history of South Africanabalone, Haliotis midae, in a conservation context:[PhD Thesis]. Stellenbosch University,2009
    [46] Bi W, Stambrook PJ. CCR: a rapid and simple approach for mutation detection. NucleicAcids Res,1997,25(14):2949-2951
    [47] Cameron R, Samanta M, Yuan A, et al. SpBase: the sea urchin genome database and website. Nucleic Acids Research2009,37, D750-D754.
    [48] Cargill M, Chang M, Veronica E. et al. A large-scale genetic association study confirmsIL12B and leads to the identification of IL23R as psoriasis-risk genes. Am. J. Hum. Genet.2007,80:273-290
    [49] Cargill M,Ahshuler D,Ireland J,et a1.Characterization of single-nucleotide polymorphismsin coding regions of human genes. Nat Genet,1999,22(3):231-238.
    [50] Casasoli M, Mattioni C, Cherubini M.et al. A genetic linkage map of European chestnut(Castanea sativa Mill.) based on RAPD, ISSR and isozyme markers. Theor APPI Genet,2001,102:1190-1199.
    [51] Casta o-Sánchez C, Fuji K, Ozaki A, et al. A second generation genetic linkage map ofJapanese flounder (Paralichthys olivaceus). BMC Genomics,2010,11:554
    [52] Cecilia C, Fuji K, Ozaki A. A second generation genetic linkage map of Japanese flounder(Paralichthys olivaceus). BMC Genomics,2010,11:554.
    [53] Chakravarti A, Lasher L, Reefer J. A maximum likelihood method for estimating genomelength using genetic linkage data. Genetics,1991,128,175–82.
    [54] Chen L, Li Q, Yang J. Microsatellite genetic variation in wild and hatchery populations ofthe sea cucumber (Apostichopus japonicus Selenka) from northern China. AquacultureResearch,2008,39,1541-9.
    [55] Chen L and Li Q. Identification and characterization of microsatellite markers derived fromexpressed sequence tags of the sea cucumber Stichopus japonicus. Mol Ecol Notes2007,7,1057-1059.
    [56] Cherel P, Glenisson J, Pires J. Tetranucleotide microsatellites contribute to a highlydiscriminating parentage test panel in pig. Animal Genetics,2011,42,659–661.
    [57] Chistiakov DA, Hellemans B, Haley CS, et al. A Microsatellite Linkage Map of theEuropean Sea Bass Dicentrarchus labrax L. Genetics,2005,170(4):1821-1826
    [58] Chistiakov DA, Tsigenopouos CS, Lagnel J, et al. A combined AFLP and microsatellitelinkage map and pilot comparative genomic analysis of European sea bass Dicentrarchuslabrax L. Anim Genet,2008,39(6):623-634
    [59] Conand C. The fishery resources of Pacific island countries. Part2. Holothurians. FAOFisheries Technical Paper,1990,272.2. FAO, Rome.
    [60] Coimbra MRM, Kobayashi K, Koretsugu S, et al. A genetic linkage map of the Japaneseflounder, Paralichthys olivaceus. Aquaculture,2003,220:203-218
    [61] Danzmann R. PROBMAX: a computer program for as-signing unknown parentage inpedigree analysis from known genotypic pools of parents and progeny. J. Hered,1997,88:333.
    [62] Dean F, Hosono S, Fang L, et al. Comprehensive human genome amplification usingmultiple displacement amplification. Proceedings of the National Academy of Sciences,2002,99(8):5261-5266.
    [63] Dena R, Nigel P, Peter J, et al. Parentage determination of Kuruma shrimp Penaeus(Marsupenaeus) japonicus using microsatellite markers(Bate)[J]. Aquaculture,2004,235:237-247
    [64] Dong C, Vincent K, Sharp P. Simultaneous mutation detection of three homoeologousgenes in wheat by High Resolution Melting analysis and Mutation Surveyor R [J]. BMCPlant Biology,2009,9:143.
    [65] Donis-Keller H, Green P, Helms C, et al. A genetic linkage map of the human genome. Cell,1987,51(2):319-337
    [66] Dong S, Kong J, Zhang T. Parentage determination of Chinese shrimp (Fenneropenaeuschinensis) based on microsatellite DNA markers. Aquaculture,2006,258:283-288.
    [67] Du H, Bao Z, Yan, J, et al. Development of101gene-based single nucleotidepolymorphism markers in sea cucumber, Apostichopus japonicus. International Journal ofMolecular Sciences,2012,13,7080-7097.
    [68] Du H, Bao Z, Hou R, et al. Transcriptome Sequencing and Characterization for the SeaCucumber Apostichopus japonicas (Selenka,1867). PLOS ONE,2012,7(3): e33311.doi:10.1371/journal.pone.0033311.
    [69] Du ZQ, Ciobanu DC, Onteru SK, et al. A gene-based SNP linkage map for pacific whiteshrimp, Litopenaeus vannamei. Anim Genet,2010,41(3):286-294
    [70] Enchin, Z. Chinese medicated diet.1988. Shanghai: Publishing House of Shanghai Collegeof Traditional Chinese Medicine.
    [71] Estoup A, Gharbi K, SanCristobal M, et al. Parentage assignment using microsatellites inturbot (Scopthalmus maximus) and rainbow trout (Oncorhynchus mykiss) hatcherypopulations [J]. Canadlan Journal of Fisheries and Aquatic Sciences,1998,55:715-725.
    [72] Glover K, Hansen M, Lien S, et al. A comparison of SNP and STR loci for delineatingpopulation structure and performing individual genetic assignment. BMC Genetics,2010,11:2.
    [73] Grattapaglia D and Sederoff R. Genetic linkage map of Eucalyptus grandis and Eucalyptusurophylla using a pseudotestcross: mapping strategy and RAPD markers. Genetics,1994,137,1121-37.
    [74] Guo H, Bao Z, Li J, et al. Molecular characterization of CFTGFBR1, a scallop TGF-β type1receptor gene, and the association of allelic variants with growth traits. PLOS ONE,2012,7(11): e51005. doi:10.1371/journal.pone.0051005.
    [75] Guyomard R, Mauger S, Tabet-Canale K, et al. A type I and type II microsatellite linkagemap of rainbow trout (Oncorhynchus mykiss) with presumptive coverage of allchromosome arms. BMC Genomics,2006,7:302.
    [76] He F, Wen H, Dong S, et al. Identification of estrogen receptor alpha gene polymorphismsby SSCP and its effect on reproductive traits in Japanese flounder (Paralichthys olivaceus).Comp Biochem Physiol B Biochem Mol Biol,2008,150(3):278-283.
    [77] Hedrick P. Sex: differences in mutation, recombination, selection, gene flow, and geneticdrift. Evolution,2007,61,2750-2771.
    [78] Hemmat M, Weeden NF, Manganaris AG, et al. Molecular marker linkage map for apple. JHered,1994,85:4-11.
    [79] Herbinger C, Doyle R, Pitman E, et al. DNA fingerprint based analysis of paternal andmaternal effects on offspring growth and survival in communally reared rainbow trout.Aquaculture,1995,137(1-4):245-256.
    [80] Hubert S and Hedgecock D. Linkage maps of microsatellite DNA markers for the Pacificoyster Crassostrea gigas. Genetics,2004,168,351-362.
    [81] Hubert S, Higgins B, Borza T, et al. Development of a SNP Resource and a GeneticLinkage Map for Atlantic Cod (Gadus morhua). BMC Genomics,2010,11,1471-2164.
    [82] Iwahana H, Yoshinoto K, Mizusawa N, et al. Multiple fluorescence based PCR-SSCPanalysis. Biotechniques,1994,16(2):296-297,300-305.
    [83] Jansen R C. Interval mapping of multiple quantitative trait loci. Genetics,1993,135:205-211.
    [84] Jansen R C and Stam P. High resolution of quantitative traits into multiple loci via intervalmapping. Genetics.1994,136:1447-1455.
    [85] Jansen J, De Jong A, Van Ooijen J. Construcing dense genetic linkage maps. Theor. Appl.Genet.102:1113-1122.
    [86] Johnson C, Liu Q, Walther D, et al. Pooled association genome scanning for alcoholdependence using104,268SNPs: validation and use to identify alcoholism vulnerabilityloci in unrelated individuals from the collaborative study on the genetics of alcoholism.Neuropsychiatric Genetics,2006,141B:844-853.
    [87] Jones A, Kvarnemo C, Moore G, et al. Microsatellite evidence for monogamy andsex-biased recombination in the western Australian seahorse Hippocampus angustus.Mol. Ecol,1998,7:1497–1505.
    [88] Kalinowski S and Taper M. Maximum likelihood estimation of the frequency of null allelesat microsatellite loci. Conservation Genetics,2006,7,991-995.
    [89] Kanno M, Kijima A. Genetic differentiation among three color variants of Japanese seacucumber Stichopus japonicus. Fisheries Science,2003,69:806-812.
    [90] Kanno M, Li Q, Kijima A. Isolation and characterization of twenty microsatellite loci inJapanese sea cucumber (Stichopus japonicus). Mar Biol,2005,7,179-183.
    [91] Kanno M, Suyama Y, Li Q, et al. Microsatellite analysis of Japanese sea cucumber,Stichopus (Apostichopus japonicus), supports reproductive isolation in color variants. MarBiotechnol,2006,8:672–685.
    [92] Kao C, Zeng Z and Teasdale R. Multiple interval mapping for quantitative traits loci.Genetics,1999,152,1203-1216.
    [93] Kai W, Kukuchi K, Fujita M, et al. A Genetic Linkage Map for the Tiger Pufferfish,Takifugu rubripes. Genetics,2005,171(1):227-238
    [94] Kawashima M, Oka A, Hohjoh H, et al. Genomewide Association Analysis of HumanNarcolepsy and a New Resistance Gene. Am. J. Hum. Genet,2006,79:252-263.
    [95] Kazianis S, Nairn RS, Walter RB, et al. The genetic map of Xiphophorus fishes representedby24multipoint linkage groups. Zebrafish,2004,1(3):287-304
    [96] Kimura M and Crow J. The number of alleles that can be maintained in a finite population.Genetics,196,449:725-738.
    [97] Kocher T, Lee W, Sobolewska H, et al. A genetic linkage map of a cichlid fish, the tilapia(Oreochromis niloticus). Genetics,1998,148(3):1225-1232
    [98] Kucuktas H, Wang S, Li P, et al. Construction of genetic linkage maps and comparativegenome analysis of catfish using gene-associated markers. Genetics,2009,181(4):1649-1660
    [99] Kvarnemo C, Moore G, Jones A, et al. Monogamous pair bonds and mate switching in theWestern Australian seahorse Hippocampus subelongatus. J. Evol. Biol,2000,13:882–888.
    [100] Lander E S, Botstein S. Mapping Mendelian factors underlying quantitative traits usingTFLP linkage maps. Genetics,1989,121:185-199.
    [101] Lallias D. Genetic linkage mapping in the blue mussel Mytilus edulis and the European flatoyster Ostrea edulis, and the search for Quantitative Trait Loci of the resistance to a diseasein O. edulis:[PhD Thesis]. University of Wales,2007.
    [102] Lee BY, Lee WJ, Streelman JT, et al. A second-generation genetic linkage map of tilapia(Oreochromis spp.). Genetics,2005,170(1):237-244.
    [103] Lehmann L and Perrin N. Inbreeding avoidance through kin recognition: choosy femalesboost male dispersal. The American Naturalist,2003,162,638-652.
    [104] Levinson G and Gutman G. Slipped-strand mispairing: a major mechanism for DNAsequence evolution. Mol. Biol. Evol,1987,4,203–221.
    [105] Li H, Ribaut JM, Li ZL, et al. Inclusive composite interval mapping (ICIM) for digenicepistasis of quantitative traits in biparental populations. Theor Appl Genet,2008,116:243-260
    [106] Li L and Guo X. AFLP-based genetic linkage maps of the Pacific oyster Crassostrea gigasThunberg. Mar Biotechnol,2004,6(1):26-36
    [107] Li L, Xiang J, Liu X, et al. Construction of AFLP-based genetic linkage map for Zhikongscallop, Chlamys farreri Jones et Preston and mapping of sex-linked markers. Aquaculture,2005,245:63-73
    [108] Li Q, Chen L, Kong L. A genetic linkage map of the sea cucumber, Apostichopus japonicus(Selenka), based on AFLP and microsatellite markers. Animal Genetics,2009,40,678-685.
    [109] Li Y, Byrne K, Miggiano E, et al. Genetic mapping of the kuruma prawn Penaeusjaponicus using AFLP markers. Aquaculture,2003,219:143-156
    [110] Li Z, Li J, Wang Q, et al. AFLP-based genetic linkage map of marine shrimp Penaeus(Fenneropenaeus) chinensis. Aquaculture,2006,261:463-472
    [111] Liao X, Ma HY, Xu GB, et al. Construction of a genetic linkage map and mapping of afemale-specific DNA marker in half-smooth tongue sole (Cynoglossus semilaevis). MarBiotechnol,2009,11(6):699-709
    [112] Lien S, Gidskehaug L, Moen T, et al. A dense SNP-based linkage map for Atlantic salmon(Salmo salar) reveals extended chromosome homeologies and striking differences insex-specific recombination patterns. BMC Genomics,2011,12:615.
    [113] Littlewood D, Smith A, Clough K, et al. The interrelationships of the echinoderm classes:Morphological and molecular evidence. Biological Journal of the Linnean Society,1997,61,409–438.
    [114] Liu W, Guan M, Su B. Rapid determination of AKAP12promoter methylation levels inperipheral blood using methylation-sensitive high resolution melting (MS-HRM) analysis:application in colorectal cancer. Clin Chim Acta,2010,411(13-14)940-946.
    [115] Liu B. Statistical Genomics: Linkage, Mapping, and QTL Analysis. CRC Press, Boca Raton,Florida1998.
    [116] Liu X, Liu X, Guo X, et al. A preliminary genetic linkage map of the Pacific abaloneHaliotis discus hannai. Ino. Marine Biotechnology,2006,8,386-97.
    [117] Liu Z, Karsi A, Li P, et al. An AFLP-based genetic linkage map of channel catfish(Ictalurus punctatus) constructed by using an interspecific hybrid resource family. Genetics,2003,165(2):687-694.
    [118] Lodhi MA, Daly MJ, Ye GN, et al. A molecular marker based linkage map of Vitis. Genome,1995,38:786-794.
    [119] Lovermar L and Syvanen A. Multiple displacement amplification to create a long-lastingsource of DNA for genetic studies. Human Mutation,2006,27(7):603-614.
    [120] Malek M, Lamont S. Association of INOS, TRAIL, TGF beta2, TGF-beta3, and IgL geneswith response to Salmonella enteritidis in poultry [J].Genet Sel Evol,2003,35:99-111.
    [121] Marshal E. The hunting of the SNP [J].Science,1997,278:2046—2049.
    [122] Marshall T, Slate J, Kruuk L, et al. Statistical confidence for likelihood-based paternityinference in natural populations. Molecular Ecology,1998,7(5):639-655.
    [123] Maruya E, Saji H, Yokoyama S. PCR-LIS-SSCP (Low ionic strength single-strandconformation polymorphism)--a simple method for high-resolution allele typing ofHLA-DRB1,-DQB1, and–DPB1. Genome Res,1996,6(1):51-57.
    [124] Miller MR, Dunham JP, Amores A, et al. Rapid and cost-effective polymorphismidentification and genotyping using restriction site associated DNA (RAD) markers.Genome Res,2007,17(2):240-248.
    [125] Moen T, Baranski M, Sonesson AK, et al. Confirmation and fine-mapping of a major QTLfor resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar):population-level associations between markers and trait. BMC Genomics,2009,10:368.
    [126] Moen T, Hayes B, Baranski M, et al. A linkage map of the Atlantic salmon (Salmo salar)based on EST-derived SNP markers. BMC Genomics,2008,9:223
    [127] Moen T, Hoyheim B, Munck H, et al. A linkage map of Atlantic salmon (Salmo salar)reveals an uncommonly large difference in recombination rate between the sexes. AnimGenet,2004,35:81-92
    [128] Morishima K, Nakayama I, Arai k. Genetic linkage map of the loach Misgurnusanguillicaudatus (Teleostei: Cobitidae). Genetica,2008,132(3):227-241
    [129] Morton, N.E. Sequential tests for the detection of linkage.American Journal of HumanGenetics,1955,7:277-318.
    [130] Motoyuki H, Masashi S. Efficient detection of parentage in a cultured Japanese flounderParalichthysolivaceus using microsatellite DNA marker [J]. Aquaculture,2003,217:107-114.
    [131] Naruse K, Fukamachi S, Mitani H, et al. A detailed linkage map of medaka, Oryzias latipes:comparative genomics and genome evolution. Genetics,2000,154(4):1773-1784.
    [132] Nelson D, Ledbetter S, Corbo L, et al. Alu polymerase chain reaction: a method for rapidisolation of human-specific sequences from complex DNA sources. Proceedings of theNational Academy of Sciences,1989,86(17):6686-6690.
    [133] Nomura K, Ozaki A, Morishima K, et al. A genetic linkage map of the Japanese eel(Anguilla japonica) based on AFLP and microsatellite markers. Aquaculture,2011,310:329-342
    [134] Norris A, Bradley D, Cunningham E. Parentage and relatedness determination in farmedAtlantic salmon (Salmo salar) using microsatellite markers [J]. Aquaculture,2000,182:73-83.
    [135] Notter D, Cockett N. Opportunities for detection and use of QTL influencing seasonalreproduction in sheep: a review.[J].Genet Sel Evol,2005,37:39-53.
    [136] Ohara E, Nishimura T, Nagakura Y, et al. Genetic linkage maps of two yellowtails (Seriolaquinqueradiata and Seriola lalandi). Aquaculture,2005,244:41-48
    [137] O’reilly P, Herbinger C, Wright J. Analysis of parentage determination in Atlantic salmon(Salmo salar) using microsatellites. Animal Genetics,2002,29(5):363-370.
    [138] Okumura S, Kimura K, Sakai M, et al. Chromosome number and telomere sequencemapping of the Japanese sea cucumber Apostichopus japonicus. Fisheries Science,2009,75,249-251.
    [139] Olivier M. The Invader assay for SNP genotyping. Mutat Res,2005,573(1-2):103-110.
    [140] Orita M, Iwahana H, Kanazawa H, et al. Detection of polymorphisms of human DNA bygel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA,1989,86(8):2766-2770.
    [141] Ozaki A, Sakamoto T, Khoo S, et al. Quantitative trait loci (QTLs) associated withresistance/susceptibility to infectious pancreatic necrosis virus (IPNV) in rainbow trout(Oncorhynchus mykiss). Mol. Genet. Genomics,2001,265:23–31.
    [142] Peng W, Bao Z, Du H, et al. Development and characterization of70novel microsatellitemarkers for the sea cucumber (Apostichopus japonicus). Genet Mol. Res,2012,11,434-439.
    [143] Perez-Enriquez R,Takagi M,Taniguchi N. Genetic variability and pedigree tracing ofa hatchery-reared stock of red sea bream (Pagrus major) used for stock enhancement basedon microsatellite DNA markers. Aquaculture,1999,173:413-423.
    [144] Pérez F, Erazo C, Zhinaula M, et al. A sex-specific linkage map of the white shrimpPenaeus (Litopenaeus) vannamei based on AFLP markers. Aquaculture,2004,242:105-118
    [145] Perseke M, Bernhard D, Fritzsch G, et al. Mitochondrial genome evolution in Ophiuroidea,Echinoidea, and Holothuroidea: Insights in phylogenetic relationships of Echinodermata.Molecular Phylogenetics and Evolution,2010,56,201-211.
    [146] Poompuang S, Na-Nakorn. A preliminary genetic map of walking catfish (Clariasmacrocephalus). Aquaculture,2004,232:195-203
    [147] Qin Y, Liu X, Zhang H, et al. Genetic mapping of size-related quantitative trait loci (QTL)in the bay scallop (Argopecten irradians) using AFLP and microsatellite markers.Aauqculture,2007,272:281-290
    [148] Rexroad CE, Coleman RL, Martin AM, et al. Thirty‐five polymorphic microsatellitemarkers for rainbow trout (Oncorhynchus mykiss). Anim Genet,2001,32(5):317-319
    [149] Rico C, Rico I, Hewitt G.470million years of conservation of microsatellite loci amongfish species. Biological Sciences,1996,263:549-557.
    [150] Robison B D, Wheeler P A, Sundin K, Sikka P, Thorgaard G H.Composite interval mappingreveals a major locus influencing embryonic development rate in rainbowtrout(Oncorhynchus mykiss). J. Heredity,2001,92:16-22.
    [151] Sanchez C, Smith T, Wiedmann R, et al. Single nucleotide polymorphism discovery inrainbow trout by deep sequencing of a reduced representation library. BMC Genomics,2009,10,1471-2164.
    [152] Sakamoto T, Danzmann RG, Gharbi K, et al. A microsatellite linkage map of rainbow trout(Oncorhynchus mykiss) characterized by large sex-specific differences in recombinationrates. Genetics,2000,155(3):1331-1345
    [153] Sekino M,Saitoh K,Yamada T,et al. Microsatellite-based pedigree tracing in a Japaneseflounder Paralichlhys olivaeeus hatehery strain: implications for hatchery managementrelated to stock enhancement program [J]. Aquaculture,2003,221(l-4):255-263.
    [154] Sekino M and Hara M. Linkage maps for the Pacific abalone (Genus Haliotis) based onmicrosatellite DNA markers. Genetics,2007,175,945-58.
    [155] Selvamani M, Degnan S, Degnan B. Microsatellite Genotyping of Individual AbaloneLarvae: Parentage Assignment in Aquaculture.Marine Biotechnology,2001,3(5):478-485.
    [156] Shen X, Yang G, Liu Y, et al. Construction of genetic linkage maps of guppy (Poeciliareticulata) based on AFLP and microsatellite DNA markers. Aquaculture,2007,271:178-187
    [157] Shimoda N, Knapik EW, Ziniti J, et al. Zebrafish genetic map with2000microsatellitemarkers. Genomics,1999,58(3):219-232
    [158] Shi Y, Guo X, Gu Z, et al. Genetic linkage map of the pearl oyster, Pinctada martensii(Dunker). Aquac Res,2009,41(1):35-44
    [159] Smith M, Arndt A, Gorski S. The phylogeny of echinoderm classes based on mitochondrialgene arrangements. Journal of Molecular Evolution,1993,36,545-554.
    [160] Soller M, Beckmann JS. Marker-based mapping of quantitative trait loci using replicatedprogenies. Theor Appl Genet,1990,80:205-208
    [161] Spits C, Caignec C, Rycke D, et al. Optimization and evaluation of single-cellwhole-genome multiple displacement amplification. Human Mutation,2006,27(5):496-503.
    [162] Stam P. Constrution of integrated genetic linkage maps by means of a new computerpackage: JoinMap. Plant Journal3:739-744.
    [163] Sugama K, Taniguchi N, Umeda S. An experimental study on genetic drift in hatcherypopulation of red sea bream [J]. Nippon Suisan Gakkaishi,1988,54:734-744.
    [164] Sun X and Liang L. A genetic linkage map of common carp (Cyprinus carpio L.) Andmapping of a locus associated with cold tolerance. Aquaculture,2004,238:165-172
    [165] Taggart J, McLaren I, Hay D, et al. Spawning success in Atlantic salmon (Salmo salar L.): along-term DNA profiling-based study conducted in a natural stream. Mol. Ecol,2001,10:1047–1060.
    [166] Tian Y, Kong J, Wang WJ. Construction of AFLP-based genetic linkage maps for theChinese shrimp Fenneropaeneus chinensis. Chinese Sci Bull,2008,53(8):1205-1216
    [167] Toth G, Gaspari Z, Jurka J. Microsatellites in different eukaryotic genomes: survey andanalysis. Genome Res.2000.10:967–981.
    [168] Tripathi N, Hoffmann M, Willing EM, et al. Genetic linkage map of the guppy, Poeciliareticulata, and quantitative trait loci analysis of male size and colour variation. Proc BiolSci,2009,276(1665):2195-2208.
    [169] Trivers R. Sex differences in rated of recombination and sexual selection. In: Michod, R.E.,Levin, B.R.(Eds.), the Evolution of Sex. Sinauer Associates., Sunderland, MA,1988, pp.270-286.
    [170] Uthicke S, Benzie J. A genetic fingerprint recaptures technique for measuring growth in‘unmarkable’ invertebrates: negative growth in commercially fished holothurians(Holothurianobilis). Mar. Ecol. Prog. Ser,2002,241,221–226.
    [171] Valdes A, Slatkin M, Freimer N. Allele frequencies at microsatellite loci: the stepwisemutation model revisited. Genetics,1993,133:737–749.
    [172] Veliz D, Duchesne P, Bourget E, et al. Genetic evidence for kin aggregation in the intertidalacorn barnacle (Semibalanus balanoides). Molecular Ecology,2006,15,4193-4202.
    [173] Voorrips R. MapChart: software for the graphical presentation of linkage maps and QTLs. J.Hered93,2002,77-78.
    [174] Wang C, Bai Z, He X, et al. A high-resolution linkage map for comparative genomeanalysis and QTL fine mapping in Asian seabass, Lates calcarifer. BMC Genomics,2011,12:174.
    [175] Wang CM, Bai ZY, He XP, et al. A high-resolution linkage map for comparative genomeanalysis and QTL fine mapping in Asian seabass, Lates calcarifer. BMC Genomics,2011,12:174
    [176] Wang CM, Zhu ZY, Lo LC, et al. A microsatellite linkage map of Barramundi, Latescalcarifer. Genetics,2007,175(2):907-915
    [177] Wang H, Li F, Xiang J. Polymorphic EST SSR markers and their mode of inheritance inFenneropenaeus chinensis. Aquaculture,2005,249(1-4):107-114.
    [178] Wang L, Song L, Chang Y, et al. A preliminary genetic map of Zhikong scallop (Chlamysfarreri Jones et Preston1904). Aquac Res,2005,36(7):643-653
    [179] Wang S, Bao Z, Pan J, et al. AFLP linkage map of an intraspecific cross in Chlamys farreri.Journal of Shellfish Research,2004,23:491-499
    [180] Wang S, Meyer E, McKay J K, et al.2b-RAD: a simple and flexible method forgenome-wide genotyping. Nature Methods,2012,9,808–810.
    [181] Wang S, Zhang L, Meyer E, et al. Construction of a high-resolution genetic linkage mapand comparative genome analysis for a reef-building coral Acropora millepora. GenomeBiol,2009,10(11): R126
    [182] Wang Y, Ren R, Yu Z. Bioinformatic mining of EST-SSR loci in the Pacific oyster,Crassostrea gigas. Animal Genetics,2008,39(3):287-289.
    [183] Wang C, Bai Z, He X. A high-resolution linkage map for comparative genome analysis andQTL fine mapping in Asian seabass, Lates calcarifer. BMC Genomics,2011,12:174.
    [184] Waldbieser GC, Bosworth BG, Nonneman DJ, et al. A microsatellite-based genetic linkagemap for channel catfish, Ictalurus punctatus. Genetics,2001,158(2):727-734
    [185] Walter RB, Pains JD, Russell JE, et al. A microsatellite genetic linkage map forXiphophorus. Genetics,2004,168(1):363-372
    [186] Weber J and Wong C. Mutation of human short tandem repeats. Hum Mol Genet,1993,2:23-28.
    [187] Wen J, Li Q, Kong L. Characterization of thirteen single nucleotide polymorphism markersin the sea cucumber (Apostichopus japonicus). Conservation Genetics Resources,2010,2,141-144.
    [188] Wilson K, Li Y, Whan V, et al. Genetic mapping of the black tiger shrimp Penaeusmonodon with amplified fragment length polymorphism. Aquaculture,2002,204:297-309
    [189] Woram RA, McGowan C, Stout JA, et al. A genetic linkage map for Arctic char (Salvelinusalpinus): evidence for higher recombination rates and segregation distortion in hybridversus pure strain mapping parents. Genome,2004,47(2):304-315
    [190] Xia JH, Liu F, Zhu ZY, et al. A consensus linkage map of the grass carp(Ctenopharyngodon idella) based on microsatellites and SNPs. BMC Genomics,201011:135-150
    [191] Xu K, Li Q, Kong L, et al. A first-generation genetic map of the Japanese scallopPatinopecten yessoensis-based AFLP and microsatellite markers. Aquac Res,2009,40(1):35-43
    [192] Yang A, Sun D, Liu S, et al. Characterization of fifteen SNP markers by mining EST in seacucumber, Apostichopus japonicus. J. Genet.91,2012, e49–e53.
    [193] Yang AF, Zhou ZC, He CB et al. Analysis of expressed sequence tags from body wall,intestine and respiratory tree of sea cucumber (Apostichopus japonicus). Aquaculture2009,296:193–199.
    [194] Yu Z, Guo X. Genetic linkage map of the eastern oyster Crassostrea virginica Gmelin. BiolBull,2003,204(3):327-338
    [195] Yuan T, He M, Huang L, et al. Genetic Linkage Maps of the Noble Scallop Chlamys nobilisReeve Based on Aflp and Microsatellite Markers. J Shellfish Res,2010,29(1):55-62
    [196] Yue G, Ho M, Orban L. Microsatellites within genes and ESTs of common carp and theirapplicability in silver crucian carp. Aquaculture,2004,234:85-98.
    [197] Zamir D, Tadmor Y. Unequal segregation of nuclear genes in plants. Botannical Gazette,1986,147:355-358.
    [198] Zeng Z. Theoretical basis of separation of multiple linked gene effects on mappingquantitative trait loci. Proc. Natl. Acad. Sci. USA,1993,90:10972-10976.
    [199] Zhan A, Bao Z, Yao B, et al. Polymorphic microsatellite markers in the Zhikong scallop(Chlamys farreri). Molecular Ecology Notes,2006,6:127-129.
    [200] Zhan A, Hu J, Hu X, et al. Construction of microsatellite-based linkage maps andidentification of size-related quantitative trait loci for Zhikong scallop(Chlamys farreri).Animal Genetics,2009,40:821-831.
    [201] Zhan A, Hu J, Wang X, et al. A panel of polymorphic EST-derived microsatellite loci forthe bay scallop (Argopecten irradians). Journal of Molluscan Studies,2006,72:436-438.
    [202] Zhan A, Bao Z, Lu We, et al. Development and characterization of45novel microsatellitemarkers for sea cucumber (Apostichopus japonicus). Mol Ecol Notes,2007,7,1345-1348.
    [203] Zhang L, Yang C, Zhang Y, et al. A genetic linkage map of Pacific white shrimp(Litopenaeus vannamei): sex-linked microsatellite markers and high recombination rates.Genetica,2007,131(1):37-49
    [204] Zhang Y, Xu P, Lu C, et al. Genetic Linkage Mapping and Analysis of MuscleFiber-Related QTLs in Common Carp (Cyprinus carpio L). Mar Biotechnol,2011,13(3):376-392
    [205] Zheng FX, Sun XQ, Fang BH et al.Comparative analysis of genes expressed inregenerating intestine and non-eviscerated intestine of Apostichopus japonicus Selenka(Aspidochirotida: Stichopodidae) and cloning of ependymin gene. Hydrobiologia,2006,571:109–122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700