用户名: 密码: 验证码:
扇贝的染色体作图及系统进化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.栉孔扇贝染色体识别技术的建立
     本研究应用荧光原位杂交(Fluorescence in situ hybridization,FISH)技术,通过开发染色体特异分子标记,首次实现了栉孔扇贝所有染色体的识别,并在此基础上构建了栉孔扇贝的染色体图谱,首次对栉孔扇贝微卫星遗传连锁图谱和染色体图谱进行了初步整合。主要结果如下:
     (1)通过三维两步PCR筛选系统,选取分布于栉孔扇贝微卫星遗传连锁图谱19个连锁群上的42个微卫星标记对本实验室构建的栉孔扇贝BAC文库进行克隆筛选,应用FISH技术对筛选到的阳性克隆进行染色体定位,最终成功实现32个含有微卫星标记BAC克隆的定位。其中30个标记克隆可在染色体上产生稳定、单一的荧光信号,另外2个克隆的定位信号出现在多条染色体上。30个具有单一染色体定位的标记在连锁群上的分布为:12个连锁群上分别被成功定位2个标记;6个连锁群上分别被成功定位1个标记。对位于同一连锁群的标记采用双色FISH技术进行共杂交检验及核型分析,结果显示:位于同一连锁群且被定位于同一染色体上的标记有16个,分别位于8个连锁群上;位于同一连锁群但被定位于不同染色体上的标记有8个,分别位于4个连锁群上。通过对位于不同连锁群上标记间的共杂交,结果表明:较小的连锁群LG16和LG18可以分别与较大的连锁群LG6和LG8整合到一起。
     (2)应用FISH技术,从96个BAC克隆和27个fosmid克隆中筛选获得可产生染色体单一信号位点的克隆标记69个。凭借多重双色FISH,从中筛选出15个具有无/低背景的克隆标记,构建了一套可用于区分所有形态相似的亚中部和亚端部着丝粒染色体的染色体特异标记。在所有染色体被识别的基础上,通过FISH共杂交及核型分析技术,构建了一张包含70个标记且覆盖19条染色体的栉孔扇贝染色体定位模式图。该图谱包含58个BAC克隆,11个fosmid克隆以及1个5S rRNA基因序列。其中58个BAC克隆中包括30个含有SSR标记信息,2个含有基因相关信息,和26个随机筛选克隆;11个fosmid克隆中包括7个含有重复序列信息和4个含有不同基因序列信息的克隆。栉孔扇贝每条染色体上的特异位点标记数目从1个到8个不等,平均为3.7个。该图谱将会在栉孔扇贝全基因组序列拼接,图位克隆,QTL定位等多个研究方面发挥重要作用。
     2.重复序列在几种扇贝染色体上的比较定位分析
     (1)C0t-1DNA的比较定位:将来自栉孔扇贝的C0t-1DNA通过FISH技术分别杂交到栉孔扇贝,虾夷扇贝以及海湾扇贝的中期分裂相染色体上,结果显示:C0t-1DNA在三种扇贝的所有染色体上均有分布,但信号的分布密度和强度有明显差异。在栉孔扇贝绝大多数染色体的着丝粒,近着丝粒,以及近端粒位置丛生有密集且非常明亮的荧光信号。在虾夷扇贝中,仅在少数染色体的着丝粒及靠近着丝粒的长臂区域观察到有较强的丛生明亮信号。而在海湾扇贝中,几乎没有这种密集明亮信号的分布。这种全基因组范围重复序列的比较定位分析表明,相比栉孔扇贝与海湾扇贝,栉孔扇贝和虾夷扇贝的重复DNA序列具有相对更高的同源性,该两种扇贝可能具有更近的亲缘关系。另外,由于C0t-1DNA在栉孔扇贝的同源染色体上呈现出相似的荧光信号带型,而在非同源染色体上表现较明显的差异,据此我们对栉孔扇贝进行了较为准确的核型分析。
     (2)重复序列-rDNA的染色体定位:对华贵栉孔扇贝和紫扇贝的核糖体基因进行染色体的FISH定位,结果显示:在华贵栉孔扇贝中,18S-28S rDNA具有一个信号位点,位于最大的1对中部着丝粒染色体的着丝粒位置;5S rDNA产生两个信号位点,分别位于两对端部着丝粒染色体的长臂中间和长臂端部位置。在紫扇贝中,18S-28S rDNA拥有多个信号位点,分别位于6~7对亚端部或端部着丝粒染色体的短臂上;5S rDNA具有两个信号位点,它们位于同一对端部(或亚端部)着丝粒染色体长臂中间的邻近位置。对两种rDNA的共杂交结果显示:两种扇贝的18S-28S rDNA和5S rDNA均位于不同的染色体上。结合华贵栉孔扇贝的核型及其18S-28S rDNA的定位结果,推测该扇贝染色体可能在进化过程中发生过罗伯逊融合。而紫扇贝多个18S-28S rDNA位点的产生则可能是在进化过程中发生了染色体的非相互易位。两种扇贝的两种rDNA均不在相同的染色体上,说明在进化过程中载有核糖体DNA的染色体可能发生过断裂或(和)易位。
     3.扇贝科多个物种的分子系统进化分析
     通过克隆测序获得了7个扇贝物种(海湾扇贝、紫扇贝、平濑掌扇贝、褶纹肋扇贝、新加坡掌扇贝、大西洋深水扇贝、太平洋花扇贝)的核糖体转录间隔区(ITS)序列,序列分析表明,7种扇贝的ITS区域总长从685bp(大西洋深水扇贝)到732bp(太平洋花扇贝)不等,GC含量从46.7%(紫扇贝)到52.7%(褶纹肋扇贝)不等。所有物种的5.8S rDNA区域长度均为157bp,且GC含量值相比ITS1和ITS2区域的都要高;所有测序扇贝的ITS1和ITS2长度均相当,且GC含量均为ITS2高于ITS1。结合GenBank中已发表扇贝物种的ITS序列,对在全球不同海域分布的21个扇贝物种进行了系统发生关系的研究。在根据ITS1和ITS2结合序列构建的NJ分子系统树中,大西洋深水扇贝单独成为一枝,其余所有扇贝物种形成两个大的分枝。其中一枝包括紫扇贝、太平洋花扇贝、海湾扇贝、日月贝、欧洲大扇贝、女王扇贝、美丽环扇贝、褶纹肋扇贝和Decatopectenradula共9个扇贝物种,其中同属海湾扇贝属的紫扇贝、太平洋花扇贝和海湾扇贝具有很近的亲缘关系,尤其是紫扇贝和太平洋花扇贝之间的遗传距离与紫扇贝种内遗传距离甚至存在重叠,表明该两种扇贝可能属于亚种的关系;另外的一枝包括了栉孔扇贝、虾夷扇贝、Semipallium fulvicostata、6种Mimachlamys属扇贝(M. varia、C. distorta、M. pyxidatus、华贵栉孔扇贝、M. senatoria、M. sp. TN-2006)和2种掌扇贝属扇贝(平濑掌扇贝和新加坡掌扇贝)。MP系统树与NJ树的聚类结果基本相似,但也有一些差异,尤其是对大西洋深水扇贝的聚类结果。本研究对扇贝物种的系统分析结果与根据双壳贝类形态学的分类结果以及根据线粒体基因的系统发生学研究结果基本一致。以上分析结果不仅使我们对不同扇贝间的亲缘关系远近有更清晰的认识,还可以为扇贝不同近缘物种间的杂交育种尝试提供理论指导。
     4.紫扇贝和海湾扇贝杂交子代的细胞与分子遗传学分析
     紫扇贝与海湾扇贝已成功获得杂交,且其杂交子代表现出明显的杂种优势。为了更好的理解该杂种优势产生的遗传基础,本研究采用GISH,AFLP,SSR,DNA测序等细胞和分子生物学手段对这两种扇贝正反交子代的基因组组成和变异进行了遗传学分析。主要结果如下:
     (1)对紫扇贝和海湾扇贝的正反杂交子代幼虫进行GISH检测,结果表明绝大多数的子代基因组中包含32条染色体,且其中一半可被紫扇贝的基因组探针标记上,另一半可被海湾扇贝的基因组探针标记上,因而表明该杂交子代分别继承了两亲本各一套的染色体,是真正精卵结合水平的杂交种。另外,实验中还检测到有少数的染色体丢失及异源多倍体的分裂相。
     (2)采用AFLP,SSR及DNA测序技术对正反杂交子代成体扇贝的遗传组成和变异进行研究。ITS序列扩增和AFLP分析结果均表明:杂交子代继承了来自双亲的绝大多数核遗传物质,充分确定了该杂交成体扇贝是真正的杂交种。但在杂种的ITS序列分析中还检测到了两亲本组合型的ITS变异中间体,AFLP分析中也检测到了少数AFLP位点的变异,这些均表明子代对双亲遗传物质的继承并不是父本和母本遗传物质的简单叠加,而是在继承双亲特异位点的同时,还有少量位点的变异。另外,群体遗传分析数据表明,杂交子代群体的遗传相似度降低,杂合度水平升高,杂种群体的遗传多样性增加,在遗传关系上正反杂交子代略偏向于各自的母本。16S rDNA序列分析表明,正反杂交子代中的该基因序列分别与其母本中的序列同源,揭示了线粒体基因在该杂交扇贝中是遵循母性遗传的。以上结果将对正确认识该两种扇贝的杂交甚至其它海洋贝类杂交育种和杂种优势的利用有重要意义。
1. Establishment of chromosomal recognition technology for Chlamys farreriIn this study, using fluorescence in situ hybridization (FISH), we identified all19C.farreri chromosomes with the chromosome-specific markers for the first time,constructed a cytogenetic map for C. farreri, and initially accomplished theintegration of microsatellite-based genetic linkage map and cytogenetic map in C.farreri, The main results are as follows:
     (1) Through three-dimensional PCR screening system,42microsatellite markersfrom19linkage groups of Zhikong scallop were used to screen the BAC library. Thepositive clones were then tested by FISH. As a result,32BAC clones containingmicrosatellites were successfully mapped on the chromosomes. Among them,30clones were mapped to unique locus with or without C0t-1DNA and the other2represented multiple signals. The30SSR markers with unique chromosomal locuswere from18linkage groups. Of which,24microsatellites were from12linkages,2microsatellites each linkage,6microsatellites were from the other6linkage groups,1microsatellites each linkage. The microsatellites from the same linkage wereco-hybridized by two-color FISH. The results showed that16microsatellites from8linkages could be assigned to their consistent chromosomes, respectively, while thelinkage assignments of another8microsatellites from another4linkages wereinconsistent with their chromosomal assignments. The microsatellites from differentlinkage were co-hybridized by two-color FISH. And the results revealed that theminor LGs16and18could be assigned to the major LGs6and8, respectively.
     (2)96BAC clones and27fosmid clones were tested by FISH and a total of69ofthem could produce a single specific signal on the chromosomes with or without C0t-1DNA.15clones that could produce bright signals and no or low background wereisolated and made one set of chromosome-specific markers for distinguishing all thesubmetacentric and subtelocentric chromosomes with similar morphology by multipletwo-color FISH. On this basis, a cytogenetic map of C. farreri containing70markerswas constructed by cohybridization and karyotypic analysis. All the markers comprised58BAC clones,11fosmid clones and15S rDNA marker. Of which, the58BAC clones involved30microsatellites-anchored BAC clones,2genes-anchoredBAC clones and26random BAC clones; the11fosmid clones included7clonescontaining repetitive DNA and4containing gene sequences. The markers covered all19chromosomes of C. farreri, and there were1to8markers on differentchromosomes with3.7as an average number of markers. This map will facilitate thewhole genome sequencing and assembly, positional cloning and QTL mapping in C.farreri.
     2. Comparative chromosome mapping of repetitive sequences in severalscallops
     (1) Chromosomal mapping of C0t-1DNA: The chromosomes of C. farreri,Patinopecten yessoensis and Argopecten irradians were studied by FISH using C.farreri C0t-1DNA probes. The results showed that C0t-1DNA signals spread on allchromosomes in the three scallops, whereas signal density and intensity were differentstrikingly. Clustering brighter signals presented in the centromeric and telomericregions of most C. farreri chromosomes, and in the centromeric or pericentromericregions of several P. yessoensis chromosomes. Comparative analysis of the mappingindicated a relatively higher homology in the repetitive DNA sequences of thegenome between C. farreri and P. yessoensis than that between C. farreri and A.irradians. In addition, FISH showed that the distribution of C0t-1DNA clusteringsignals in C. farreri displayed completely similar signal bands between homologouschromosomes. Based on the C0t-1DNA fluorescent bands, a more exact karyotype ofC. farreri has been obtained.
     (2) Chromosomal mapping of repeated sequences-rDNA: Chromosomal localizationof major (18S-28S) and minor (5S) ribosomal RNA genes were studied in two speciesof Pectinidae, Mimachlamys nobilis and Argopecten purpuratus using FISHtechnology. In M. nobilis,18S-28S rDNA had one locus and was mapped to thecentromere of the biggest pair of metacentric chromosomes.5S rDNA produced twosignal loci, and they were located on the long arms of one telomeric chromosome andthe telomeric regions of the long arms of another telomeric chromosome, respectively.In A. purpuratus,18S-28S rDNA had many loci, located on the short arms of six toseven subtelomeric/telomeric chromosomes, and the5S rDNA was found two loci,mapped on the long arm of one telomeric (subtelomeric) chromosome. The results ofco-hybridization of these two rDNAs showed that18S-28S rDNA and5S rDNA were lcated on different chromosomes in M. nobilis, and the same as in A. purpuratus. Thekaryotype and location of18S-28S rDNA in M. nobili might be explained byRobertsonian fusion. Many18S-28S rDNA loci in A. purpuratus may result from thenon-reciprocal chromosomal translocation in evolution. Chromosomal breakage or(and) translocation may contribute to the different chromosomal location of tworDNA families in these two scallop species.
     3. Molecular phylogenetic analysis of Pectinidae
     The internal transcribed spacer (ITS) region of the ribosomal DNA from7scallopspecies (A. irradians, A. purpuratus, A. ventricosus, Volachlamys hirasei, V.singaporinus, Decatopecten plica and Placopecten magellanicus) was PCR amplifiedand sequenced. The size of total ITS region ranged from685bp (P. magellanicus) to732bp (A. ventricosus) and GC content ranged from46.7%(A. purpuratus) to52.7%(D. plica). The size of5.8S rDNA in all7species was157bp and the GC content of5.8S rDNA was higher than those of ITS1or ITS2region. ITS1and ITS2possessedsimilar length, and the GC content of ITS2was higher than that of ITS1in all thesescallop species. Combined with the published ITS sequences of the other14scallopspecies, the molecular phylogenetic tree of total21scallop species was constructed bythe neighbor-joining (NJ) and maximum parsimony (MP) methods using ITS1andITS2sequences. NJ tree revealed that P. magellanicus formed an independent clam, A.irradians, A. purpuratus, A. ventricosus, Amusium pleuronectes, Pecten maximus,Aequipecten opercularis, Annachlamys macassarensis, D. plica and D. radulagrouped in one big clade, and the other11scallop species (C. farreri, C. distorta, M.nobilis, M. sp. TN-2006, M. senatoria, M. varia, P. yessoensis, Minnivolva pyxidatus,Semipallium fulvicostata, V. hirasei and V. singaporinus) grouped in another big clade.Three Argopecten species (A. irradians, A. purpuratus and A. ventricosus) showedclose relationship, even the distance between A. purpuratus and A. ventricosusoverlapped with the distance within A. purpuratus, evidenced that A. purpuratus andA. ventricosus might belong to the subspecies. The MP tree has a similar topologywith the NJ tree but a little difference, of which, the biggest was the cluster of P.magellanicus. Results in this study are nearly consistent with the conclusions inferredfrom the morphological classifications of bivalve and the phylogenetic relationshipsinferred from mitochondrial genes. These results provide new insights into therelationships among scallop species and contribute to the crossbreeding attemptbetween different related scallop species.
     4. Cytogenetic and molecular analysis of the hybridsThe Peruvian scallop (A. purpuratus) has been successfully hybridized with the bayscallop (A. i. irradians), and the F1hybrids of these two scallops exhibited a largeincrease in production traits. To understand the genetic basis of this heterosis, thecytogenetic and molecular analysis technologies, such as GISH, AFLP, SSR, DNAsequencing, were applied to investigate the genomic characterization of the hybrids.
     The main results are as follows:
     (1) GISH was employed to detect different chromosome components and identifydonor chromatin in the hybrids. The results showed that most of the hybrid progeniespossessed half set of chromosomes (n=16), which could be labeled with the genomicDNA probes of one parent, and the other half set of chromosomes that could belabeled with the genomic DNA probes of the other parent. It thus confirmed thehybrid status of the F1progenies from cross of the two scallop species. However,small portion of aneuploids and allopolyploids were also observed in the hybridprogenies.
     (2) The genetic composition and variation of the adult hybrids were investigatedthrough AFLP, SSR and DNA sequencing. AFLP analysis and the amplification ofITS region both indicated that the hybrids inherited most genetic materials of theirparents and confirmed their hybrid identity. However, some ITS recombinant variantswere detected through ITS sequencing and AFLP loci alterations were also found byAFLP analysis in the hybrid genomes. These suggested that the inherited geneticmarkers in hybrids was not a simple combination of parental specific markers, butshowed some variations. Moreover, the genetic diversities of the hybrids and parentswere analyzed with AFLP and SSR markers. The results showed that the geneticsimilarities were lower and the heterozygosities were higher in the hybrids than thosein their parents, which suggested the genetic diversities of the hybrids increased. Thegenetic distance between hybrids and their maternal parents was slightly smaller thanthat between hybrids and paternal parents. Sequence analysis of mitochondrial16SrDNA showed that the hybrids possessed sequences that were identical to the16SrDNA of the female parents, proving matrilineal inheritance of mitochondrial genes inthe hybrid scallops. All these results may contribute to understanding of inter-specifichybridization and heterosis in marine shellfish species.
引文
[1] Andersson L, Archibald A, Ashburner M, Audun S, Barendse W, et al. Comparative genomeorganization of vertebrate. The first international workshop on comparative genomeorganization. Mammal Genome,1996,7:717-734.
    [2] Ansari HA, Ellison NW, Reader SM, Badaeva ED, Friebe B, et al. Molecular cytogeneticorganization of5S and18S-26S rDNA loci in White Clover (Trifolium repens L.) and relatedspecies. Ann. Botany,1999,83:199-206.
    [3] Arkhipova I, Meselson M. Transposable elements in sexual and ancient taxa. Proc Natl AcadSci USA,2000,97:14473-14477.
    [4] Baack EJ, Rieseberg LH. A genomic view of introgression and hybrid speciation. Curr OpinGenet Dev,2007,17:513-518.
    [5] Barucca M, Olmo E, Schiaparelli S, Canapa A. Molecular phylogeny of the family Pectinidae(Mollusca: Bivalvia) based on mitochondrial16S and12S rRNA genes. MolecularPhylogenetics and Evolution,2004,31:89-95.
    [6] Bailey JP, Bennett MD. Genomic in situ hybiridization identifies parental chromosomes inthe wide grass hybrid×Festulpia hubbardii. Heredity,1993,71:423-420.
    [7] Beaumont AR, Abdul Matin AKM, Seed R. Early development, survival and growth in pureand hybrid larvae of Mytilus edulis and M. galoprovincialis. J. Molluscan Stud.,1993,59(1):120-123.
    [8] Belyayev A, Raskina O. Heterochromatin discrimination in Aegilops speltoides bysimultaneous genomic in situ hybridization. Chromosome Res,1998,6:559-565.
    [9] Bininda-Emonds ORP. Factors influencing phylogenetic inference: A case study using themammalian carnivores. Mol Phylogenet Evol,2000,16(1):113-126.
    [10] Boutet I, Meisterzheim AL, Tanguy A, Thébaultb MT, Moraga D. Molecular characterizationand expression of the gene encoding aspartate aminotransferase from the Pacific oysterCrassostrea gigas exposed to environmental stressors. Comp Biochem Physiol,2007, C140:69-78.
    [11] Bower SM, Blackbourn J, Meyer GR. A new and unusual species of Perkinsus pathogenic tocultured Japanese scallops, Patinopecten yessoensis, in British Columbia, Canada. J ShellfishRes,1997,16:333.
    [12] Brown SE, StePhens LJ, Lapitan NLV, Knudson DL. FISH landmarks for barleychromosomes (Hordeum vulgare L.).Genome,1999,42:274-281.
    [13] Cadet P, Stefano GB. Pedal ganglia express muopiate receptor transcripts exhibiting highsequence identity with human neuronal mu1. Mol Brain Res,1999,74:242–246.
    [14] Canapa A, Barucca N, Cerioni PN, Olmo E. A satellite containing CENP-B box-like motifs ispresent in the Antarctic scallop Adamussium colbecki. Gene,2000a,247:175-180.
    [15] Canapa A, Barucca M, Marinelli A, Olmo E. Molecular Data from the16S rRNA Gene forthe Phylogeny of Pectinidae (Mollusca: Bivalvia). J Mol Evol,2000b,50:93-97.
    [16] Cerbah M, Coulaud J, Siljak-YakovlevS. rDNA organization and evolutionary relationshipsin the genus Hypochoeris (Asteraceae). J Hered,1998,89:312-318.
    [17] Chang S, Yang T, Datema E, Vugt JV, Vosman B, et al. FISH mapping and molecularorganization of the major repetitive sequences of tomato. Chromosome Research,2008,16(7):919-933.
    [18] Charlesworth B, Sniegowski P, Stephan W. The evolutionary dynamics of repetitive DNA ineukaryotes. Nature,1994,371:215-220.
    [19] Chen C, Yu Q, Hou S, Li Y, Eustice M, et al. Construction of a sequence-tagged high-densitygenetic map of papaya for comparative structural and evolutionary genomics in brassicales.Genetics,2007,177:2481-2491.
    [20] Chen L, Lou Q, Zhuang Y, Chen J, Zhang X, et al. Cytological diploidization and rapidgenome changes of the newly synthesized allotetraploids Cucumis×hytivus. Planta,2007,225:603-614.
    [21] Cheng Z, Presting GG, Buell CR, Wing RA, Jiang J. High resolution pachytene chromosomemapping of bacterial artificial chromosomes anchored by genetic markers reveals thecentromere location and the distribution of genetic recombination along chromosome10ofrice. Genetics,200la,157:1749-1757.
    [22] Cheng Z, Buell CR, Wing RA, Gu M, Jiang J. Toward a cytological characterization of therice genome. Genome Res,2001b,11:2133-2141.
    [23] Chevassus B. Hybridization in fish. Aquaculture,1983,33:245-262.
    [24] Chowdhary BP, Raudsepp T. HSA4and GGA4: remarkable conservation despite300-Myrdivergence. Genomics,2000,64:102-105.
    [25] Clabby C, Goswami U, Flavin F, Wilkins NP, Houghton JA, et al. Cloning, characterizationand chromosomal location of a satellite DNA from the Pacific oyster, Crassostrea gigas.Gene,1996,168:205-209.
    [26] Coleman AW, Vacquier VD. Exploring the phylogenetic utility of ITS sequences for animals:a test case for abalone (Haliotis). J. Mol. Evol.,2002,54:246-257.
    [27] Dahlgren TG, Weinberg JR, Halanych KM. Phylogeography of the ocean quahog (Arcticaislandica): influences of paleoclimate on genetic diversity and species range. Marine Biology,2000,137(3):487-495.
    [28] de Jong J, Fransz P, Zabel P. High resolution FISH in plants-techniques and applications.Trends in Plant Science,1999,4(7):258-263.
    [29] Decker JE, Pires JC, Conant GC, McKay SD, Heaton MP, et al. Resolving the evolution ofextant and extinct ruminants with high-throughput phylogenomics. Proc Natl Acad Sci U S A,2009,106(44):18644-18649.
    [30] Dixon DR, Mcfadzen IRB, Sisley K. Heterochromatic marker regions (nucleolar organisers)in the chromosomes of the common mussel, Mytilus edulis (Mollusca: Pelecypoda). J ExpMar Biol Ecol,1986,97:205-212.
    [31] Dubos MP, Badariotti F, Rodet F, Lelong C, Favrel P. Molecular and physiologicalcharacterization of an invertebrate homologe of a calcitonin-related receptor. BiochemBiophys Res Commun,2003,310:972-978.
    [32] Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, et al. Broad phylogenomic samplingimproves resolution of the animal tree of life. Nature,2008,452(7188):745-749.
    [33] Dong F, Song J, Naess SK, Helgeson JP, Gebhardt C, et al. Development and applications ofa set of chromosome-specific cytogenetic DNA markers in potato. Theor Appl Genet,2000,101:1001-1007.
    [34] Eirín-López JM, Ruiz MF, González-Tizón AM, Martínez A, Sánchez L, et al. Molecularevolutionary characterization of the Mussel Mytilus histone multigene family: First record ofa tandemly repeated unit of five histone genes containing an H1subtype with―Orphon‖features. Journal of Molecular Evolution,2004,58(2):131-144.
    [35] Elo K, Ivanoff S, Vuorinen J A, Piironen J. Inheritance of RAPD markers and detection ofinterspecific hybridization with brown trout and Atlantic salmon. Aquaculture,1997,152:55-65.
    [36] FauréS, Noyer JL, Carreel F, Horry JP, Bakry F, et al. Maternal inheritance of chloroplastgenome and paternal inheritance of mitochondrial genome in banana Musa acuminate. CurrGenet,1994,25:265-269.
    [37] Faure N, Serieys H, Cazaux E, Kaan F, Berville A. Partial Hybridization in Wide Crossesbetween Cultivated Sunflower and the Perennial Helianthus Species H. mollis and H.orgyalis. Annals of Botany,2002,89(1):31-39.
    [38] Feng Y, Li Q, Kong L, Zheng X. DNA barcoding and phylogenetic analysis of Pectinidae(Mollusca: Bivalvia) based on mitochondrial COI and16S rRNA genes. Mol Biol,2011,38:291-299.
    [39] Fernández A, García T, Asensio L, Rodríguez Má, González I, et al. PCR-RFLP analysis ofthe internal transcribed spacer (ITS) region for identification of3clam species. Journal ofFood Science,2001,66(5):657-661.
    [40] Florijn RJ, Blonden LAJ, Vrolijk H, Wiegant J, Vaandrager JW, et al. High-resolution DNAfiber-FISH for genomic DNA mapping and color bar-coding of large genes. Hum Mol Genet,1995,5:831-836.
    [41] Fontana F, Lanfredi M, Congiu L, Leis M, Chicca M, et al. Chromosomal mapping of18S-28S and5S rRNA genes by two-colour fluorescent in situ hybridization in six sturgeonspecies. Genome,2003,46(3):473-477.
    [42] Fransz PF, Alonso-Blanco C, Liharska TB, Peeters AJM, Zabel P, et al. High-resolutionphysical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization toextended DNA fibers. The Plant Journal,1996,9(3):421-430.
    [43] Fransz P, Armstrong S, Alonso-Blanco C, Fischer TC, Torres-Ruiz RA, et al. Cytogenetics forthe model system Arabidopsis thaliana. Plant J,1998,13:867-876.
    [44] Fransz P, ArmstrongS, de Jong JH, Parnell LD, van Drunen C, et al. Integrated cytogeneticmap of chromosome4S of A.thaliana: structural organization of heterochromatic knob andcentromere region. Cell,2000,100:367-376.
    [45] Fujiwara A, Abe S, Yamaha E, Yamazaki F, Yoshida MC. Uniparental chromosomeelimination in the early embryogenesis of the inviable salmonid hybrids between masusalmon female and rainbow trout male. Chromosoma,1997,106:44-52.
    [46] Gaffney P, Pierce JC, Mackinley A, Titchen D, Glenn WK. Pearl, a novel family of putativetransposable elements in bivalve mollusks. J Mol Evol,2003,56:308-316.
    [47] Gajardo G, Parraguez M, Colihueque N. Karyotype analysis and chromosome banding of theChilean-Peruvian scallop Argopecten purpuratus (Lamarck,1819), Journal Of ShellfishResearch,2002,21(2):585-590.
    [48] Gardiner J, Schroeder S, Polacco ML, Sanchez-Villeda H, Fang Z, et al. Anchoring9,371maize expressed sequence tagged unigenes to the bacterial artificial chromosome contig mapby two-dimensional overgo hybridization. Plant Physiology,2004,134(4):1317-1326.
    [49] Gill BS, Friebe B. Plant cytogenetics at the dawn of the21st century. Curr OPin Plant Biol,1996, l:109-115.
    [50] Giribet G, Carranza S. What can18S rDNA do for bivalve phylogeny. J Mol Evol,1999,48:256-261.
    [51] Giribet G, Wheeler W. On bivalve phylogeny: a high-level analysis of the Bivalvia (Mollusca)based on combined morphology and DNA sequence data. Inv Biol,2002,121:271-324.
    [52] Gosling E. Bivalve molluscs: biology, ecology,culture. Fishing News Books. Oxford: OxfordPress,2003,58-66.
    [53] Gonzáles-Tizón A, Mart nez-Lage A, Marin as L, Feire R, Cornudella L, et al. Cytogeneticcharacterization of Donax trunculus (Mollusca, Bivalvia)[abstract]. Cytogenet Cell Genet,1998,81:109.
    [54] Gregory TR. Animal Genome Size Database,2006(http://www.genomesize.com).
    [55] Guan Y, Chen Q, Pan J, Li Z, He H, et al. Construction of a BAC library from cucumber(Cucumis sativus L.) and identification of linkage group specific clones. Progress in NaturalScience.2008,18(2):143-147.
    [56] Guo H, Bao Z, Li J, Lian S, Wang S, et al. Molecular Characterization of TGF-β Type IReceptor Gene (Tgfbr1) in Chlamys farreri, and the Association of Allelic Variants withGrowth Traits. PLoS ONE,2012,7(11): e51005. doi:10.1371.
    [57] Guo X, Allen Jr SK. Fluorescence in situ hybridization of vertebrate telomere sequence tochromosome ends of the Pacific oyster, Crassostrea gigas Thunberg. Journal of ShellfishResearch,1997,16:87-89.
    [58] Gyllensten U, Wharton D, Josefsson A, Wilson AC. Paternal inheritance of mitochondrialDNA in mice. Nature,1991,352(6332):255-257.
    [59] Hajdera I, Siwinska D, Hasterok R, Maluszynska J. Molecular cytogenetic analysis ofgenome structure in Lupinus angustifolius and Lupinus cosentinii. Theor APPl Genet,2003,107:988-996.
    [60] Heath WA. Developments in shellfish culture in British Columbia. Annual Meeting ofNational Shellfish Association,1995,14:228.
    [61] Hedgecock D, Davis JP. Improving pacific oyster broodstock through crossbreeding. Journalof Shellfish Research,2000,199(1):614-615.
    [62] Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW, et al. Assessing the root of bilateriananimals with scalable phylogenomic methods. Proc Biol Sci,2009,276(1677):4261-4270.
    [63] Heng HQ, Squire J, Tsui LC. High resolution mapping of mammalian genes by in situhybridization to free chromatin. Proc Natl Acad Sci USA,1992,89:9509-9513.
    [64] Heng HQ, Tsui LC. High resolution free chromatin/DNA fiber fluorescent in situhybridization. Jounral of Chromatography A,1998,806(1):219-229.
    [65] Hezi S, Khalil K, Hakan O, Feldman M, Levy AA. Sequence elimination and cytosinemethylation are rapid and reproducible responses of the genome to wide hybridization andallopolyploidy in wheat. The Plant Cell,2001,13:1749-1759.
    [66] Hills DM, Moritz C. Molecular Systemarics. Sinauer, Sunderland, MA. USA,1990.
    [67] Hsu TC, Spirito SE, Pardue ML. Distribution of18+28S ribosomal genes in mammaliangenomes. Chromosoma,1975,53:25-36.
    [68] Huang X, Bao Z, Bi K, Hu J, Zhang C, et al. Chromosomal localization of the majorribosomal RNA genes in scallop Chlamys farreri. Acta Oceanol Sin,2006,25:108-115.
    [69] Huang X, Hu J, Hu X, Zhang C, Zhang L, et al. Cytogenetic characterization of the bayscallop, Argopecten irradians irradians, by multiple staining techniques and fluorescence insitu hybridization. Genes Genet Syst,2007a,82:257-263.
    [70] Huang X, Hu X, Hu J, Zhang L, Wang S, et al. Mapping of ribosomal DNA and (TTAGGG)ntelomeric sequence by FISH in the bivalve Patinopecten yessoensis. Journal of MolluscanStudies,2007b,73:393-398.
    [71] Huang X, Bi K, Hu J, Hu X, Bao Z. Phylogenetic analysis of Pectinidae (Bivalvia) based onthe ribosomal DNA internal transcribed spacer region. Acta Oceanologica Sinica,2007c,26(6):83-90.
    [72] Huang X, Bi K, Hu L, Sun Y, Lu W, et al. Fertilization and Cytogenetic Examination ofInterspecific Reciprocal Hybridization between the Scallops, Chlamys farreri andMimachlamys nobilis. PLoS ONE,2011,6(11): e27235.
    [73] Hubert S, Hedgecock D. Linkage maps of microsatellite DNA markers for the Pacific oysterCrassostrea gigas.Genetics,2004,168:351-362.
    [74] Hunt G J, Page R E. Patterns of inheritance with RAPD molecular markers reveal novel typesof polymorphism in the honey bee. Theoretical and Applied Genetics,1992,85:15-20.
    [75] Insua A, Thiriot-Quievreux C. The characterization of Ostrea denselamellosa (Mollusca,Bivalvia) chromosomes: karyotype, constitutive heterochromatin and nucleolus organizerregions. Aquaculture,1991,97:317-325.
    [76] Insua A, López-Pi ón MJ, Méndez J. Characterization of Aequipecten opercularis (Bivalvia:Pectinidae) chromosomes by different staining techniques and fluorescent in situhybridization. Genes Genet Syst,1998,73:193-200.
    [77] Insua A, Méndez J. Physical mapping and activity of ribosomal RNA genes in mussel Mytilusgalloprovincialis. Hereditas,1998,128(3):189-194.
    [78] Insua A, Freire R, R′os J, Méndez J. The5S rDNAof mussels Mytilus galloprovincialis andM. edulis: sequence variation and chromosomal location. Chromosome Research,2001,9(6):495-505.
    [79] Insua A, López-Pi ón MJ, Freire R, Méndez J. Sequence analysis of the ribosomal DNAinternal transcribed spacer region in some scallop species (Mollusca: Bivalvia: Pectinidae).Genome,2003,46:595-604.
    [80] Insua A, López-Pi ón MJ, Freire R, Méndez J. Karyotype and chromosomal location of18S-28S and5S ribosomal DNA in the scallops Pecten maximus and Mimachlamys varia(Bivalvia: Pectinidae). Genetica,2006,126:291-301.
    [81] Jiang J, Gill BS. New18S-26S ribosomal RNA gene loci: chromosomal landmarks for theevolution of polyploidy wheats. Chromosoma,1994,103:179-185.
    [82] Jiang J, Gill BS, Wang GL, Ronald PC, Ward DC. Metaphase and interphase fluorescence insitu hybridization mapping of the rice genome with bacterial artificial chromosomes. ProcNatl Acad Sci USA,1995,92(10):4487-4491.
    [83] Jiang J, Hulbert SH, Gill BS, Ward DC. Inter phase fluorescence in situ hybridizationmapping: a physical mapping strategy for plant species with large complex genome. Mol GenGenet,1996,252(5):497-502.
    [84] Jone MA, Strommer JN, Freeling M. Exceptionally high levels of restriction sitepolymorphism in DNA near the maize ADHI gene. Genetics,1983,105:733-743.
    [85] Kato A, Lamb JC, Birchler JA. Chromosome painting using repetitive DNA sequences asprobes for somatic chromosome identification in maize. Proc Natl Acad Sci USA,2004,101:13554-13559.
    [86] Kim JS, Childs KL, IslamFaridi MN, Menz MA, Klein RR, et al. Integrated karyotyping ofsorghum by in situ hybridization of landed BACs. Genome,2002,45:402-412.
    [87] Kim JS, Klein PE, Klein RR, Price HJ, Mullet JE, et al. Chromosome identifcation andnomenclature of sorghum bicolor. Genetics,2005,169:1169-1173.
    [88] Kimura T, Nakano T, Yamaguchi T, Sato M, Ogawa T, et al. Complementary DNA cloningand molecular evolution of opine dehydrogenases in some marine invertebrates. MarBiotechnol,2005,6:493-502.
    [89] Kitamura S, Inoue M, Shikazono N, Tanaka A. Relationships among Nicotiana speciesrevealed by the5S rDNA spacer sequence and fluorescence in situ hybridization. Theor ApplGenet,2001,103:678-686.
    [90] Kondo R, Satta Y, Matsuura ET, Ishiwa H, Takahata N, et al. Incomplete maternaltransmission of mitochondrial DNA in Drosophila. Genetics,1990,126(3):657-663.
    [91] Kubaláková M, Nouzová M, Dole elová M, Macas J, Dole el J. A combined PRINS-FISHtechnique for simultaneous location of DNA sequences on plant chromosomes. BiologiaPlantarum,1998,41(2):293-296.
    [92] Kulak S, Hasterok R, Maluszynska J. Karyotyping of Brassica amphidiploids using5S and25S rDNA as chromosome markers. Hereditas,2002,136:144-150.
    [93] Kuipers AGJ, van Os DPM, de Jong JH, Ramanna MS. Molecular cytogenetics ofAlstroemeria: identification of parental genomes in interspecific hybrids and characterizationof repetitive DNA families in constitutive heterochromatin. Chromosome Res,1997,5:31-39.
    [94] Kvist L, Martens J, Nazarenko AA, Orell M. Paternal leakage of mitoc hondrial DNA in theGreat Tit (Parus major). Mol Biol Evol,2003,20(2):243-247.
    [95] Launey S, Ledu C, Boudry P, Bonhomme F, Naciri-Graven Y. Geographic structure in theEuropean Flat oyster (Ostrea edulis L.) as revealed by microsatellite polymorphisms. J Hered,2002,93:331-351.
    [96] Leighton DL, Lewis CA. Experimental hybridization in abalones. International Journal ofInvertebrate Reproduction,1982,5(5):273-282.
    [97] Leit o A, Thiriot-Quievreux C, Boudry P, Malheiro I. A G‘chromosome banding study ofthree cupped oyster species: Crassostrea gigas, Crassostred angulata and Crassostreavirginica (Mollusca: Bivalvia). Genet Sel Evol,1999,31:519-527.
    [98] Leitch AR, Mosgoller W, Schwarzacher T. Genomic in situ hybridization to sectioned nucleishows chromosome domains in grass hybrids. J Cell Sci,1990,95:335-341.
    [99] Leitch AR, Schwarzacher T, Mosgoller W, Bennett MD, Heslop-Harrison JS. Parentalgenomes are separated throughout the cell cycle in a plant hybrid. Chromosoma,1991,101:206-213.
    [100] Li C, Ni D, Song L, Zhao J, Zhang H, et al. Molecular cloning and characterization of acatalase gene from Zhikong scallop (Chlamys farreri). Fish&Shellfish Immunology,2008,24(1):26-34.
    [101] Li H, Liu X, Hu J, Bao Z, Zhang G. A set of polymorphic microsatellite loci for the bayscallop, Argopecten irradians. Molecular Ecology Notes,2007,7:422-424.
    [102] Li H, Liu X, Zhang G. Development and Linkage Analysis of104New MicrosatelliteMarkers for Bay Scallop (Argopecten irradians). Mar Biotechnol,2012,14:1-9.
    [103] Li L, Guo X. AFLP-based genetic linkage maps of the Pacific oyster Crassostrea gigasThunberg. Mar Biotechnol,2004,6:26-36
    [104] Li L, Xiang J, Liu X, Zhang Y, Dong B, et al. Construction of AFLP-based genetic linkagemap for Zhikong scallop, Chlamys farreri Jones et Preston and mapping of sex-linkedmarkers. Aquaculture,2005,245:63-73
    [105] Li S, Xie L, Zhang C, Zhang Y, Gu M, et al. Cloning and expression of a pivotal calciummetabolism regulator: calmodulin involved in shell formation from pearl oyster (Pinctadafucata). Comp Biochem Physiol,2004, B138:235-243.
    [106] Li XX, Havenhand JN. Karyotype, nucleolus organizer regions and constitutiveheterochromatin in Ostrea angasi (Mollusca: Bivalvia): evidence of taxonomic relationshipwithin the Ostreidae. Mar Biol,1997,127:443-448.
    [107] Liu LL, Foltz DW, Stickle WB. Genetic population structure of the sourthern oystr drillstramonita haemostoma. Mar Biol,1991,111(1):71-79.
    [108] Liu X, Chang Y. The feasibility of the hybridization in four species of scallop and the earlydevelopment of their offsprings. Journal of Dalian Fisheries University,2006,21(4):346-349.
    [109] Long EO, Dawid IB. Repeated genes in eukaryotes. Annual Review of Biochemistry,1980,49:727-764.
    [110] López-Flores I, de la Herrán R, Garrido-Ramos MA, Boudry P, Ruiz-Rejón C, et al. Themolecular phylogeny of oysters based on satellite DNA related to transposons. Gene,2004,339:181-188.
    [111] López-Pi ón MJ, Insua A, Méndez J. Identification of four scallop species using PCR andrestriction analysis of the ribosomal DNA internal transcribed spacer region. MarineBiotechnology,2002,4(5):495-502.
    [112] López-Pi ón MJ, Insua A, Méndez J. Chromosome Analysis and Mapping of RibosomalGenes by One-and Two-Color Fluorescent in situ Hybridization in Hinnites distortus(Bivalvia: Pectinidae). J Hered,2005,96:52-58.
    [113] Maestra B, de Jong JH, Shepherd K, Naranjo T. Chromosome arrangement and behavior oftwo rye homologous telosomes at the onset of meiosis in disomic wheat-5RL addition lineswith and without the PhⅠ locus. Chromosome Res,2002,10:655-667.
    [114] Magoulas A, Gjetvaj B, Terzoglou V, Zouros E. Three polymorphic microsatellites in theJapanese oyster, Crassostrea gigas (Thunberg). Anim Genet,1998,29:69-70.
    [115] Martínez-Expósito MJ, Méndez J, Pasantes JJ. Analysis of NORs and NOR-associatedheterochromatin in the mussel Mytilus galloproviticialis Lmk. Chromosome Res,1997,5:268-273.
    [116] Martínez-Lage A, González-Tizón A, Méndez J. Chromosomal markers in three species ofthe genus Mytilus (Mollusca: Bivalvia). Heredity,1995,74:369-375.
    [117] Martínez-Lage A, González-Tizón A, Ausio J, Mendez J. Karyotypes and Ag-NORs of themussels Mytilus californianus and M. trossulus from the pacific Canadian coast. Aquaculture,1997,153:239-249.
    [118] Martínez-Lage A, Rodríguez F, González-Tizón A, Prats E, Cornudella L, et al. Comparativeanalysis of different satellite DNAs in four Mytilus species. Genome,2002,45:922-929.
    [119] Martínez-Lage A, Rodríguez F, González-Tizón A, Méndez J. Origin and evolution ofMytilus mussel satellite DNAs. Genome,2005,8:247-256.
    [120] Masson R, Loup F, Bultelle A, Siah A, Leboulenger F, et al. Identification of the geneencoding a Dnak-type molecular chaperone as potentially down regulated in blue mussels(Mytilus edulis) following acute exposure to atrazine. Hydrobiologia,2007,588:135-143.
    [121] Matsumoto T, Nakamura AM, Mori K, Kayano T. Molecular characterization of a cDNAencoding putative vitellogenin from the Pacific oyster Crassostrea gigas. Zool Sci,2003,20:37-42.
    [122] Melchinger AE, Lee M, Lamkey KR, Woodman WL. Genetic diversity for restrictionfragment length polymorphisms: relation to estimated genetic effects in maize inbreds. Cropscience,1990,30:1033-1040.
    [123] Minelli S, Ceccarelli M, Mariani M, De Pace C, Cionini PG. Cytogenetics of Triticum×Dasypyrum hybrids and derived lines. Cytogenet Genome Res,2005,109:385-392.
    [124] Mitta G, Vandenbulcke F, Hubert F, Salzet M, Roch P. Involvement of Mytilins in musselantimicrobial defense. Biol Chem,2000,17:12954-12962.
    [125] Naciri Y, Vigouroux Y, Dallas J, Desmarais E, Delsert C, et al. Identification and inheritanceof (GA/TC)nand (AC/GT)nrepeats in the European flat oyster Ostrea edulis (L.). Mol MarBiol Biotechnol,1995,4:83-89.
    [126] Natali L, Giordani T, Polizzi E. Genomic alterations in the interspecific hybrid Hellanthusannuus×Hellanthus tuberosus. Theor. Appl. Genet.,1998,97:1240-1247.
    [127] Nazar RN. The ribosomal5.8S RNA: eukaryotic adaptation or processing variant? Can JBiochem Cell Biol,1984,62:311-320.
    [128] Neale DB, Marshall KA, Sederoff RR. Chloroplast and mitochondrial DNA are paternallyinherited in Sequoia sempervirens (D. Don) Endl. Proc. Natl. Acad. Sci. USA,1989,86:9347-9349.
    [129] Nederlof PM, Van der Flier S, Wiegant J, Raap AK, Tanke HJ, et al. Multiple fluorescence insitu hybridization. Cytometry,1990,11:126-131.
    [130] Odierna G, Aprea G, Barucca M, Canapa A, Capriglione T, et al. Karyotype of the Antarcticscallop Adamussuim colbecki, with some comments on the karyological evolution ofpectinids. Genetica,2006,127:341-349.
    [131] Odorico DM, Miller DJ. Variation in the ribosomal internal transcribed spacers and5.8SrDNA among five species of Acropora (Cnidaria: Scleractinia): patterns of variationconsistent with reticulate evolution. Mol Biol Evol,1997,14:465-473.
    [132] Palumbi SR, Wilson AC. Mitochondral DNA diversity in the sea urchins Stronglyocentrotuspurpuratus and S. droebachiensis. Evolution,1990,44(2):403-415.
    [133] Pauls E, Affonso PR. The karyotype of Nodipecten nodosus (Bivalvia: Pectinidae).Hydrobiologia,2000,420:99-102.
    [134] Pedersen C, Rasmussen SK, Linde-Laursen I. Genome and chromosome identification incultivated barley and related species of the Triticeae (Poaceae) by in situ hybridization withthe GAA-satellite sequence. Genome,1996,39:93-104.
    [135] Pedersen C, Langridge P. Identification of the entire chromosome complement of breadwheat by two-colour FISH. Genorne,1997,40:589-593.
    [136] Penney RW, Hart MJ, Hart MJ, Templeman N. Comparative growth of cultured blue mussels,Mytilus edulis, M. trossulus and their hybrid, in naturally occurring mixed-species stocks.Aquaculture Research,2002,33(9):693-702.
    [137] Petrovic V, Plohl M. Sequence divergence and conservation in organizationally distinctsubfamilies of Donax trunculus satellite DNA. Gene,2005,362:37-43.
    [138] Pérez-García C, Cambeiro JM, Morán P, Pasantes JJ. Chromosomal mapping of rDNAs, corehistone genes and telomeric sequences in Perumytilus purpuratus (Bivalvia: Mytilidae).Journal of Experimental Marine Biology and Ecology,2010a, doi:10.1016.
    [139] Pérez-García C, Guerra-Varela J, Morán P, Pasantes JJ. Chromosomal mapping of rRNAgenes, core histone genes and telomeric sequences in Brachidontes puniceus andBrachidontes rodriguezi (Bivalvia, Mytilidae). BMC Genetics,2010b,11:109.
    [140] Pérez-ParalléML, Carpintero P, Pazos AJ, Abad M, Sánchez JL. The HOX gene cluster in thebivalve mollusc Mytilus galloprovincialis. Biochem Genet,2005,43:417-424.
    [141] Pinkel D, Straume T, Gray JW. Cytogenetic analysis using quantitative, high-sensitivityfluorescence hybridization. Proc Natl Acad Sci USA,1986,83:2934-2938.
    [142] Plohl M, Cornudella L. Characterization of a complex satellite DNA in the mollusk Donaxtrunculus: anlaysis of sequence variation and divergence. Gene,1996,169:157-164.
    [143] Pogson GH, Zouros E. Allozyme and RFLP heterozygosities as correlates of growth rate inthe scallop Placopecten magellanicus: a test of the associative overdominance hypothesis.Genetics,1994,137:221-231.
    [144] Presa P, Perez M, Diz A P. Polymorphic microsatellite markers for blue mussels (Mytilus spp.)[J]. Conservation Genetics,2002,3:441-443.
    [145] Puslednik L, Serb JM. Molecular phylogenetics of the Pectinidae (Mollusca: Bivalvia) andeffect of increased taxon sampling and outgroup selection on tree topology. MolecularPhylogenetics and Evolution,2008,48:1178–1188.
    [146] Qiu L, Song L, Xu W, Ni D, Yu Y. Molecular cloning and expression of a Toll receptor genehomologue from Zhikong Scallop, Chlamys farreri. Fish Shellfish Immunol,2007,22:451-466.
    [147] Raap AK. Advances in fluorescence in situ hybridization. Mutat Res,1998,400:287-298.
    [148] Rawson PD, Hilbish TJ. Heritability of juvenile growth for the hard clam Mercenaria mercenaria. Marine Biology,1990,105:429-436.
    [149] Rawson PD, Secor CL, Hilbish TJ. The effects of natural hybridization on the regulation ofdoubly uniparental mtDNA inheritance in blue mussels (Mytilus spp.). Genetics,1996,144:241-248.
    [150] Reed KM, Philips RB. Molecular cytogenetic analysis of the double-CMA3chromosome inlake trout (Salvelinus namaycush). Cytogenetics and Cell Genetics,1995,70:104-107.
    [151] Ren Y, Zhag Z, Liu J, Staub JE, Han Y, et al. An Integrated Genetic and Cytogenetic Map ofthe Cucumber Genome. PLoS ONE,2009,4(6): e5795. doi:10.1371.
    [152] Rieseberg LH. Chromosomal rearrangements and speciation. Trends Ecol Evol,2001,16:351-358.
    [153] Roberts S, Romano C, Gerlach G. Characterization of EST derived SSRs from the bayscallop, Argopecten irradians. Molecular Ecology Notes,2005,5(3):567-568.
    [154] Saghai Maroof MA, Yang G, Zhang Q, Gravois KA. Correlation between molecular markerdistance and hybrid performance in US southern long grain rice. Crop Sci.,1997,37:145-150.
    [155] Saha A, Bamezai R. Detection of genetic variation in Indian population groups using a novelminisatellite probe and finding relationships through tree construction. J Hum Genet,2000,45:207-211.
    [156] Salvo-Garrido H, Travella S, Bilham LJ, Harwood WA, Snape JW. The distribution oftransgene insertion sites in barley determined by physical and genetic mapping. Genetics,2004,167:1371-1379.
    [157] Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual2nd edn. ColdSprings Harbour Laboratory Press, Cold Springs Harbour,1989, New York.1061p.
    [158] Schl tterer C, Hauser MT, von Haeseler A, Tautz D. Comparative evolutionary analysis ofrDNA ITS regions in Drosophila. Molecular biology and evolution,1994,11:513-522.
    [159] Schneider S, Roessli D, Excoffier L. Arlequin ver.2.000: A software for population geneticsdata analysis. University of Geneva, Geneva.2000,111p.
    [160] Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS. In situ localization of parentalgenomes in a wide hybrid. Ann Bot,1989,64:315-324.
    [161] Schwarzacher T. DNA, chromosomes, and in situ hybridization. Genome,2003,46:953-962.
    [162] Shizuya H, Brieen B, Kim UJ, Mancino V, Slepak T, et al. Clonging and stable maintenanceof300-kilobase-pair fragments of human DNA in Escherichia coli using an F factor basedvector. Proc NatlAcad Sci USA,1992,89(18):8794-8797.
    [163] Smith CD, Zimin A, Holt C, Abouheif E, Benton R, et al. Draft genome of the globallywidespread and invasive Argentine ant (Linepithema humile). Proc Natl Acad Sci USA,2011,108:5673-5678.
    [164] Snowdon RJ, Koèhler W, Koèhler A. Chromosomal localization and characterization ofrDNA loci in the Brassica A and C genomes. Genome,1997,40:582-587.
    [165] Somridhivej B, Wang S, Sha Z, Liu H, Quilang J, et al. Characterization, polymorphismassessment, and database construction for microsatellites from BAC end sequences ofchannel catfish (Ictalurus punctatus): A resource for integration of linkage and physical maps.Aquaculture,2008,275:76-80.
    [166] Song J, Dong F, Jiang J. Construction of a bacterial artificial chromosome (BAC) library forpotato molecular cytogenetics research. Genome,2000,43:199-204.
    [167] Stephens LJ, Brown SE, Lapitan NLV, Knudson DL. Physical mapping of barley genes usingan ultrasensitive fluorescence in situ hybridization technique. Genome,2004,47:179-189.
    [168] Speel EJ, Hopman AH, Komminoth P. Signal amplification for DNA and mRNA. MethodsMol Biol,2000,123:195-216.
    [169] Stanley JG. Production of hybrid, androgenetic, and gynogenetic grass carp and carp. TransAm Fish Soc,1976,105(1):10-16.
    [170] Steiner G, Müller M. What can18S rDNA do for bivalve phylogeny? Journal of MolecularEvolution.1996,43(1):58-70.
    [171] Tang X, de Boer JM, van Eck HJ, Bachem C, Visser RGF, et al. Assignment of geneticlinkage maps to diploid Solanum tuberosum pachytene chromosomes by BAC-FISHtechnology. Chromosome Research,2009,17:899-915.
    [172] Tautz D, Hancock JM, Webb DA, Tautz C, Dover GA. Complete sequences of the rRNAgenes of Drosophila melanogaster. Mol Biol Evol,1998,5:366-376.
    [173] Thiriot-Quiévreux C. Advances in cytogenetics of aquatic organisms. In: Beaumont AR, ed.Genetics and evolution of aquatic organisms. London: Chapman&Hall,1994, pp.69-388.
    [174] Thomas HM, Morgan WG, Meredith MR, Humphreys MW, Thomas H, Leggett JM.Identification of parental and recombined chromosomes in hybrid derivatives of Loliummultiflorum×Festuca pratensis by genomic in situ hybridization. Theor Appl Genet,1994,88:909-913.
    [175] Thomas HM, Harper JA, Morgan WG. Gross chromosome rearrangements are occurring inan aceession of the grass Lolium rigidum. Chromosome Res,2001,9:585-590.
    [176] Trask BJ. Fluorescence in situ hybridization: applications in cytogenetics and gene mapping.Trends Genets,1991,7(5):149-154.
    [177] van Gijlswijk RPM, Zijlmans HJMAA, Wiegant J, Bobrow MN, Erickson TJ, et al.Fluorochrome-labeled tyramides: use in immunocytochemistry and fluorescence in situhybridization. J. Histochem. Cytochem,1997,45:375-382.
    [178] Vos P, Hogers R, Bleeker M, Reijans M, Van De Lee T, et al. AFLP: a new technique forDNA fingerprinting. Nucleic Acids Research,1995,23:4407-4414.
    [179] Waller TR. Evolutionary relationship among commercial scallops (Mollusca: Biva lvia:Pectinidae). In: S. E. Shumway (ed) Scallops: biology, ecology and aquaculture, Elsevier,Amsterdam,1991, pp.1-73.
    [180] Waller TR. The evolution of―Chlamys‖(Mollusca: Bivalvia: Pectinidae) in the tropicalwestern Atlantic and eastern Pacific. American Malacological Bulletin,1993,10(2):195-249.
    [181] Wai CM, Ming R, Moore PH, Paull RE, Yu Q. Development of chromosome-specificcytogenetic markers and merging of linkage fragments in papaya. Tropical Plant Biol,2010,3:171-181.
    [182] Waite JH, Quin X. Polyphosphoprotein from the adhesive pads of Mytilus edulis.Biochemistry,2001,40:2887-2893.
    [183] Wang C, Lo L, Feng F, Gong P, Li J, et al. Construction of a BAC library and mapping BACclones to the linkage map of Barramundi, Lates calcarifer. BMC Genomics2008,9:139.
    [184] Wang C, Liu B, Li J, Liu S, Li J, et al. Introduction of the Peruvian scallop and itshybridization with the bay scallop in China. Aquaculture,2011,310:380-387.
    [185] Wang CJR, Harper L, Cande WZ. High-resolution single-copy gene fluorescence in situhybridization and its use in the construction of a cytogenetic map of maize chromosome9.The Plant Cell,2006,18:529-544.
    [186] Wang K, Guo W, Zhang T. Development of one set of chromosome-specificmicrosatellite-containing BACs and their physical mapping in Gossypium hirsutum L. TheorAppl Genet,2007,115:675-682.
    [187] Wang L, Zhang H, Song L, Guo X. Loss of allele diversity in introduced populations of thehermaphroditic bay scallop Argopecten irradians. Aquaculture,2007,271:252-259.
    [188] Wang L, Song L, Chang Y, Xu W, Ni D, et al. A preliminary genetic map of Zhikong scallop(Chlamys farreri Jones et Preston1904). Aquac Res,2005,36:643-653.
    [189] Wang S, Bao Z, Pan J, Zhang L, Yao B, et al. AFLP linkage map of an intraspecific cross inChlamys farreri. J Shellfish Res,2004,23:491-499.
    [190] Wang S, Bao Z, Hu X, Shao M, Zhang L, et al. Two novel elements (CFG1and PYG1) ofMag lineage of Ty3/Gypsy retrotransposons from Zhikong scallop (Chlamys farreri) andJapanese scallop (Patinopecten yessoensis). Genetica,2008,133(1):37-46.
    [191] Wang S, Zhang L, Hu J, Bao Z, Liu Z. Molecular and cellular evidence for biased mitoticgene conversion in hybrid scallop. BMC Evolutionary Biology,2010,10:6.
    [192] Wang T, Wu C, Huang J, Wei W. Karyotyping of Brassica oleracea L. based on rDNA andCot-1DNA fluorescence in situ hybridization. Front. Biol. China,2007,2(4):403-407.
    [193] Wang Y, Guo X. Chromosomal Rearrangement in Pectinidae Revealed by rRNA Loci andImplications for Bivalve Evolution. Biol. Bull.,2004,207:247-256.
    [194] Wang Y, Xu Z, Guo X, Pierce JC, Gaffney PM. Chromosome mapping of some repetitiveDNA in Crassostrea oysters as determined by FISH. Journal of Shellfish Research,2000,19:618.
    [195] Wang Y, Xu Z, Guo X. Differences in the rDNA-bearing chromosome divide theAsian-Pacifc and Atlantic species of Crassostrea (Bivalvia, Mollusca). Biol Bull,2004,206:46-54.
    [196] Wang Y, Xu Z, Pierce JC, Guo X. Characterization of eastern oyster (Crassostrea virginicaGmelin) chromosomes by fluorescence in situ hybridization with bacteriophage P1clones.Mar Biotechnol,2005,7:207-214.
    [197] Warwick T, Knight AJ, Ward RD. Hybridization in the Littorina saxatilis species complex(Prosobranchia: Mollusca). Progress in littorinid and Muricid Biology.1990,193:109-116.
    [198] Watabe S, Iwasaki K, Funabara D, Hirayama Y, Nakaya M, et al. Complete amino acidsequence of Mytilus anterior byssus retractor paramyosin and its putative phosphorylationsite. Exp Zool,2000,286:24-35.
    [199] Wei W, Zhao W, Wang L, Chen B, Li Y, et al. Karyotyping of Brassica napus L. based onC0t-1DNA banding by fluorescence in situ hybridization. Journal of Integrative PlantBiology,2005,47(12):1479-1484.
    [200] Wiegant J, Kalle W, Mullenders L, Brookes S, Hoovers JMN, et al. High-resolution in situhybridization using DNA halo preparations. Hum Mol Genet,1992,1:587-591.
    [201] Xu Z, Guo X, Gaffney PM, Pierce JC. Chromosomal location of the major ribosomal RNAgenes in Crassostrea virginica and Crassostrea gigas. Veliger,2001,44:86-90.
    [202] Yan H, Song Y, Li L, Bi X, Fu B. Physicial location of the rice Pi-5(t), Glh and RTSV geneby ISH of BAC clones. Wuhan Univ J Natur Sci,1998,3(2):226-230.
    [203] Yang DC, Parco A, Nandi S, Subudhi P, Zhu Y, et al. Construction of a bacterial artificialchromosome (BAC) library and identification of overlapping BAC clones with chromosome42-specific RFLP markers in rice. Theor Appl Genet,1997,95(7):1147-1154.
    [204] Yang J, Qiu L, Wei X, Wang L, Wang L, et al. An ancient C-type lectin in Chlamys farreri(CfLec-2) that mediate pathogen recognition and cellular adhesion. Dev Comp Immunol,2010,34:1274-1282.
    [205] Yeh FC, Yang RC, Boyle T. POPGENE (version1.3.1). Microsoft Window-bases Freewarefor Population Genetic Analysis. University of Alberta and the Centre for InternationalForestry Research.1999.
    [206] Yoshido A, Bando H, Yasukochi Y, Sahara K. The Bombyx mori karyotype and theassignment of linkage groups. Genetics,2005,170:675-685.
    [207] Yu ET, Juinio-Me ez MA, Monje VD. Sequence variation in the ribosomal DNA InternalTranscribed Spacer of Tridacna crocea. Marine Biotechnology,2000,2(6):511-516.
    [208] Yu Z, Guo X. Genetic linkage map of the eastern oyster Crassostrea virginica Gmelin. BiolBull,2003,204:327-338.
    [209] Yoshido A, Bando H, Yasukochi Y, Sahara K. The Bombyx mori karyotype and theassignment of linkage groups. Genetics,2005,170:675-685.
    [210] Zhan A, Bao Z, Wang X, Hu J. Microsatellite markers derived from bay scallop Argopectenirradians expressed sequence tags. Fisheries Science,2005,71:1341-1346.
    [211] Zhan A, Hu J, Wang X, Lu W, Hui M, et al. A panel of polymorphic EST-derivedmicrosatellite loci for the bay scallop (Argopecten irradians). Journal of Molluscan Studies,2006,72(4):436-438.
    [212] Zhan A, Bao Z, Yao B, Wang X, Hui M, et al. Polymorphic microsatellite markers in theZhikong scallop Chlamys farreri. Mol Ecol Notes,2006,6:127-129.
    [213] Zhan A, Hu J, Hu X, Lu W, Wang M, et al. Fast identification of scallop adductor musclesusing species-specific microsatellite markers. European Food Research and Technology,2008,227:353-359.
    [214] Zhan A, Hu J, Hu X, Hui M, Wang M, et al. Construction of microsatellite-based linkagemaps and identifcation of size-related quantitative trait loci for Zhikong scallop (Chlamysfarreri). Animal Genetics,2009,40:821-831.
    [215] Zhang L, Bao Z, Wang S, Huang X, Hu J. Chromosome rearrangements in Pectinidae(Bivalvia: Pteriomorphia) implied based on chromosomal localization of histone H3gene infour scallops. Genetica,2007a,130:193-198.
    [216] Zhang L, Bao Z, Cheng J, Li H, Huang X, et al. Fosmid Library Construction and InitialAnalysis of End Sequences in Zhikong Scallop (Chlamys farreri). Marine Biotechnology,2007b,9:606-612.
    [217] Zhang L, Chen C, Cheng J, Wang S, Hu X, et al. Initial analysis of tandemly repetitivesequences in the genome of Zhikong scallop (Chlamys farreri Jones et Preston). DNA Seq,2008a,19(3):195-205.
    [218] Zhang L, Bao Z, Wang S, Hu X, Hu J. FISH mapping and identification of Zhikong scallop(Chlamys farreri) chromosomes. Mar Biotechnol (NY),2008b,10(2):151-157.
    [219] Zhang P, Li W, Fellers J, Friebe B, Gill BS. BAC-FISH in wheat identifies chromosomelandmarks consisting of different types of transposable elements. Chromosoma,2004a,112:288-299.
    [220] Zhang P, Li W, Friebe B, Gill BS. Simultaneous painting of three genomes in hexaploidwheat by BAC-FISH. Genome,2004b,47:979-987.
    [221] Zhang Q, Gao YJ, Saghai Maroof MA, Yang SH, Li JX. Molecular divergence and hybridperformance in rice. Mol. Breeding,1995,1:133-142.
    [222] Zhang X, Zhao C, Huang C, Duan H, Huan P, et al. A BAC-based physical map of Zhikongscallop (Chlamys farreri Jones et Preston). PLoS ONE,2011,6(11): e27612. doi:10.1371.
    [223] Zhang Y, Zhang X, Scheuring CF, Zhang H, Huan P, et al. Construction and characterizationof two bacterial artificial chromosome libraries of Zhikong scallop, Chlamys farreri Jones etPreston, and identification of BAC clones containing the genes involved in its innate immunesystem [J]. Marine Biotechnology,2008,10(4):358-65.
    [224] Zhou J, Yang Z, Li G, Liu C, Ren Z. Discrimination of repetitive sequences polymorphism inSecale cereale by genomic in situ hybridization-banding. Journal of Integrative Plant Biology,2008,50(4):452-456.
    [225] Zhou Z, Wang L, Yang J, Zhang H, Kong P, et al. A dopamine beta hydroxylase fromChlamys farreri and its induced mRNA expression in the haemocytes after LPS stimulation.Fish&Shellfish Immunology,2010,30:154-162.
    [226] Zhou Z, Wang L, Gao Y, Wang M, Zhang H, et al. A monoamine oxidase from scallopChlamys farreri serving as an immunomodulator in response against bacterial challenge.Developmental&Comparative Immunology,2011a,35:799-807.
    [227] Zhou Z, Yang J, Wang L, Zhang H, Gao Y, et al. A Dopa decarboxylase modulating theimmune response of scallop Chlamys farreri. PLoS ONE,2011b,6: e18596.
    [228] Zouros E, Freeman KR, Ball AO, Pogson GH. Direct evidenc e for extensive paternalmitochondrial DNA inheritance in the marine mussel Mytilus. Nature,1992,359:412-414.
    [229] Zwick MS, Hanson RE, Mcknight TD, Islam-Faridi MH, Stelly DM, et al. A rapid procedurefor the isolation of C0t-1DNA from plants. Genome,1997,40:138-142.
    [230]毕克.杂交扇贝(华贵栉孔扇贝Chlamys nobilis×栉孔扇贝C. farreri♂)的分子细胞遗传学分析.中国海洋大学硕士学位论文,2004.
    [231]常亚青,刘小林,相建海,李富花,宋坚,等.栉孔扇贝中国种群与日本种群杂交一代的早期生长发育.水产学报,2002,26(5):385-390.
    [232]陈晓佳.养殖鲍及杂交子代的生化遗传研究.厦门大学硕士研究生论文.2002.
    [233]程洁.栉孔扇贝(Chlamys farreri)大片段基因组文库的构建及应用分析.中国海洋大学博士学位论文,2010.
    [234]陈来钊,王子臣.海湾扇贝与虾夷扇贝杂交的受精、胚胎、早期幼体发育研究.大连水产学院学报,1994,9(4):1-9.
    [235]陈俅,相建海,秦裕江,寇宝增,王洪发.海湾扇贝、栉孔扇贝和虾夷扇贝杂交育种可行性研究.Ⅰ.异种配子亲和性和杂种的早期发育.中国科学院海洋研究所EMBL开放实验室学术年报.青岛:青岛海洋大学出版社,1991,122-127.
    [236]董迎辉,林志华,柴学良,陆荣茂,肖国强.文蛤受精及早期胚胎发育过程的细胞学观察.动物学报,2007,53(4):700-709.
    [237]董在杰,夏德全.兴国红鲤和散鳞镜鲤杂种优势的RAPD分析.上海水产大学学报,1999,8(1):31-36.
    [238]高翔刚,曹洁,刘莹,刘卫东,傅立元,等. SSR不对称PCR法分析虾夷扇贝遗传多样性.生物技术通报,2009,118-123.
    [239]何斌,杨爱国,王清印,刘志鸿,周丽青.栉孔扇贝×虾夷扇贝单对杂交子一代的ISSR分析.大连水产学院学报,2007,4(5):273-277.
    [240]黄超.栉孔扇贝BAC克隆的共定位及物理图谱相关contig验证研究.中国科学院海洋研究所硕士学位论文,2011.
    [241]黄超,郇聘,张晓军,相建海.栉孔扇贝NDPK基因的BAC-FISH定位研究.海洋科学,2012,36(1):1-5.
    [242]黄晓婷.扇贝染色体的细胞遗传学研究.中国海洋大学博士学位论文,2007.
    [243]侯睿.虾夷扇贝基因组结构特征与进化基因组学分析.中国海洋大学博士学位论文,2012.
    [244]姜卫国,魏贻尧,李刚.合浦珠母贝,长耳珠母贝和大珠母贝种间人工杂交的研究Ⅱ.受精过程和杂交后代的染色体观察.热带海洋,1983,2(4):316-322.
    [245]姜运良.卫星、小卫星和微卫星DNA——真核生物基因组的串状重复序列.生命的化学,1998,18(3):29-31.
    [246]柯才焕,田越,周时强.杂色鲍与皱纹盘鲍,盘鲍杂交的初步研究.海洋科学,2000,24(11):39-41.
    [247]蓝伟侦,何光存,吴士筠,覃瑞.利用水稻C0t-1DNA和基因组DNA对栽培稻、药用野生稻和疣粒野生稻基因组的比较分析.中国农业科学,2006,39(6):1083-1090.
    [248]李刚,姜卫国,魏贻尧.合浦珠母贝、长耳珠母贝和大珠母贝种间人工杂交的研究——Ⅲ.同工酶谱的比较研究.1983,2(4):321-328.
    [249]李红蕾,宋林生,王玲玲,胥炜,相建海.栉孔扇贝EST中微卫星标记的筛选.高技术通讯,2003,12:72-75.
    [250]李祯,包振民,潘洁,万俊芬,胡晓丽,赵洋.栉孔扇贝(Chlamys farreri)三群体的RAPD分析.青岛海洋大学学报,2002,32:179-182.
    [251]梁利群,孙效文. RAPD技术分析荷包红鲤抗寒品系与亲本的基因组变化.中国水产科学,1998,1:6-9.
    [252]刘蔽,卢光锈.应用荧光原位杂交技术检测人类APPswe基因在转基因小鼠染色体上的定位及位置效应.遗传学报,2001,28(9):827-831.
    [253]刘广绪,包振民,胡景杰,王师,姚冰,等.栉孔扇贝、华贵栉孔扇贝及其种间杂交子代、种内交配子代的ISSR分析.中国海洋大学学报,2006,36(1):71-75.
    [254]刘小林,常亚青,相建海,李富花,宋坚,等.栉孔扇贝不同种群杂交效果的初步研究Ⅰ.中国种群与俄罗斯种群的杂交.海洋学报,2003,25(1):93-99.
    [255]刘小林,常亚青,相建海,李富花,刘宪杰.栉孔扇贝不同种群杂交效果的研究Ⅱ.中国种群与俄罗斯种群及其杂交F1中期生长发育.海洋学报,2005,27(2):135-140.
    [256]吕振明,杨爱国,王清印,刘志鸿,周丽青.栉孔扇贝和虾夷扇贝杂交子代的GISH鉴定及其免疫学特性.中国水产科学,2006,13(4):597-602.
    [257]吕振明.栉孔扇贝和虾夷扇贝杂交过程中的细胞与分子遗传学分析.中国海洋大学博士学位论文,2006.
    [258]毛阳丽,蔡厚才,李成久,高天翔.基于线粒体COI与16S rRNA基因序列探讨贻贝属的系统发育.南方水产,2010,6:27-36.
    [259]潘洁,包振民,赵洋,胡晓丽,万俊芬,等.栉孔扇贝不同地理群体的遗传多样性分析.高技术通讯,2002,12:78-82.
    [260]潘洁.扇贝种质资源及人工培育群体的分子遗传学研究.青岛海洋大学博士学位论文,2002.
    [261]舒琥,张海发,陈湘麟.彭泽鲫雌核发育的细胞学研究.动物学杂志,2000,35(5):12-16.
    [262]宋林生.海洋生物分子遗传标记的研究.中科院海洋所博士后研究工作报告,1998.
    [263]宋志乐,张玉琨,赵玉山.栉孔扇贝与海湾扇贝杂交试验初报.齐鲁渔业,1986,2:31-32.
    [264]腾丽莉,杨爱国,赵峰.栉孔扇贝×虾夷扇贝子一代杂种优势的RAPD分析.高技术通讯,2005,15(6):97-101.
    [265]吴仲庆.《水产生物遗传育种学》,厦门大学出版社,2000.
    [266]万俊芬,汪小龙,潘洁,李冰,李祯,等.日本盘鲍×皱纹盘鲍子代杂种优势的RAPD分析.青岛海洋大学学报,2001,31(4):506-512.
    [267]万俊芬.鲍与扇贝遗传育种中的分子标记研究.中国海洋大学博士学位论文,2003.
    [268]万俊芬,包振民,刘广绪,潘洁,王如才.扇贝种间单对杂交一代幼虫ISSR标记的分离方式.高技术通讯,2004,5(6):82-87.
    [269]王爱民,丁小雷,邓凤娇,叶力,阎冰.马氏珠母贝大亚湾和三亚野生种群内自繁和种群间杂交子一代的RAPD分析.海洋水产研究,2003,24(4):19-25.
    [270]王爱民,石耀华,周志刚.马氏珠母贝不同地理种群内自繁和种群间杂交子一代形态性状参数及相关性分析.海洋水产研究,2004,25(3):39-45.
    [271]王春德,刘保忠,李继强,刘升平.紫扇贝与海湾扇贝种间杂交的研究.海洋科学,2009,33(10):84-87.
    [272]王金星,赵小凡,周岭华,相建海.缢蛏的染色体研究.海洋与湖沼,1998,29(2):191-196.
    [273]王琼,童裳亮.贻贝(Mytilus edulis)核型及染色体带型分析.动物学报,1994,40(3):309-31.
    [274]王太霞,吴春红,黄进勇,魏文辉.甘蓝rDNA及C0t-1DNA荧光原位杂交及其核型分析.武汉大学学报,2006,52(2):230-234.
    [275]王永平.牡蛎染色体的分子生物学分析.中国科学院博士研究生学位论文,2001.
    [276]夏德全,曹萤.罗非鱼杂交F1代与亲本的遗传关系及其杂种优势的利用.中国水产科学,1999,6(4):29-32.
    [277]夏薇,刘德培,董文吉,李斌,郭志晨,等.应用荧光原位杂交技术检测人βE珠蛋白基因在小鼠染色体上的整合状态.遗传,2001,23(5):397-400.
    [278]相建海,陈俅.海湾扇贝、栉孔扇贝和虾夷扇贝杂交育种可行性研究.实验海洋生物学开放研究实验室学术年报.青岛:青岛海洋大学出版社,1991,137-139.
    [279]徐俊,包振民,任晓亮,王珊,胡丽萍,等.栉孔扇贝DAPI带型和PI带型研究.中国海洋大学学报,2011,4:77-80.
    [280]鄢慧民,宋运淳,李立家,李霞,付彬英.水稻Xa21基因在水稻和玉米中的比较物理定位.植物学报,1999,41:249-253.
    [281]燕敬平,孙慧玲,方建光,张榭令,陈家彦,等.日本盘鲍与皱纹盘鲍杂交育种技术研究.海洋水产研究,1999,20(1):35-39.
    [282]杨爱国.栉孔扇贝三倍体育种研究.青岛海洋大学博士学位论文,1999.
    [283]杨爱国,王清印,刘志鸿,杜方勇,张立敬,等.虾夷扇贝×栉孔扇贝人工受精过程的荧光显微观察.海洋水产研究,2002,23(2):1-4.
    [284]杨爱国,王清印,刘志鸿,周丽青.栉孔扇贝与虾夷扇贝杂交及子一代的遗传性状.海洋水产研究,2004,25(5):1-5.
    [285]杨金水.杂种优势机理探讨:作物雄性不育及杂种优势研究研究进展(Ⅰ).北京:中国农业出版社,1996,1-12.
    [286]喻子牛,孔晓瑜,杨锐,陈再忠,刘必谦,等.魁蚶(Scapharca broughtonii)等位基因酶遗传变异比较研究.青岛海洋大学学报,1998,28:51-57.
    [287]张福绥,何义朝,刘祥生,马江虎,李淑英,等.海湾扇贝引种、育苗及试养[J].海洋与湖沼,1986,17(5):367-374.
    [288]张福绥,何义朝.墨西哥湾扇贝的引种和子一代苗种培育[J].中国工程科学,1994,25(4):372-377.
    [289]张福绥,何义朝,杨红生.海湾扇贝引种工程及其综合效应[J].中国工程科学,2000,2(2):30-35.
    [290]张国范,李霞,薛真福.中国贝类大规模死亡的现状[J].中国水产,1999,9:34-39.
    [291]张维翥,吴信忠,李登峰,孙敬锋,张扬,等.海湾扇贝养殖过程中的流行病学调查研究[J].海洋学报,2005,27(5):137-144.
    [292]张玲玲.栉孔扇贝fosmid文库的构建及基因组结构特征分析.中国海洋大学博士学位论文,2007.
    [293]张蓉,刁其玉.遗传标记的发展及其在家畜遗传育种中的应用.现代畜牧兽医,2009,9:52-55
    [294]张玉勇,常亚青,宋坚.杂交育种技术在海水养殖贝类中的应用及研究进展.水产科学,2005,24(4):39-41.
    [295]赵洋,包振民,毕克,黄晓婷,王珏,等.雌性虾夷扇贝与雄性栉孔扇贝杂交子代及其亲本的核型研究.海洋学报,2006,28(1):100-105.
    [296]郑小东,王昭萍,王如才,张海斌.太平洋牡蛎G带和Ag-NOR带的研究.中国水产科学,1999,6(4):104-105.
    [297]钟筱波, Faransz PF, Wennekes J, van Kammen A, de Jong JH,等.在植物粗线期染色体和DNA纤维上的荧光原位杂交技术.遗传学报,1998,25(2):142-149.
    [298]周丽青,杨爱国,刘志鸿,杜方勇,王清印.栉孔扇贝×虾夷扇贝杂交子一代与双亲染色体核型的分析.水生生物学报,2005,29(1):105-109.
    [299]郇聘,张晓军,李富花,张洋,赵翠,等.栉孔扇贝热休克蛋白70(HSP70)基因的BAC-FISH定位.海洋科学,2009a,33(7):10-15.
    [300]郇聘,张晓军,李富花,张洋,赵翠,等.一种栉孔扇贝丝氨酸蛋白酶基因的染色体定位及其内部SNP的研究.遗传,2009b,31(12):1241-1247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700