用户名: 密码: 验证码:
光伏微网直流母线电压控制的仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源消耗的急剧增长,环境污染的日益严重,分布式发电技术的飞速发展,将微电源、储能系统、负载和控制装置组合起来,以微网的形式最大效率发挥其能量利用。微电网协调主电网和分布式发电之间的矛盾,改变了传统电网的单一供电模式,提高了电网的供电效率。本文针对光伏发电与蓄电池储能系统相结合的光伏微网,对直流母线电压控制进行了研究,实现系统能量最大利用,缓解电网供电压力、提高微网供电可靠性,达到逆变器输入电压稳定的目的。
     首先,在基于微网系统结构和综合控制策略下,本文构建了以光伏发电最大功率跟踪和并网逆变器为基础,以蓄电池为储能系统的光伏微网,提出了并网模式下无通讯模式直流母线电压控制策略,通过光伏阵列和蓄电池共同作用稳定直流母线电压。针对本文提出的控制策略进行了理论分析和仿真研究,得出可行性分析结果。
     其次,根据系统结构建立了光伏电池的工程数学模型,采用扰动观察法对光伏阵列进行最大功率点跟踪,通过双向DC/DC变换器对蓄电池进行充放电实现功率平抑功能,采用的电压源逆变器通过电流前馈解耦的空间矢量PWM方法,对输出电流的d轴和q轴分量进行解耦控制。根据系统的主电路,建立了各部分的仿真模型和母线电压控制仿真模型。
     第三,提出了利用直流母线电压变化作为判断依据的微网母线电压控制策略,通过监控系统能量流动和电压变化情况,实现各环节控制器在无通讯模式下的协调控制。蓄电池储能系统实现了对光伏阵列的输出功率削峰填谷的功率平抑功能,电压源逆变器的电流输出控制通过双闭环控制实现,电压外环控制直流母线电压,电流内环调节逆变器的输出电流,达到直流母线电压稳定的目的。
     第四,为了保证系统具有高效率和可靠稳定性,必须使得光伏阵列和蓄电池协同工作,对系统的能量流向进行了管理。在Matlab/Simulink环境下对光伏阵列MPPT、蓄电池储能系统的功率平抑、逆变器SVPWM控制进行了仿真分析,仿真结果验证了其控制策略和能量管理的准确性。
With the rapid increasing of energy consumption, ecosystem environmentalpollution becoming worsen and worsen and energy consumption sharply growth, and therapid development of distributed generation technologies, all of this make the form ofmicro-grid as the maximum efficiency of energy using when the micro-power energystorage system, load and control devices combining. It coordinated the contradictionbetween the main grid and distributed generation, changed the single power supplymode of traditional electrical power system, and improved the efficiency of the powergrid. This article study on the DC link voltage control of micro-grid which base on thePV electricity generation and the accumulator cell stored energy system, realizes theenergy to maximum use, the alleviation power supply pressure, the enhancement powersupply reliability, and the stable invertor input voltage goal most greatly.
     Firstly, according to the micro-grid structure and integrated control strategy, basingon Maximum Power Point Tracking(MPPT) and DC/AC conversion, taking theaccumulator cell as stored energy system, which proposed the DC link voltage controlstrategy in non-communication mode of grid-connected mode stabling it by the PVarray and battery combined working. Theoretical analysis and simulation are carried outto confirm the control policy feasibility which this article proposed.
     Secondly, based on the design main circuit, the engineering mathematical model isestablished. Adopting Perturb&Observe Algorithms(P&O) method to realize maximumpower point tracking(MPPT), then the bi-directional DC/DC converter was used tomake sure the battery power stabilization, and taking electric current forward feeddecoupling's Space Vector PWM(SVPWM) method, the AC current components idandiqare decoupled. At last the various parts of the simulation and the DC link voltagecontrolling simulation model were established.
     Thirdly, a kind of DC bus coordination control strategy make use of its voltagechanged as the judgement criterion, it can realize the function with non-communication.The battery stored energy system doing the charging and discharging of powerstalization. For DC/AC conversion, a system with double-loop control is designed onthe basis of synchronous vector current PI controller. The voltage outer loops are usedto control the DC link voltage and the electric inner loop to make AC currentsrespectively.
     At last but not least, to make sure system has the high efficiency and the reliablestability, it needs to manage PV array and battery must operation together. This paperproposes a power management scheme. And the main circuit structure and the controlpolicy of the direct-current link voltage control has been proposed. In Matlab/Simulinkenvironment, the simulation model was established, and simulation analyses wereaccomplished on MPPT for PV array, battery charging and discharging of theaccumulator cell stored energy system, the SVPWM control of interface invertor. The simulation result has confirmed its control policy and the energy management strategieswere accuracy and effective.
引文
[1]田莎.微电网中光伏发电控制技术的研究[D].西安:西安理工大学,2010.
    [2]王光红.微网逆变器控制技术研究[D].河北:燕山大学,2011.
    [3]迟海涛.微电网中分布式发电源以及大功率电力电子器件的控制和改进[D].上海:上海交通大学,2009.
    [4]楼书氢,李青锋,许化强,刘鲁丹.国外微电网的研究概况及其在我国的应用前景[J].华中电力,2009(3):56-59.
    [5]杨佩佩.微网的经济运行分析与研究[D].北京:华北电力大学(北京),2009.
    [6]张颖媛.微网系统的运行优化与能量管理研究[D].合肥:合肥工业大学,2011.
    [7]钱军.分布式发电和微电网的研究综述[J].2008全国博士生学术论坛—电气工程,2008.
    [8]杨占刚.微网实验系统研究[D].天津:天津大学,2010.
    [9]国海等.微电网技术研究现状[J].四川电力技术,2009(2).
    [10]吴冰冰.适于微网动稳特性的光伏发电系统的能量控制研究[D].北京:华北电力大学(北京),2010.
    [11]李一平等.攀枝花太阳能资源评价[J].高原山地气象研究,2009(1).
    [12]王大伟.3kW功率光伏逆变器的研制[D].天津:天津大学,2008.
    [13]吴达成等.我国光伏产业发展现状及分析[J].新材料产业,2011(3).
    [14]肖朝霞.微网控制及运行特性分析[D].天津:天津大学,2008.
    [15]杨为.分布式电源的优化调度[D].合肥:合肥工业大学,2010.
    [16]谢清华.基于Multi-Agent的微网电压控制技术研究[D].北京:华北电力大学,2009.
    [17]赵丹.光伏产业发展现状及展望[J].能源与环境,2011:148.
    [18]魏巍.光伏系统中最大功率点跟踪方法的研究[D].西安:西安理工大学,2010.
    [19] FritzR, Kalhammer. Performance and Availability of Batteries for Electric Vehicles. Nov.12,2001:35-42.
    [20]周志敏.阀控式密封铅酸蓄电池实用技术[M].2004.
    [21] VRLA蓄电池的热失控[J].蓄电池,2005:165-167.
    [22]史云鹏,王莹莹,李培芳等.光伏系统中蓄电池充放电控制方案的探讨[J].太阳能学报,2005,26(1):86-89.
    [23]粟梅,李黎明,孙尧,封焯文,饶程等.独立光伏系统用蓄电池充放电策略的设计[J].蓄电池,2011,3(48):127-130.
    [24]徐晓丹,白志峰等.关于密封铅酸蓄电池充放电电路的研究[J].通信电源技术,2010,27(1):63-65.
    [25]汪舒生.基于双向DC/DC变换器的小功率UPS研制[D].安徽:安徽理工大学,2008.
    [26]王宁.微网系统能量管理技术研究[D].北京:北京交通大学,2011.
    [27]王中秋.分布式储能对微网运行特性的作用研究[D].北京:华北电力大学,2011.
    [28]林园园.微电网并网换流器和直流微网控制的研究[D].山东:山东大学,2011.
    [29] Guerrero J M, de Vicuna L G, Matas J, et al. A wireless controller to enhance dynamicperformance of parallel inverters in distributed generation systems[J]. IEEE Transactions onIndustrial Electronics,2004,19(5):1205-1213.
    [30] Guerrero J M, Matas J, de Vicuna L G, et al. Wireless-control strategy for parallel operation ofdistributed-generation inverters[J]. IEEE Transactions on Industrial Electronics,2006,53(5):1461-1470.
    [31]王成山,肖朝霞,王守相等.微网综合控制与分析[J].电力系统自动化,2008,32(7):98-103.
    [32]鲁鸿毅,何奔腾等.超级电容器在微型电网中的应用[J].电力系统自动化,2009,33(2):87-91.
    [33]王成山,肖朝霞,王守相等.微电网中分布式电源逆变器的多环反馈控制策略[J].电工技术学报,2009,24(2):100-107.
    [34]徐科,胡敏强,杜炎森,杨晓静等.直流母线电压控制的实现并网与最大风跟踪[J].电力系统自动化,2007,31(11):53-58.
    [35]欧阳翚,牛铭等.基于不同控制策略的微网仿真[J].电网与清洁能源,2011,27(3):19-24.
    [36] Timothy N.Thacke. Control of Power Conversion system for the Intentional Islanding ofDistributed Generation Units, Virginia Polytechnic Institute and State University: requirementfor the degree of Master of Science in Electrical Engineering,2005.9.
    [37]邢岩.逆变器并联运行系统的研究[D].南京:南京航空航天大学,1999.
    [38]李敏.光伏并网逆变器效率优化研究[D].浙江:浙江大学,2011.
    [39]舒海莲.微电网运行特性及其控制研究[D].上海:上海电力学院,2011.
    [40]杨文杰,曾德容.光伏发电接入微网运行控制仿真研究[J].电气开关,2011,1:48-54.
    [41]时智勇,贺明智,郝瑞祥,等.基于同步PI控制的光伏并网发电系统研究[J].电力电子技术,2009,43(10):39-41.
    [42]陈大卓,姜建国.基于前馈解耦控制的电压型PWM整理器可逆运行研究[J].电气自动化,2008,30(6):45-48.
    [43]陈伯时.电力拖动自动控制系统.北京.机械工业出版社.1992:56-76.
    [44]胡寿松.自动控制原理(第四版).科学出版社.2001.
    [45]张雪群,曾岳南,罗彬.单相可逆PWM整流器能量双向传输的研究[J].电子质量,2007(7):18-20.
    [46]沙占友.新型单片开关电源的设计与应用.北京:电子工业出版社,2001.
    [47]汪海宁.光伏并网功率调节系统及其控制的研究[D].合肥:.合肥工业大学,2005.
    [48]阮新波,严仰光.直流开关电源的软开关技术[M].北京:科学出版社,2000.
    [49]刘飞,殷进军,周彦,段善旭.LCL滤波器的三相光伏逆变器双环控制策略[J].电力电子技术,2008,42(9):29-31.
    [50] Gyu-Yeong Choe, Jong-Soo Kim, Byoung-Kuk Lee, Chung-Yuen Won, Tea-Won Lee. ABi-directional Battery Charger for Electric Vehicles Using Photovoltaic PCS Systems. VehiclePower and Propulsion Conference (VPPC),2010IEEE, on page(s):1-6.
    [51] Hegazy, O., Van Mierlo, J., Lataire, P.,"Design and control of bidirectional DC/AC andDC/DC converters for plug-in hybrid electric vehicles", Power Engineering, Energy andElectrical Drives (POWERENG),2011International Conference on, on page(s):1–7.
    [52] T. Shigemitsu, T. Kumamoto, H. Deguchi, and T. Hara. Applications of a VanadiumRedox-flow Battery to Maintain Power Quality. Transmission and Distribution Conference andExhibition2002: Asia Pacific. IEEE/PES, on page(s):1065-1070.
    [53] Tatsuya Kitano, Mikihiko Matsui, De-hong Xu. Power Sensor-less MPPT Control SchemeUtilizing Power Balance at DC Link-System Design to Ensure Stability and Response-. The27th Annual Conference of the IEEE Industrial Electronics Society, on page(s):1309-1314.
    [54] Mahmoud M. Amin, Mohamed A. Elshaer, O. A. Mohammed. DC Bus Voltage Control for PVSources in a DC Distribution System Infrastructure. Power and Energy Society GeneralMeeting,2010IEEE, on page(s):1-5.
    [55] Bhim Singh, Kadagala Venkata Srinivas. Fuzzy Logic Control with Constant DC Link Voltageof48-Pulse VSC Based STATCOM. Power Electronics (IICPE),2010India InternationalConference on, on page(s):1-7.
    [56] Koji Sakamoto, Masashi Yakima. Development of a Control System for a High-PerformanceSelf-Contented at AC/DC Converter. IEEE Transactions on Power Delivery, Vol.13, No.1,January1998, on page(s):225-232.
    [57]刘金锟.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社,2003.
    [58] L. Xu, L. Yao. DC voltage control and power dispatch of a multi-terminal HVDC system forintegrating large offshore wind farms. IET Renewable Power Generation Received on7th July2010, on page(s):223-233.
    [59]李刚.含多种分布式电源的微网动态建模与仿真研究[D].北京:华北电力大学(北京),2011.
    [60]解大,张延迟,吴非,舒晓琼等.并联型电力有源滤波器的直流侧电压控制和补偿电流反馈控制[J].电网技术,2006(3):18-21.
    [61]邱培春,葛宝明,毕大强等.基于蓄电池储能的光伏并网发电功率平抑控制研究[J].电力系统保护与控制,2011(3):29-33.
    [62]李胜,张建华,李春叶,李银辉等.微网(Micro-grid)的并网运行方式探讨[J].太原理工大学学报,2009(2):184-187.
    [63]盛鹍,孔力,齐智平,裴玮,吴汉,息鹏等.新型电网-微电网(Micro-grid)研究综述[J].继电器,2007(12):75-81.
    [64]张建华,黄伟著.微电网运行控制与保护技术[M].北京:中国电力出版社,2010.
    [65] LASSETER R H, PIAG P. Microgrid: a conceptual solution. Proceedings of IEEE35AnnualPower Electronics Specialists Conference: Vo16, June20-25,2004, Aachen, Germany:4285-4290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700