用户名: 密码: 验证码:
林木Photoautotrophic Micropropagation管理系统研制及三次设计在优化复合因子的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光自养微繁殖技术(Photoautotrophic micropropagation)是针对传统组织培养中存在易污染、材料变异、生长不良、生根难及驯化期和移苗期间较高的死亡率的的缺点,日本的千叶大学T.Kozai教授,----发明的一种全新的植物组培技术。该技术是环境控制技术在植物组培苗生产中的典型应用,其特点是采用人工环境控制手段,用CO2替代糖作为碳源,并提供植株生长适宜的光、温、水、气、营养等条件,促进植株的光合作用,从而促进植株的生长发育。
     本研究是在T.Kozai教授的指导下,以前期自主开发光自养微繁殖设备(正在申请两个相关专利,专利申请号分别为:20071004506.X,200810071155.9)为基础,进行了林木种苗光自养微繁殖的研究;针对林木种苗繁殖周期长,环境参数优化效率低的特点,本研究以桉树为试验材料,探索新的参数优化方法,把在工业上广泛应用的可计算性三次设计方法,引入到光自养微繁殖技术中;在参数设计阶段,采用单纯形法,进行物理环境因子参数组合优化。除此之外,运用叶绿素荧光成像系统及根系扫描系统,本研究对参数的优化效果进行了研究,并对三次设计方法的应用效果进行了有效验证。
     1、本研究研制了一套针对林木种苗繁育特点的光自养微繁殖系统,包括硬件系统和软件系统。系统可进行液相培养,也可进行固相培养。其中液相培养采用雾化的方法,大大提高了培养液的溶氧量。软件系统具有远程监控功能,包括客户端和服务器端两部分。
     2、客户端是基于Window XP操作系统、C++ builder 6.0和SQL Server 2000,结合软件timer组件和serialport组件开发的一套林木种苗光自养微繁殖用户端管理系统。该系统数据安全性高,性能稳定,可移植性好,使用方便,完全能够达控制要求。
     3、服务器端是基于Window XP操作系统、C++ builder 6.0和SQL Server 2000,结合TclientSocket组件和TserverSocket组件,开发的一套林木种苗光自养微繁殖服务器端管理系统,可实现远程监制。该系统使用了Microsoft Windows图形用户界面的许多先进特性和设计思想,允许多个用户对一个表中的数据进行检索、更新、删除等操作,且无需等待,和完整性。系统运行安全稳定,而且程序运行速度快,界面友好,移植性好。
     4、本研究以桉树为材料,采用可计算性三次设计(系统设计、参数设计、容差设计)的方法,探索影响林木种苗光自养微繁殖的4个主要物理环境因子(温度、湿度、光照强度、CO2浓度因子)的优化组合。
     (1)在系统设计阶段,以生根率为衡量指标,应用二次回归正交设计建立主要物理环境因子(温度、湿度、光照强度、CO2浓度)的控制模型;
     (2)在参数设计阶段,采用改进的单纯形法进行参数设计,共用了12次试验,取得最佳生根率响应值93.96%。这时光照强度、CO2浓度、温度、湿度等4个因素值分别是(125.00μmolm-2s-1、1500.00ppm、24.00℃、75%)。
     5、参数优化对叶绿素荧光参数影响都起到积极的作用,但只有Rfd、Fm’和Qy_max的影响达到显著差异,而对其他的荧光能参数的都未达到显著差异。因此,在进行优化效果验证时,叶绿素荧光参数应该以Rfd、Fm’和Qy_max为判别指标。
     6、参数优化对不同的根系形态指标,其影响程度不同。不同的物理环境参数组合对桉树光自养微繁殖苗的根总长、根尖数及叉点数有显著影响,而对根系投影面积、根系总表面、平均直径、根系总体积的影响不显著。因此,在优化效果的验证中,根系形态指标应以根总长、根尖数及叉点数作为衡量指标。
     本论文是对林木种苗繁育新理论与新技术的研究,也是对光自养微繁殖技术中新方法的应用研究,不仅为林木种苗光自养微繁殖奠定基础,而且进一步丰富和发展林木种苗繁育理论;它既可以降低组培苗生产成本,缩短良种推广的周期,提升种苗质量,大大提高林木种苗的工厂化育苗水平,又可以解决目前优良苗木的供需矛盾,满足市场需求,具有广阔的市场前景。
Photoautotrophic micropropagation is new technology of plant tissue culture created by Japanese Professor T.Kozai from Chiba University in Japan, a solution to the defects found in the traditional techonlogy of tissue culture, i.e. vulnerable contamination, variation, poor growth, poor rhizogenesis and a higher mortality during periods of acclimation and transplantation. The technology is typically applied to seedling production, which is featured by controlled conditions, CO2 as a substitute for sugar as a carbon source, by means of providing optimum light, temperature, water, air and nutrition for the plantlets to boost their asphotosynthesis so as to promote their growth.
     The research on forest-tree photoautotrophic micropropagation was carried out under the instruction of Professor T.Kozai, and based on the equipments for photoautotrophic micropropagation developed independently previously (two related patents are being applied, whose numbers are 20071004506.X and 200810071155.9 ). Aimed at the long cycle in forest-tree seedling breeding and optimization ineffeciency in environmental parameters, the research was to explore a new method of parameter optimization with eucalypts as test materials by applying the computable three stages design widely used in industry to photoautotrophic micropropagation. At the stage of design, a simplex method was used to optimalize the parameter combination of physical environmental factors. In addition, using chlorophyll fluorescence imaging and root scan systems, the effectiveness of parameter optimization was also studied and the effectiveness of the three stage design applied in the research was tested.
     1. Aimed at the features of forest-tree seedling breeding, a set of photoautotrophic micropropagation system was developed in the research, including system of both hardware and software, where both liquid-phase culture and solid-phase culture are available. There into liquid-phase culture by means of atomization greatly boosted the dissolved oxygen in culture solution. The software system with remote supervision function includes the client and the sever.
     2. On the basis of Window XP, C++ builder 6.0 and SQL Server 2000 and in combination with software components of TIMER and SERIALPORT, the client was a set of client management system for forest-tree photoautotrophic micropropagation, which is characterized by more security, stable performance, good portability and great convenience to fully meet the control requirement.
     3. Based on Window XP, C++ builder 6.0 and SQL Server 2000 and combined with software components of TCLIENTSOCKET and TSEVERSOCKET, the sever was a set of sever management system with emote supervision function for forest-tree photoautotrophic micropropagation. Many advanced features plus the design philosophy for the graphical user interface of Microsoft Windows were applied to the system, that is, the system made it possible for several clients to retrieve, update or delete data from the same database table while keeping the consistency and integrality of the data with clients unnecessary to wait. Furthermore, the system also has such advantages as more security, stable performance, fast speed, friendly interface and good portability.
     4. With eucalypts as test materials and by applying the computable three stage design(system design, parameter design, and tolerance design), the research was to explore optimization of four major physical environmental factors, humidity, temperature, light intensity and density of CO2, which affected forest-tree photoautotrophic micropropagation.
     1) At the system design stage, by applying quadratic regressive orthogonal design to the research, established was the control model of major physical environmental factors (humidity, temperature, light intensity and density of CO2), measured by rooting rate.
     2) At the parameter design stage,parameters were designed by using a revised simplex method through 12 trials altogether, which resulted in the optimal response of rooting rate, about 93.96%, the condition where the humidity, temperature, light intensity and density of CO2 was 125.00μmolm-2s-1, 1500.00ppm, 24.00℃and 75% respectively.
     5. Parameter optimization had a positive effect on chlorophyll fluorescence parameters, however the effects on Rfd、Fm’, and Qy_max were only significant, while for other chlorophyll fluorescence parameters, not significant. Therefore, to test the effectiveness of the optimization, chlorophyll fluorescence parameters are supposed to be measured by Rfd、Fm’, and Qy_max.
     6. Parameter optimization had different effects on different root morphological indexes. Different physical environmental parameter combinations had significant effects on the overall length, tip numbers, and crossover-point numbers of eucalypt seedlings’roots through photoautotrophic micropropagation, while the effects on their projected area, surface area, mean diameters and overall volume were not significant. Therefore, to test the effectiveness of the optimization, root morphological indexes are supposed to be measured by the overall length, tip numbers, and crossover-point numbers.
     The dissertation was to explore new theories and technology of forest-tree seedling breeding and was also an applied research on new methods of photoautotrophic micropropagation. Not only did it lay the foundation for forest-tree photoautotrophic micropropagation, but also enriched and developed the theories of forest-tree seedling breeding. It can reduce the production cost of tissue culture seedlings, shorten the cycle of improved variety promotion, improve the quality of seedlings and greatly improve the industrialized seedling production. Meanwhile, it can also solve the contradiction between supply and demand of superior seedlings and meet the market demand; therefore it is of vast potential in the future market.
引文
Ambrozic J.Dolinsek M. Camloh J Z ,et al. Phytoplasma infection may affect morphology, regeneration and pyrethrin content in pyrethrum shoot culture[J]. Scientia Horticulturae .2008,116 : 213–218.
    Anzelika, Renata, Silva, et al. In vitro cultivation of grape culture under solid-state lighting[J].scientific works of the Lithuanian institute of horticulture and Lithuanian university of agriculture, 2007,26(3):235-245.
    Ainsworth EA, Davey PA, Hymus GJ, et al. Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term? A test with Loium perenne grown for 10 years at two nitrogen fertilization levels under Free Air CO2 Enrichment(FACE).Plant Cell and Environment,2003,26:705-714
    Baker NR, Oxborough K, Lawson T, et al. High resolution imaging of photosynthetic activities of tissues, cells and chloroplasts in leaves[J] .Exp Bot.2001, 52:615-C62
    Canndell J,Jacksoner B,Ehleringer J R,et al. Maximum rooting depth of vegetation types at the global cale[J].Oecologia,1996,10(8):583--595.
    Covindjee . Bioenergetics of Photosynthesis[M]. New York: Academic Press.1975.: 319-337
    Cassells A C,Mark G L, Periappuram C,et al. Establishment of arbuscular mycorrhizal fungi in autotrophic strawberry cultures in vitro. Comparison with inoculation of microplants in vivo[J]. Agronomie, 1996, 16: 625-632
    Damiano C, Franz C, Gianinazzi S, et al. Arbuscular mycorrhiza as away of promoting sustainable growth of micropropagated plants[J]. Acta. Hort., 1998, 457: 71-77
    Duffy E M, Cassells A C. The effect of inoculation of potato (Solanum tuberosum L. ) microplants with arbuscular mycorrhizal fungi on tuber yield and tuber size distribution[J]. Applied Soil Ecology, 2000, 15: 137-144
    Desjardins Y, Lafoxge F, Lussier C,et al. Effect of CO2 enrichment and high photosynthetic photon flux on the development to fauto-trophy and growth of tissue cultured strawberry raspberry and asparagus plants[J]. ActaHort., 1988, 230: 45-53
    Fan W G, Yang HQ. Nutrient deficiency affects root architecture of young seedlings of Malus hupehensis(Pamp) Rehd. under conditions of artificial medium cultivation[J]. Agric. Sci. China, 2007:6(3):296-303.
    Fan W G, Yang H Q. Root architecture of apple trees under different soil conditions[J]. Acta Hort. (ISHS), 2008, 767: 417-422.
    Fan W G, Yang H Q. Effects of phosphate uptake on root architecture of apple seedlings in water culture[J]. Acta Hort. (ISHS),2008, 767: 423-428·
    Fujiwara K, KozaiT, Watanable I, et al. Development of a photoautotrophic tissue culture system for shoots and/or plantlets at rooting and acclimatization stages[J]. Acta Hort., 1988, 230: 152-158
    Gent Y B, Briantais J, M.Bakers N R., et al. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyⅡfluorescence[J].Biochimica Biophysica Acta,1989. 990: 87- 92.
    Gesch RW, Boote KJ, Vu JCV,et al. Change in growth CO2 result in rapid adjustments of ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit gene expression in expanding and mature leaves of rice[J].Plant Physiology,1998,118:521-529
    Gesch RW, Kang IH, Gallo-Meagher M,et al. Rubisco expression in rice leaves is related togenotypic variation of photosynthesis under elevated growth CO2 and temperature[J].Plant Cell and Environment,2003,26:1941-1950
    Gunderson CA, Sholtis JD, Wullschleger SD.et al. Environmental and stomatal control of photosynthetic enhancement in the canopy of a sweet gum(Liquidambar styraciflua L.)plantation during 3 years of CO2 enrichment. [J]. Plant Cell and Environment,,2002,25:379-393
    Gunderson CA, Wullschleger CA. Photosynthetic acclimation in trees to rising atmospheric CO2[J].Photosynthesis Research,1994,39:369-388
    Heo J, Kozai T. Forced ventilation micropropagation system for enhancing photosynthesis, growth and development of sweet potato plantlets[J].Environ. Cont. Bio.l, 1999, 37: 83-92
    Heo J, W ilson S, Kozai T. A forced ventilation micropropagation system for production of photoautotropic sweet potato plug plantlets in a scaled-up culture vessel growth and uniformity[J]. HortTech., 2001, 11: 90-94
    Hayashi M, Kozai T. Development of a facility for accelerating the acclimatization of tissue-cultured plantlets and the performance of test cultivations[J]. Belgium: Symp. Florizel on Plant Micropropagation in Hort. Ind..1987. 123-134
    Huang C G, Chen C H. Physical properties of culture vessels for plant tissue Culture[J] . Biosystems Engineering, 2005,19(4):501-511
    Kubota C, Kozai T. Growth and net photosynthetic rate of Solanum tuber rosum in vitro under forced and natural ventilation[J]. HortScience, 1992, 27:1312-1314
    Jose L B, Esmeralda H A, Lenin S C et al. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system[J]. Plant Physiol., 2002, 129: 244-256.
    Kozai T, Kushihashi .Effects of difference between photoperiod and dark period temperatures and photosynthetic photo flux density on the shoot length and growth of potato plantlets in vitro [J].Jpn soc Hort Sci,1992,61(1):93-98.
    Kozai T,Tanaka K,Jeong B R et al. Effects of relative humidity in the culture vessel on the growth and shoot elongation of potato plantlets in vitro[J].J Jpn soc hort sci,1993,62(2):413-417
    Kozai T, Chieri B R J. Environmental control for the large-scale production of plant through in vitro techniques[J]. Plant cell tissue and organ culture. 1997, 51: 49-56
    Kitaya Y, Sakami K, Kozai T et al. Development of photoautotrophic plant tissue culture system using CO2 from shiitake mushroom[J]. ActaHort., 1995, 393: 195-202
    Lakso A N, Reisch B I, Mortensen J, et al. Carbon dioxide enrichment fox stimulation of growth of in vitro-propagated grapevines after transfer from culture[J] Amer. Soc. Hort. Sci, 1986, 111 (4) : 634-638
    Le Van, Tuong H , Michio T et al. Effects of red and blue light-emitting diodes on callus induction, callus proliferation, and protocorm-like body formation from callus in Cymbidium orchid[J].Environ Control in Biol.,2004,42(1),57-64.
    Ma Z, Walk TC, Marcus A, Lynch J P. Morphological synergism in root hair length, density initiation and geometry for phosphorus acquisition in Arabidopsis thaliana: a modeling approach[J]. Plant Soil,2001, 236: 221-235.
    Michio K, Masakatsu O, MichikoA. The effect of carbon dioxide enrichment, natural ventilation, and light intensity on growth, photosynthesis, and transpiration of cauliflower plantlets cultured in vitro photoautotrophically and photomixotrophically[J]. Amer. Hort. Sci.1998, 123 (2): 176-181
    Nguyen Q T, Kozai T, Heo J, et al. Photoautotrophic growth response of in vitro cultured coffee plantlets to ventilation methods and photosynthetic photon fluxes under carbon dioxide enriched condition[J]. Plant Cell Tiss. Org., 2001, 66 (3) : 217-225
    Papagorgiou G. Chlorophyll fluorescence: An intrinsic probe of photosynthesis[M]. In Govindjee(ed) Bioenergetics of Photosynthesis,1975:320-366
    Qu Y H ,Lin C , Zhou W, et al. Effects of CO2 concentration and moisture content of sugar-free media on the tissue-cultured plantlets in a large growth chamber[J]. Communications in Nonlinear Science and Numerical Simulation.2009,14: 322–330.
    Soami F C D , Angela M S , Renato P ,et al. Effect of the culture environment on stomatal features, epidermal cells and water loss of micropropagated Annona glabra L. plants[J]. Scientia Horticulturae .2008, 117 : 341–344.
    Roche TD, LongR D, Sayegh A J. Commercial scale photoautotrophic micropropagations in Irish agriculture, horticulture and forestry[J]. ActaHort., 1996, 440: 515-520
    Schrer W, Ger W,Bilneubauer C,et al. ChlorophyⅡfluorescence as a non-destructive indicator for rapid assessment of in vivo photosysthesis[J].Ecological Studies,1994, 100:49- 70.
    Stone E L,Kalisz P J. On the maximum extent of tree roots [J].For Ecological Manage, 1991,46(1):59--102.
    Tanaka K,Fujiwara, Kozai T,et al. Effects of relative humidity in the culture vessel on the transpiration and photosysnthetic rates of potato plantlets in vitro[J].Acta Horticulturae,1992(319):59-63
    Tanaka, Takamura, Watanabe, et al. In vitro growth of cymbidium plantlets cultured under super bright red and blue light-emitting diodes(leds) [J].Journal of horticultural. science&biotechnology,1998,73:39-44.
    Thpe TA. Plant Tissue Method and Application in Agriculture.Academic Press.1981.
    Teixirada Silva JA , Giang D D T, and Tanaka M. Photoautotrophic micropropagation of Spathiphyllum[J] . Photosynthetica, 2008,44 (1): 53-61.
    Toida, H, Y. Omura, K. Ohyama,et al. Enhancement of growth and development of tomato seedlings by lengthening light period each day[J]. HortScience, 2003,38(5): 789.
    Xiao Y L, T.Kozai. Photoautotrophic growth and net photosynthetic rate of sweet potato plantlets in vitro as affected by the number of air exchanges of the vessel and type of supporting material[J]. TSINGHUA Science and Technology .2006.11: 481-489
    Xiao Y L , Kozai T. In vitro multiplication of static plantlets using sugar-free media[J]. Scientia Horticulturae 2006,109 : 71-77
    XiaoY L, Zhou J, Kozai T. Practical sugar-free micropropagation system using large vessels with forced ventilation[M]. In: Kubota C, Chun Ceds. Transplant Production in the 21th Century. Dordrecht: KluwerAcademic Publishers, 2000. 266-273
    Yeo JY , Mohammad M, Eun J H ,et al. Impact of in vitro CO2 enrichment and sugar deprivation on acclamatory responses of Phalaenopsis plantlets to ex vitro conditions[J]. Environmental and Experimental Botany 2009,65 :183–188.
    蔡能,易自力,李祥.改善植物大规模组织培养条件的研究进展[J].植物学通报,2003,20(6):745-751.
    邸秀茹,徐志刚.碳源和光量对驱蚊香草组培苗生长及叶绿体超微结构的影响[J].北京林业大学学报,2008,30(3):128-131.
    邸秀茹,徐志刚,王广东.光合环境与培养基组分对驱蚊香草无菌苗生根的影响[J].南京林业大学学报, 2008,31(3):152-154
    丁国昌,高淑慧,林思祖等.厚荚相思光自养微繁殖技术研究[J].西南林学院学报,2009,29(5):32-36
    丁国昌,高淑慧,林思祖等.黑木相思开放式光自养微微繁殖技术研究[J].福建林学院学报,2010,30(1):11-14
    丁永前.组培苗微生态环境中CO2控制的研究[D].南京:南京农业大学,2000:3-4.
    高淑慧.两种相思光自养微繁殖技术研究[D].福州:福建农林大学,2007
    管道平;刘文科;杨其长,等.植物光自养培养箱CO2自动调控系统的设计与试验[J].林业科学, 2007,5(1): 96-98.
    管道平,杨其长,刘文科,等.圆叶海棠无糖培养生根研究[J].果树学报, 2006,23(6):899-902.
    郭延平.草莓离体试管苗光合作用的研究[J].果树科学,2000,17(3):202-206.
    高玉红,李云.植物离体培养筛选耐盐突变体的研究[J].核农学报,2004,18(6): 448- 452.
    蒋高明,韩兴国,林光辉.CO2气体在植物组培中的应用及前景[J].核农学报, 2004,(5):489-502
    金晓玲,何平.木本植物原生质体培养与融合研究进展[J].浙江师范大学学报(自然科学版),2003,26(1):54-59.
    李春俭,马玮,张福锁.根际对话及其对植物生长的影响[J].植物营养与肥料学报,2008,14(1): 178-183.
    廖轶,陈根云,张海波,等.水稻叶片光合作用对开放式空气CO2浓度增高(FACE)的响应与适应[J].应用生态学报,2002,13:1205-1209
    廖轶,陈根云,张道允,等.冬小麦光合作用对开放式空气CO2浓度增高(FACE)的非气孔适应[J].植物生理与分子生物学学报,2003,29:494-500
    王兰兰,何兴元,陈玮. CO2和O3浓度升高及其复合作用对华山松生长及光合日变化的影响[J] .环境科学,2010, 18(1):529-538
    陆道调,蔡会德,张旭,等.桉树无性系速生丰产林生长及经济效益评价[J].浙江林学院学报,2008,25(1):65-68.
    刘思九.植物组织培养的环境调节研究进展[J].生态农业研究,2005,8(1):73-75.
    刘涤,胡之壁.生物技术在传统药材生产中的应用前景[J].生物工程进展,1997,17 (2):13-16.
    刘再亮.密闭式人工光组培室的环境控制与洁净技术的研究[D].北京:中国农业大学, 2004.
    王小华,庄南生,王英,等.DES诱变与离体培养结合筛选柱花草抗寒突变体的研究[J].草业学报,2010,16(1):158-161.
    刘丽芳.甘薯种质遗传稳定性及超低温保存研究[D] .西南大学,2009.
    刘文科,杨其长.植物无糖组织培养环境控制中的问题及对策(一)密闭式组培间的环境控制[J].农业工程技术,2006,(8):36-37.
    刘文科,杨其长.植物无糖组织培养环境控制中的问题及对策(二)大型培养容器的环境控制[J].农业工程技术,2006,(9):26-27.
    李宗菊,桂明英,房亚南,等.加速组培小植株无糖培养技术,北方园艺,1999,(1):15-17.
    李振坚,王雁,彭镇华,等.兰花在全球花卉贸易中的地位及发展动态[J].中国农学通报,2008,24(5):154-159.
    米海莉,许兴,李树华,等.春小麦耐盐突变体的筛选及耐盐性研究[J].宁夏农林科技,2001(3):1-4.
    魏小春,刘俊杰,马萍,等.豆科植物组织和细胞培养研究进展[J].贵州农业科学,2008,(2):15-17
    欧阳俊闻,周嘉平,贾双娥,等.植物细胞工程与育种[M].北京:北京工业大学出版社, 1990,254-260.
    彭爱红,何永睿,邹修平,等.观赏植物组织培养与基因工程研究进展[J].亚热带植物科学, 2002,31(2):58-63.
    潘月敏;营金凤;高智谋.棉花红腐病菌nit突变体筛选及营养亲和群测定[J].棉花学报,2009,21(1):17-22
    曲英华,胡秀婵,吴毅明.植物组织培养新技术:光独立培养法[J].农业工程学报, 2001,17(6):90-93
    孙彬贤,章国瑛,刘涤,等.红豆杉细胞培养与紫杉醇的生产[J].植物生理学通讯,1999,35(2):135-140.
    孙敬三,桂耀林.植物细胞工程实验技术[M].北京:科学出版社, 1995,4
    孙勇如,安锡培.植物原生质体培养[M].北京:科学出版社, 1991,2
    尚玉昌.普通生态学[M].北京:北京大学出版社,2002.212-213.
    阎博,薛秀庄,陈建莉,等.利用幼穗愈伤组织筛选小麦抗赤霉病菌毒素体细胞突变体的研究[J].西北农业学报,1995,4 (3):8-12.
    唐玉林.拟南芥抗生长素突变体axr1-12的抑制型突变体筛选[J].细胞生物学杂志,2009, (5):10-15.
    吴美金,王敏,张从宇.小麦抗赤霉病突变体的诱导与筛选研究[C].中国遗传学会第十届全国激光生物学学术会议论文摘要集,2009
    吴沿友,刘建.植物组织培养培养苗微生态环境控制的研究进展[J].江苏农业科学,2006,(04):01-04.
    王文全,王世绩,刘雅荣,等.粉煤灰复田立地上杨、柳、榆、刺槐根系的分布和生长特点[J].林业科学,1994,30(1):25-33.
    肖玉兰.植物无糖微繁快繁工厂化生产技术[M].昆明:云南科技出版社, 2003:176.
    肖玉兰,张立力,张光,等.非洲菊无糖培养技术的应用研究[J].园艺学报,1998,25(4):408-410.
    许大全.光合作用及有关过程对长期高CO2浓度的响应.植物生理学通讯,1994,30(2):81-87
    徐志刚.组培微环境与规模化育苗设施环境调控的研究[D].南京:南京农业大学,2002:128.
    徐志刚,丁为民,丁永前等.规模化组培育苗设施环境与控制的研究进展[J]农业机械学报,2002,1:106-110.
    徐志刚,崔瑾,焦学磊,等.光照强度和CO2浓度间接调控对甘薯无糖组培苗光合特性的影响[J].南京农业大学学报, 2004,27(1):11-14.
    邢建民,赵修德,李茂寅,等.植物细胞培养生产黄铜类化合物研究进展[J].生物工程进展,2001,21(1):47-50.
    杨玲,高翔翔沈海龙,等`。植物体细胞胚胎发生研究进展[J]。世界林业研究,2008,21(3):16-20
    严小龙.根系生物学原理与应用[M].北京:科学出版社,2007:72-73
    杨洪强,束怀瑞.苹果根系研究[M].北京:科学出版社,2007:25-26, 66-90.
    周芳菊.油菜小孢子培养及其单倍体应用研究进展[J].作物研究,2004,(5):372-375.
    徐忠东.植物组织培养生产药物研究进展[J].生物学杂志,2001,18 (6): 13-14.
    郑企成,白新盛,刘录祥.浅议我国农作物细胞工程育种[J].农业生物技术学报, 2000,8(增刊):74-77.
    郑光植.植物细胞培养及其次级代谢[M].昆明:云南大学出版社,1992:7
    曾斌.植物无糖组织培养技术.经济林研究[J].2005,23(2):67-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700