用户名: 密码: 验证码:
林下参生长环境可视化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在农业环境可视化系统的开发中,经常会遇到农业逻辑模型不易描述、不能移植、绘制代码和模型代码结合紧密,从而造成系统开发耗时长,维护困难,不易升级或复用等问题。为解决这一问题,课题的研究首先从图形学理论入手,在对可视化系统整体构建进行了理论分析的基础上,以东北林下参生长环境为模型,构建开放式的三维虚拟环境平台,将虚拟环境应用在农业领域。
     本文主要分两个部分:在文章的前半部分以理论分析的方式设计描述了一个与平台无关的图形引擎,这部分以设计思想为主,软件开发为辅。从多角度入手设计了一个完整的三维环境引擎,并且最终利用C++语言加以实现。在实验引擎的基础上,文章的第二部分,利用引擎结合东北林下参和真实的地貌特征针对如何构建林下参生长环境的可视化进行了研究。并实现了虚拟环境对真实地表的复原,为林下参生长环境的进一步研究打下了坚实的基础。
     通过以上研究和实践验证了在农业三维仿真平台中应用中间引擎的必要性和可行性,为今后的农业三维虚拟环境构建工作提供了一种新的研究平台和研究基础。
With a vast territory, the weather condition of China is so complicated too. There is a great difference of the development of different places, the funds for the agriculture is not sufficient either. The investment to the test and research of agriculture is very large. Considering the long growth cycle of the plant, the period of the agriculture test is usually very long. Assisted by the computer technology, we have a series of simulation test to research the growth of the plant, to observe the rules, and to optimize the condition of plant. It’s a new method for the agriculture research and a new direction to the growth research of plant.
     This paper conducts a visual investigation in the northeastern ginseng growth environment. Northeast of China is the main producing areas of ginseng which has strong medicinal value. However, the main method is Deforestation to plant ginseng before the "Natural Forest Protection Project" in the main producing areas of the ginseng, Changbai Mountains, the ecological environment has been seriously damaged and there is a serious problem which is that the ginseng has a great Organic chlorine level. Planting ginseng under the forest is a good way to solve the problem. Planting ginseng under the forest fully use of the land with no pesticide contamination, in this way we can ensure that the production of ginseng is safe, effective and quality. And this topic, Research on Virtual Reality of Living Environment of Planting Ginseng under Forest, is a basic research for the planting ginseng under the forest research.
     This paper comes up with Graphics theory, and then the research has laid mostly its foci on the agricultural application of virtual environment. Based on the theoretical analysis to the integrative construction of virtual environment, an open and 3D Virtual Environment Platform for Virtual Environments is constructed by the model based on the living environment of ginseng under forest in Northeast China.
     Based on the related research of the world, corresponding 3D Calculation Method is established, making use of the principle of graphics. In this paper, an open, platform-indepentdent, 3D Rendering Engine was designed and developed by using C++ language.
     The design of Engine begins at file level, implements step by step from file management, at last renders the screen. During the whole processing, it changes as file management system, decoding system, resource management system and render system in order. The file management, multi-file decoding, memory management, index, search and the render-pipe management/rendering computation are designed and developed with standard C++ to introduce the universality of the engine.The message system provided by the engine provides a big support for the engine's cross-platform by internalize messages. The message provided by engine is internalized which can allow engine to be cross-platform. In addition, the mathematical operations, including matrix, quaternion, Interpolating, Fast mathematics triangle operation and ect, which are used to Optimum Intel CPU, provide strong power to the running of engine in the special platform.
     Rendering engine which provides a multi-source rendering method and use perspective for 3D calculations makes the 3D model described more convenient. The open management for the model data makes the combine between rendering engine and variety of scene managements more easily. And on this basis, the virtual reality of living environment of planting ginseng under forest is one of the applications.
     The virtual environment research of the living environment of ginseng under forest mainly concludes that the 3D-terrain visualization of the ginseng under forest,the visualization of the sky and the visualization of the environment of the forest,these three models.The visualization of the terrain support the no border restrictions on the specifications of the large terrain simulation and it includes three different technology to exaggerated terms namely the normality-mode, lod-mode and tile-mode. And a representative cube sky box is examplified to simulate the sky. The‘forest’was imported by a 3D general model and 3DS documents .The usage of the model datas in the engine includes the terrain and sky, and all the datas are employed with normal formats and the other applied software, ensuring the system a good expansibility.
     Finally, there is an expectation for the research on virtual reality of living environment of planting ginseng under forest and the main research direction for the next step in the article. The system can be applied to simulate the light of planting ginseng under forest, growth models and other models.
引文
[1] 胡包钢,赵星,严红平,de Reffye Ph,Blaise F,熊范纶,王一鸣.植物生长建模与可视化——回顾与展望.自动化学报,2001,27(6),816-835
    [2] 毛卫强,潘云鹤,植物.3 维建模方法综述.计算机科学,2000,27(6),35-37
    [3] 彭群生,鲍虎军,金小刚.计算机真实感图形的算法基础.北京: 科学出版社,2002
    [4] A.-G. Rolland-Lagan, J. Bangham, E. Coen, Growth dynamics underlying petal shape and asymmetry,Nature,2003,422(13):161–163
    [5] 刘丰,庄越挺,罗忠祥,潘云鹤.基于多自主智能体的群体动画创作.计算机研究与发展,2004,41(1),104-110
    [6] P. Prusinkiewicz.Modeling plant growth and development, Current Opinion in Plant Biology,2004,7:79–83
    [7] 董刚,赵龙,田尊华.基于智能体的群体动画创作方法的研究与实现.计算机仿真,2005,22(12),143-147
    [8] A. Lindenmayer,Mathematical models for cellular interactions in development, Parts I and II. Journal of Theoretical Biology, 1968, 18: 280-315
    [9] P. Prusinkiewicz, J. Hanan, Lindenmayer Systems, fractals, and plants, New York: Springer-Verlag, 1990
    [10] P. Prusinkiewicz, M. Hammel, E. Mjolsness, Animation of plant development, Computer Graphics, 1993, 27(3): 351-360
    [11] R. Mech, P. Prusinkiewicz. Visual models of plants interacting with their environment. Computer Graphics, 1996, 30(3): 397-410
    [12] O. Deussen, P. Hanrahan, B. Lintermann, R. Mech, M. Pharr, and P. Prusinkiewicz, Realistic modeling and rendering of plant ecosystems. In M. Cohen, editor, Proc. SIGGRAPH 1998, ACM Press, Orlando, Florida, 1998: 275-286
    [13] B. Lintermann, O. Deussen, Interactive Modeling of Plants, IEEE Computer Graphics and Applications, January/February 1999,1-10
    [14] E. Turquin, M.-P. Cani, and J. Hughes. Sketching garments for virtual characters. In J. F. Hughes and J. A. Jorge, editors, Eurographics Workshop on Sketch-Based Interfaces and Modeling (SBM), 2004, 175–182
    [15] M. Okabe, S. Owada, and T. Igarash. Interactive design of botanical trees using freehand sketches and example-based editing. Computer Graphics Forum, September 2005, 24(3): 487–496
    [16] T. Ijiri, S. Owada, M. Okabe, and T. Igarashi. Floral diagrams and inflorescences: Interactive flower modeling using botanical structural constraints. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, 2005, 720–726
    [17] T. Ijiri, S. Owadaand, and T. Igarashi. Seamless integration of initial sketching and subsequent detail editing in flower modeling. Computer Graphics Forum, September 2006, 25(3): 617–624
    [18] F. Anastacio, M. C. Sousa, F. Samavati, and J. A. Jorge. Modeling plant structures using concept sketches. In NPAR’06: Proceedings of the 4th international symposium on Non-photorealistic animation and rendering, 2006. ACM Press, pages 105–113
    [19] Barnsley M F, Demko S. Iterated function systems and global construction of fractals. R Soc London Ser, 1985,(A399):243~275
    [20] Viennot X G, Eyrolles G. Combinatorial analysis of ramified patterns and computer imagery of trees. Computer graphics, 1989,23(3): 31~39
    [21] Reeves W T, Blau R. Approximate and probabilistic algorithms for shading and rendering structured particle systems. Computer Graphics, 1985,19(3):313~322
    [22] Smith A R. Plants, fractals and formal languages. Computer Graphics, 1984,18(3):1~10
    [23] Aono M, Kunii T L. Botanical tree image generation. IEEE Comput. Graphics & Appl. , 1984,4(5):10~34
    [24] Oppendheimer P E. Real time design and animation of fractal plants and trees. Comput Graphics, 1986,20(4):55~64
    [25] de Reffye P, Edelin C, Francon Jet al. Plant models faithful to botanical structure and development. Computer Graphics, 1988,22(4):151~158
    [26] Godin C, Carglio Y. A multiscale model of plant topological structures. J TheorBio, 1998,84(3), 191:1~46
    [27] Barnsley M F, Elton J H, Hardin D P. Recurrent iterated function systems. Constructive Approximation, 1989,5:3~31
    [28] Prusinkiewicz P, Hammel M. Automata, language, and iterated function systems. In: Fractal Modeling in 3D Computer Graphics and Imagery, J C Hart, F K Musgrave (eds.), ACM SIGGRAPH, Course Note C14, 1991. 115~143
    [29] Lemmon H E. COMAX: An expert system for cotton crop management. Science, 1986,233:29~33
    [30] Lemmon H, Chuk N. Object-oriented design of a cotton crop model. Ecological Modeling, 1997,94:45~51
    [31] Jaeger M, de Reffye P. Basic concepts of computer simulation of plant growth. J Biosci, 1992,17:275~291
    [32] Wang E, Engel T. SPASS: A tgeneric process-oriented crop model with versatile windows interfaces. Environmental Modeling & Software, 2000,15:179~188
    [33] 赵星,de Reffvye P,熊范纶,胡包钢,展志岗. 虚拟植物生长的双尺度自动机模型. 计算机学报, 2001,24(6):608~615
    [34] 宋铁英. 森林空间数据的统计与仿真. 北京林业大学,学报,1997,19(3): 74-78
    [35] 舒娱琴,基于林分生长规律的虚拟森林环境的构建研究: [博士论文]. 武汉: 武汉大学, 2004
    [36] 权兵,基于虚拟森林环境的林分生长和经营摸拟研究: [硕士论文]. 福州: 福州大学, 2005
    [37] 李建微,面向林火蔓延的虚拟地理环境构建技术研究: [硕士论文]. 福州: 福州大, 2005
    [38] 李琰琰,虚拟森林火场的技术研究和场景建模: [硕士论文]. 浙江: 浙江工业大学, 2006
    [39] 毛卫强,耿卫东,潘云鹤. 基于特征综合的植物建模方法. 计算机辅助设计与图形学学报. 2000,12(8):595~600
    [40] 董乔雪,王一鸣,Jean Francois Barczi,等.番茄形态结构模型参数的多目标拟合估算方法研究. 农业工程学报, 2006,22(2):1~5
    [41] 曾俊,陈天泽,匡纲要. 一种基于二叉树结构的大规模地形实时渲染方法[J]. 计算机仿真, 2004,21(11): 177-180
    [42] 傅由甲,杨克俭,胡平飞,杨帆. 基于动态八叉树的复杂场景交互式实时漫游[J]. 武汉理工大学学报, 2005, 29(2): 308-311
    [43] 凌伟,倪世宏,张瑞峰. Direct X 编程时 3D 模型的处理方法. 航空计算技术, 2004, 34(2): 41-47
    [44] 侯俊杰. 深入浅出 MFC 第 2 版. 武汉: 华中科技大学出版社,1998
    [45] 王铁生, 王化民, 孟繁莹等. 人参光合生理研究, 人参的光合途径及特性. 中草药, 1991, 22(7): 319
    [46] 韩海荣, 姜玉龙. 栓皮栎人工林光环境特征的研究. 北京林业大学学报, 2000, 22(4): 92~96
    [47] 杨世海, 尹春梅. 人参光生理研究进展. 人参研究, 1994, (1): 2~5
    [48] 左大康, 周允华, 项月琴等. 地球表层辐射研究. 北京: 中国科学出版社, 1991, 314~427
    [49] 聂林如, 黄仕华. 计算水平地面散射辐射量的模型. 昆明理工大学学报, 2000, 25(5): 40~42
    [50] К.Я.康德拉捷夫. 太阳辐射能(P. T.). 北京: 科学出版社, 1962
    [51] 王锡平, 郭焱, 李保国等. 玉米冠层内太阳直接辐射三维空间分布的模拟. 生态学报, 2005, 25(1): 7~12
    [52] 李树人, 赵勇. 树冠遮光数学模型的研究. 河南农业大学学报, 1994, 28(4): 361~366
    [53] 李树人, 赵勇, 阎志平. 日本落叶松林冠层光生态场研究.应用生态学报, 1997, 8(2): 123~126
    [54] 张仁斌. 地堰树荫动态及对光影响的研究. 山东林业科技, 1991, 81(1): 1~5
    [55] 姚立华. 苗木行向、行距与日照关系的初探. 北京林业大学学报, 1995, 17(3): 10~15
    [56] 吴力立, 王宗淳. 树冠遮阴动态研究. 南京林业大学学报, 1991, 15(2): 61~66
    [57] Kris Kaspersky: Code Optimization:Effective Memory Usage,A-List Publishing,2004
    [58] Alan Watt,Fabio Policarpo: 3D Games Real-time Rendering and Software Technology,ACM Press,2001
    [59] Mel Slater,Anthony Steed,Yiorgos Chrysanthou: Computer Graphics and Virtual Environment: From Realism to Real-Time,Pearson Eduction Limited,2002
    [60] Glassner et al,Graphic Gems,Acadmic Press,1990
    [61] Laura, Using Quaternions to Represent Rotation, http://http.cs.berkeley.edu/~laura/cs184/quat/quaternion.html, 1992
    [62] Eberly,David,Qutaternions,ftp://ftp.cis.upenn.edu/pub/graphics/shoemake/quatut.ps.Z,May 1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700