用户名: 密码: 验证码:
大别造山带与合肥盆地中生代构造—沉积演化关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
系统观引入地球科学研究的一个重要方面就是造山带与相邻沉积盆地的耦合研究。将盆山之间物质转移作为切入点进行盆山之间耦合关系的研究,成为近些年来大陆动力学研究的热点。物源分析除了告诉我们盆地沉积充填历史以外,还能告诉我们源区的一系列构造演化信息,因此成为盆山耦合研究中非常重要的手段。
     大别造山带以其独特而罕见的高压—超高压变质相带的连续分布而成为国内外地学界关注的焦点。大别造山带与相邻的合肥盆地研究的一个新的课题就是如何将大别造山带的演化进程与合肥盆地形成机制以及盆地充填特征有机的联系起来。
     本文在上述学术背景指导下,结合研究区工作现状,开展了多角度的研究工作,取得的主要认识如下:
     1.大别山造山带的构造单元划分及物质组成
     大别造山带从北向南可分为北淮阳弧后复理石带、北大别弧杂岩带、南大别碰撞杂岩带(高压变质带)、宿松变质杂岩带。分划这4个构造单元的是信阳—舒城断裂、磨子潭—晓天断裂、水吼—英山断裂(剪切带)、太湖—马庙断裂(剪切带)及襄樊广济断裂。从东到西,商麻断裂将大别造山带分为大别地块和红安地块。
     2.合肥盆地前中生代基底特征、断裂特征及中生代构造单元划分
     合肥盆地基底纵向上具双层结构,分为晚太古代—早元古代深变质岩系和晚元古代—晚古生代浅变质至未变质海相构造层。平面上以肥中断裂和六安断裂为界分为三种类型即华北地台型、大陆边缘过渡型和北淮阳型。盆地由四条控盆边界断裂控制,中生代以来可以划分出四个二级构造单元、11个三级构造单元。盆地独特的构造位置赋予了它丰富的构造样式,包括拉张构造样式,挤压构造样式和走滑构造样式。
     3.中生代合肥盆地沉积相组合、地层展布和沉积旋回演化规律
     合肥盆地大致以六安断裂为界,北带主要沉积中生界侏罗—白垩系地层,其中防虎山组属早侏罗世晚期到中侏罗世早期沉积,圆洞山组属中侏罗世晚期到晚侏罗世沉积,周公山组为早白垩世沉积;南带主要沉积中生界侏罗—白垩系碎屑岩夹火山岩和火山碎屑岩建造,其中三尖铺组属于中侏罗世晚期到晚侏罗世沉积,凤凰台组/毛坦厂组属早白垩世早期沉积/火山喷发旋回,黑石渡组为早白垩世晚期沉积。南北带地层可以对比。合肥盆地中生带发育的沉积相主要有冲积扇相、河流相及湖泊相并沉积相及沉积旋回随时间的演化规律具有盆地北带和盆地南带同步性和相带的连续性。
     4.合肥盆地中生代古环境演变特征
     合肥盆地早侏罗世晚期到中侏罗世早期沉积时古水流优势方向表明自西向东方向甚至自北向南方向的纵向水系为主要特征;中侏罗世晚期到晚侏罗世古水流的优势方向表明水流方向基本垂直大别造山带;早白垩世早期总体的水流方向为大致垂直大别造山带的横向水流;早白垩世晚期古水流方向发散。
     中生界砂岩粒度特征主要反映的是河流相的特征。早侏罗世晚期到中侏罗世早期的河流具有近源特征;中侏罗世晚期到晚侏罗世河流自南向北(山到盆)具有近源河流—远源河流的明显变化;早白垩世反映了自大别造山带向盆地内部从山间急流形成的冲刷沟道和断陷盆地河流—远源河流的特征。
     5.合肥盆地中生代沉积物源的演化
     合肥盆地南带和北带中生界露头中砾石成分具有一定规律可循。盆地北带侏罗系砾石成分表现了其来源的复杂性,除了北淮阳带提供大量物质、北大别带提供少量物质以外,尚有其他的物质来源,推测可能为盆地华北地台型基底提供物质,甚至物源来自华北板块;盆地南带早侏罗世沉积缺失,中、晚侏罗世砾石来源主要为盆地北淮阳型基底和北淮阳带的物质、大别杂岩带物源贡献不大。白垩纪,南北大别带除了对盆地南带提供了大量的物质以外(凤凰台组和火山岩盆地中充填的黑石渡组),尚远波及到盆地北带周公山组的沉积。
     合肥盆地北带早、中侏罗世砂岩重矿物组合所恢复的源岩组合为沉积岩和低级变质岩,表明早、中侏罗世盆地主要接受来自华北板块(克拉通)的沉积物,中、晚侏罗世砂岩重矿物组合指示的母岩物质组合为基性岩浆岩和中酸性岩浆岩,白垩世主要母岩组合为基性和中酸性岩浆岩。合肥盆地南带中生代重矿物组合所反映的母岩组合在剖面上的演化趋势为中、晚侏罗世物源的岩性配置与北淮阳带岩石组合相一致,随时间推移来自大别杂岩带的变质岩岩石的贡献逐渐增大;早白垩世主要母岩物质表现为早期以中酸性岩浆岩和中高级变质岩为主,越晚以中酸性岩浆岩为主。
     6.合肥盆地中生代沉积源区的构造背景演变
     早侏罗世砂岩骨架组分源区构造环境以岩浆弧物源区,兼出现造山带物源区和大陆地块物源区为特征,表明该时期合肥盆地物源的复杂性;中、晚侏罗世非常明显的源区环境表现为大陆地块和板块碰撞造山带,但混合源区表现比较明显。一进入早白垩世早期,明显的源区指示为再旋回造山带及碰撞造山带,大别造山带来源的物质单一并主要影响着合肥盆地的充填。早白垩世晚期的岩浆弧物源区和岛弧造山带物源区形成,是此时期区域拉张构造背景的极好反映。沉积地球化学源区环境判别的结果进一步证实了合肥盆地北南带源区性质的差异性。盆地北带侏罗系的沉积充填可能受华北地块的影响更大,而盆地南带侏罗系物质受到大别造山带的影响似乎更大。白垩系盆地整体反映了造山带的物质特征,反映的主动大陆边缘环境更为明显。盆地南北带均有岛弧源区背景显示,这与北淮阳带的构造属性非常一致。
     7.大别造山带构造演化与再造
     大别造山带构造演化复杂,单纯从造山带本身很难恢复起演化信息,但合肥盆地充填的一系列特征对恢复大别造山带的构造演化和结构再造具有很重要的作用。根据合肥盆地沉积充填特征、古地理演变、物源分析以及物源区构造背景判别,可以大致重塑大别造山带的演化历史以及再造其构造单元。大别造山带早侏罗世晚期到中侏罗世早期碰撞造山规模有限,其主碰撞造山期主要发生在中侏罗世晚期到晚侏罗世,大规模造山发生在早白垩世,并表现为伸展背景下的热隆造山。
The introduction of system theory into earth science resulted in research of basin-range coupling. To be a bridge connecting orogenic belt and peripheral basins, mass transfer was employed as a key in the research between orogen tectonic evolution and basin sedimentary filling. This, therefore, became a focus in the study of earth dynamics. Provenance analysis can depict the history of basin filling, furthermore it can provide a series of clues for the understanding of evolution in source areas. For these reasons, it has become an important approach in basin-range coupling.
     Dabieshan Orogen has become a hotspot in geological research both in China and abroad for its large scale outcrop of HP/UHP metamorphic rocks. A new challenge in this region lies in the integration of tectonic evolution of Dabieshan Orogen with sedimentary filling of Hefei Basin.
     In this paper, integrated sedimentological, geochemical, petrological and mineralogical studies are carried out on Mesozoic sedimentary rocks of Hefei basin. Major conclusions are as follows:
     1. Tectonic units of Dabieshan Orogen and their rock compositions
     From north to south, Dabieshan Orogen can be divided into four belts, namely, North Huaiyang retroarc flysch belt, North Dabie arc complex belt, South Dabie collision complex belt and Susong metamorphic complex belt. The faults dividing these units are Xinyang-Shucheng Fault, Mozitan-Xiaotian Fault, Shuihou-Yingshan Falut (shear zone), Mamiao-Taihu Fault (shear zone) and Xiangfan-Guangji Fault respectively. Located in the middle of Dabieshan Orogen, the N-S trending Shangma Fault divides the orogen into two parts, with Dabie Block (include North Dabie arc complex belt and South Dabie collision complex belt) in east and Hongan Block in west. Each unit has its characteristic rocks.
     2. Basement characteristics, fault features and tectonic units of Hefei Basin
     Vertically, the basement of Hefei Basin is recognized to have double-layer structure, and is divided into Archaean-Paleoproterozoic high-grade metamorphic rocks and Neoproterozoic-Late Palaeozoic low grade metomorhpic/original marine structure layer。Horizontally, Feizhong Fault and Liuan Fault act as boundaries and divide the basement of Hefei Basin into three parts, i.e., North China platform basement, continental margin transitional basement and North Huaiyang basement. Hefei Basin is controlled by four boundary faults and can be divided into four secondary tectonic units since Mesozoic, and each unit has its own subunits. Unique tectonic setting endow abundant structure styles to Hefei Basin, such as extensional structure, compressive structure and strike-slip structure.
     3. Mesozoic sedimentary facies assemblages, strata distribution and sedimentary cyclicity
     Liuan Fault divides Hefei Basin into two deposition systems. The north system (i. e., main body of basin) is composed of Jurassic-Cretaceous deposition. Fanghushan Formation, Yuandongshan Formation and Zhougongshan Formation belong to late Lower Jurassic-early Middle Jurassic deposition, late Middle Jurassic-Upper Jurassic deposition and early Lower Cretaceous deposition, respectively. The south system is mainly composed of Jurassic-Cretaceous clastic rocks interbeded by volcanic rocks and pyroclastic rocks, including Sanjianpu Formation, Fenghuangtai Formation/Maotanchang Formation, and Heishidu Formation. Sanjianpu Formation span late Middle Jurassic-Lower Jurassic; Fenghuangtai Formation/Maotanchang Formation is the result of earlist Cretaceous deposition-volcanic eruption cyclicity, while Heishidu Formation formed in late Early Cretaceous. The strata between different systems can be well correlated. The dominant facies in Hefei Basin in Mesozoic include alluvial fan, fluvial and lacustrine facies. The evolution of facies and sedimentary cyclicity with time shows synchrony and continuity between the north and the south system.
     4. Mesozoic paleoenvironment variance in Hefei Basin
     In late Early Jurassic-early Middle Jurassic, the preponderant paleocurrent directions indicate the feature of longitudinal drainage system from west to east in Hefei Basin. Surprisingly, paleocurrent directions from north to south also exist in this region. In late Middle Jurassic-Late Jurassic, the paleocurrent is attributed to lateral drainage system and crossed Dabieshan Orogen. The paleocurrent of earlist Cretaceous shared the same features as Late Jurassic. In late Early Cretaceous, the paleocurrent of Hefei Basin was emanative.
     The sandstone particle distribution of Hefei basin in Mesozoic reflects fluvial features. Particle analysis indicates that the fluvial was proximal from late Early Jurassic to early Middle Jurassic; Between late Middle Jurassic and Upper Jurassic, the fluvial in this region transferred from proximal to distal fluvial. The onflow from Dabieshan Orogen to Hefei Basin and distal fluvial in fault basins were formed in Early Cretaceous.
     5. Mesozoic provenance evolution of Hefei Basin
     The trend of gravel components distribution was tracked both in the north and south deposition system of Hefei Basin. In the north system, gravel components show a complex origin in Jurassic. North Huaiyang belt mainly contributed sediments to the basin. Dabie complex provided less sediment to the main body of Hefei Basin. An unknown source area existed in this period and is presumed to be North China platform basement, or North China Plate. There is no deposition in Lower Jurassic, the gravel deposition of Middle to Upper Jurassic mainly derived from North Huaiyang belt and North Huaiyang type basement. Dabie complex provided a small proportion of sediments to the south system. In Cretaceous, Dabie complex provided most of the sediments to the south system. Furthermore, complex rocks spread to the north system.
     Source rock compositions determined by heavy mineral assembles in the north system of Hefei Basin include sedimentary rock and low-grade metamorphic rock. This indicates that North China Plate was the main source area. Middle to Upper Jurassic heavy mineral assembles has the characteristics of basic magmatic rocks and acid-medium magmatic rocks. The source rocks in Cretaceous are acid-medium magmatites。The evolution trend of source rocks in vertical geological section reflected by Mesozoic heavy mineral assembles in the south system shows that the source rocks are consistent with those in North Huaiyang belt in Jurassic. The contribution of Dabie complex became more and more significant from base to top of the section. In Cretaceous, almost all of sediments were derived from Dabie complex.
     6. Tectonic evolution of source areas of Hefei Basin in Mesozoic
     The Lower Jurassic sandstone detrital mode of Hefei Basin indicates that, while its provenance mainly belongs to magmatic arc setting, orogen and continental block setting also appear to be possible settings. This reflects the complexity of source areas. Middle to Late Jurassic tectonic settings of source areas are continental block and collision orogen, exhibiting a clear mixed sources. It is evident that the source areas are recycled orogen and collision orogen in Cretaceous, the simplex clast derived from Dabieshan Orogen affected the filling of Hefei Basin in this period. The presence of magametic provenance and island provenance reflects the extensional setting.
     The provenance determination from geochemical data confirms the source areas' difference between the north and the south system in Jurassic. The north system is mainly affected by North China plate. In contrast, the south system is mainly affected by Dabieshan Orogen. In Cretaceous, active margin setting is distinguishable. Arc provenance appeared both in the north and south system, which is in accordance with the setting of North Huaiyang belt.
     7. Tectonic evolution and reconstruction of Dabieshan Orogen
     Tectonic evolution of Dabieshan Orogen is complicated. It is difficult to rebuild the tectonic evolution merely based on Orogen itself. While a series of clues from the sedimentary filling of Hefei Basin are very useful for a better understanding of the tectonic evolution and structure reconstruction of Dabieshan Orogen. According to the filling features, paleocurrent variance, provenance analysis and tectonic setting determination of source areas, the tectonic evolution history and tectonic units can be reconstructed. Though orogency occurred in Late Triassic, the collision orogency in Dabieshan region was less active from Early Jurassic to early Middle Jurassic. Main collision orogency lasted from late Middle Jurassic to Late Jurassic. While large scale orogency occurred in Cretaceous, and belong to thermal doming orogency under regional extensional background.
引文
[1] Ames L., Zhou G.Z., Xiong B.C. Geochronology and isotopic character of ultra-pressure metamorphism with implication for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics, 1996, 15 (2) ,472-489
    
    [2] Basu A., Young S.W., Suttner L.J., et al. Reevaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation. Journal of Sedimentary Petrology, 1975,45:873-882
    [3] Bernet M., Spiegel C. (eds.) Detrital Thermochronology-Provenance Analysis, Exhumation, and Landscape Evolution of Mountain Belts. Geological Society of America Special Publication, 2004, 378:25-36
    [4] Bertotti G., Schulmann K., Cloetingh S. Continental collision and the tectono-sedimentary evolution of forelands. European Geosciences Union, EGU Stephan Mueller Special Publication Series 1, 2002, 1-2
    [5] Bhatia M. R., Taylor S. R. Trace element geochemistry and sedimentary provinces:study from the Tasman geosyncline, Australia. Chemical Geology, 1981, 33:115-125
    [6] Bhatia M. R. Plate tectonics and geochemical composition of sandstone. J. Geol., 1983, 91: 611-627
    [7] Bhatia M. R. and Crook K. A. W. Trace element characteristics of greywacks and tectonic discrimination of sedimentary basins. Contrib. Mineral. Petrol., 1986, 92:181-193
    [8] Brandon M.T., Vance J.A. Fission track ages of detrital zircon: implications for the tectonic evolution of the Cenozoic Olympic subduction comples. Am. J. Sci., 1992, 292:565-636
    [9] Castlec J. M. Foreland-basin sequence response to collisional tectonism. GSA Bulletin , 2001, 113 (7) : 801-812
    [10] Chavagnac V., Jahn B. M. Coesite-bearing eclogites from the Bixiling complex, Dabie Mountains: Sm-Nd ages, geochemical characteristics and tectonic implications. Chemical Geology, 1996,133:29-51
    
    [11] Chen J. and Jahn B. M. Crustal evolution of southeastern China: Nd and Sr isotopic evidence, Tectonophysics, 1998, 284: 101-133
    
    [12] Cloetingh S., Fernandez M., Munoz J. A., et al. Structural controls on sedimentary basin evolution: introduction. Tectonophysics, 1997, 282: 10-18
    [13] Cong B. L. Ultrahigh-pressure metamorphic rocks in the Dabieshan-Sulu region of China. Beijing: Chinese Sciences Press, 1995
    [14] Dickinson W. R., Suczek C. A. Plate tectonics and sandstone Compositions. AAPG Bull, 1979, 63 (12) : 2164-2182
    [15] Dickinson W. R. Interpreting provenance relations from detrial modes of sandstones. In: Zuffa G.G. (ed.) Provenance of Arenites. Dordrecht: D.Reidel, 1985, 333-361
    [16] Eide E. A., Liou J. G. High-pressure blueschists and eclogites in Hong'an: a framework for addressing the evolution of high-and ultrahigh-pressure rocks in central China. Lithos, 2000, 52: 1-22
    [17] Eide E. A., Mcwilliams M.O., Liou J.G. ~(40)Ar/~(39)Ar geochronology and exhumation of high-pressure to ultrahigh-pressure metamorphic rocks in east-central China. Geology, 1994, 22: 601-604 [18] Ernst W. G., Zhou G, Liou J. G, et al. High-pressure and superhigh-presure metamorphic terranes in the Qingling-Dabie mountain belt, central China: early-to-mid-Phanerozoic accretion of the western paleoPacific Rim: Pacific. Sci. Assoc.Inromation Bull., 1991,43:6-15
    [19] Folk R.L. Petrology of sedimentary rocks. Austin, Texas: Hemphill Publication Company, 1980, 182.
    [20] Francu E., Francu J., Kalvoda J., et al. Burial and uplift history of the Palaeozoic Flysch in the Variscan foreland basin (SE Bohemian Massif, Czech Republic). In: Bertotti G, et al. (eds.) Continental collision and the tectono-sedimentary evolution of forelands. European Geosciences Union, EGU Stephan Mueller Special Publication Series 1, 2002
    [21] Garfunkel Z., and Greiling R. O. The implications of foreland basins for the causative tectonic loads. In: Bertotti G, et al. (eds.) Continental collision and the tectono-sedimentary evolution of forelands. European Geosciences Union, EGU Stephan Mueller Special Publication Series 1, 2002
    [22] Garver J. L., Brandon M.T. Erosional denudation of the British Columbia Coast Ranges as determined from fission track ages of detrital zircon form the Tofino Basin. Bull. Geol. Soc. Am., 1994, 106:1398-1412
    [23] Gert Jan Weltje, Hilmar von Eynatten. Quantitative provenance analysis of sediments: review and outlook. Sedimentary geology, 2004, 171 (1-4) : 1-11
    
    [24] Gotowala R., Haluszczak A. The Late Alpine structural development of the Kleszczow Graben (Central Poland) as a result of reactivation of the pre-existing, regional dislocations. In: Bertotti G, et al. (eds.) Continental collision and the tectono-sedimentary evolution of forelands. European Geosciences Union, EGU Stephan Mueller Special Publication Series 1, 2002
    [25] Grimmer J. C. When did the UHP rocks reach the surface? A ~(207)Pb/~(206)Pb zircon, ~(40)Ar/~(39)Ar white mica, Si-in-phengite single grain study of Dabie Shan synorogenic foreland sediments (unpublished)
    [26] Hacker B. R., Ratshbacher L., Webb L., et al. Exhumation of ultrahigh-pressure continental crust in east central China: Late Triassic-Early Jurassic tectonic unroofing. Journal of Geophysical Research, 2000, 105 (B6) : 13339-13364
    [27] Hemming S. R., Mclennan S. M., Hanson G.N. Geochemical and Nd/Pb isotopic evidence for the provenance of the early Proterozioc Virginia Formation,Minnesota:implications for the tectonic setting of the Animike Basin. J. Geol., 1995, 103:147-168
    [28] Hurford A.J., Carter A. The role of fission track dating in discrimination of provenance.In: Morton A.C., Todd S. P., Haughton P. D.W. (eds.) Development in sedimentary provenance studies. Geol. Soc. London Spec.Publ, 1991, 57:67-78.
    [29] Ingersoll R. V., Kretchmer A. G, Valler P. K. The effect of sampling scaleon actualistic sandstone petrofacies. Sedimentology, 1993, 40:937-953
    [30] Ingersoll R. V. Actualistic sandstone petrofacies: discriminating modern and ancient source rocks. Geology, 1990, 18:733-766
    [31] Jahn B. M. Geochemical and isotopic characteristics of UHP eclogites and ultramafic rocks of the Dabie orogen: implication for continental subduction and collisional tectonics.In: Hacker B. R.. Liou J. G. ( eds. ) When continents collide: geodynamics and geochemistry of ultrahigh—pressure rocks. Netherlands: Kluwer Academic Publishers, 1998. 203-239
    [32] Johnsson M. J., Basu A. Processes controlling the composition of clastic sediments. Geol. Soc. Am. Spec. Pap. 1993, 285-342
    [33] Krzywiec P. Mid-Polish Trough inversion—seismic examples, main mechanisms, and its relationship to the Alpine-Carpathian collision. In Bertotti G, et al. (eds.) Continental collision and the tectono-sedimentary evolution of forelands. European Geosciences Union, EGU Stephan Mueller Special Publication Series 1, 2002
    [34] Li S., Chen Y., Cong B., et al. Collision of the North China and Yangtze Blocks and formation of coesite-bearing eclogites: Timing and processes. Chemical Geology, 1993, 109:70-89
    [35] Li S., Jagoulz E., Lo C. H., et al. Sm/Nd, Rb/Sr, and ~(40)Ar/~(39)Ar isotopic systematics of the ultrahigh-pressure metamorphic rocks in the Dabie-Sulu Belt, Central China: a retrospective review. International Geology Review. 1999, 41:1114-1124
    [36] Li S., Jagoutz E., Chen Y, et al. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, central China. Geochim Consmochim Acta, 2000, 64: 1077-1093
    [37] Li S., Liou D., Chen Y, et al. The Sm-Nd isotopic age of coesite-bearing eclogite from the southern Dabie Mountains. Chinese Science Bulletin, 1992, 37 (19) :1638-1641
    [38] Li S.G., Jagoutz E., Chen Y. Z., et al. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, central China. Geochimica et Cosmochimica Acta, 2000, 64 (6) : 1077-1093
    [39] Mackenzie F. T., Mackenzie J. A. Our Changing Planet, an Introduction to Earth System Science and Global Environmental Change. Prentice Hall, 1995, 359
    
    [40] Mange M.A., Maurer H. F. W. Heavy mineral in colour. Chapman and Hall, London, 1992, 147.
    [41] Maruyama S., Liou J. G, Zhang R. Tectonic evolution of the ultrahigh-pressure and high-pressure metamorphic belts from central China. The Island Arc, 1994, 3:112-121
    [42] Mazzoli S., Deiana D., Galdenzi S, et al. Fault-controlled sedimentation and thrust propagation in the previously faulted external zones of the Umbria-Marche Apennines, Italy. In: Bertotti G. et al. (eds.) Continental collision and the tectono-sedimentary evolution of Forelands. European Geosciences Union, EGU Stephan Mueller Special Publication Series 1, 2002
    [43] McDaiel D.K., Mclennan S.M., Hanson G.N. Provenance of Amazon Fan Muds: constraints from Nd and Pb isotopes. In: Flood R.D., Piper D. J. W., Klaus A., Peterson L.C. (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, 1997, 55:169-176
    [44] McDaniel D. K., Hemming S.R., Mclennan, S.M., et al. Resetting of neodymium isotopes and redistribution of REEs during sedimentary proceses:the early Proterozoic Chelmsford Formation, Sudbury Basin, Ontario, Canada. Geochim.Cosmochim.Acta, 1994, 58:931-941
    [45] McDaniel D.K., Hemming S.R., Mclennan S.M., et al, Petrographic, geochemical, and isotopic constraints on the provenance of the early Proterozoic Chelmsford Formation, Sudbury Basin, Ontario. J. Sediment. Res., 1994, A64:362-372
    [46] Mclennan S. M., Taylor S. R., McCulloch M.T., Maynard J.B., Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochim. Cosmochim. Acta, 1990, 54:2015-2050
    [47] Mclennan S.M., Fryer B.J., Young G.M. The geochemistry of the carbonate-rich Espanola Formation (Huronian) with emphasis on the rare earth elements. Canadian Journal of Earth Sciences, 1979,16:230-239
    
    [48] Mcllennan S. M. Weathering and global denudation. J. Geol., 1993, 101:295-303.
    [49] Miall A. D. The geology of fluvial deposits. New York Berlin:Singer-Verrlag, 1996, 75-89,191-250.
    [50] Morton A. C, Hallsworth C. R. Identifying provenance specific features of detrital heavy mineral assemblages in sandstones. Sedimentary Geology, 1994, 90 (3) :241-256
    [51] Morton A. C, Todd S. P., Haughton P. D. W. Developments in sedimentary provenance studies. Geol. Soc. London Spec. Publ. 1991, 57:370
    [52] Morton A. C. Influences of provenance and diagenesis on detrital garnet suites in the Forties Sandstone, Paleocene Central North Sea. J. Sediment. Petrol., 1987, 57: 1027-1032
    [53] Morton A. C. Hallsworth C. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sediment. Geol., 1994, 90:241-256
    [54] Morton A. C, Johnsson M. J. .Factors influencing the composition of detrital heavy mineral suites in Holocene sands of the Apure River drainage basin, Venezuela. In: Basu A. and Johnsson M. J. (eds.) Processes Controlling the Composition of Siliciclastic Sediments. Geol. Soc. Am. Spec. Pap., 1993,284:171-185
    [55] Morton A.C., Smale D.The effects of transport and weathering on heavy minerals from the Cascade River, New Zealand.Sediment.Geol.,1990, 168:117-123
    [56] Morton A.C.Stability of detrital heavy minerals in Tertiary sandstones of the North Sea Basin. Clay Miner., 1984, 19:287-308
    [57] Morton A.C. Heavy minerals in provenance studies In: Zuffa G. G. (eds.) Provenance of Arenites. Reidel. Dordrecht. 1985, 249-277
    [58] NASA. Earth Science Enterprise Alication Strategy for 2002—2012 [EB/OL]. http://www. earth.nasa.gov, 2002
    
    [59] NASA. Earth Science Enterprise Strategy [EB/OL]. http://www.earth.nasa.gov, 2003
    [60] NASA. Earth Science Enterprise Technology Strategy [EB/OL]. http://www.earth.nasa.gov, 2002
    [61] NASA. Exploring Our Home Planet2Earth Science Enterprise Strategic Plan [EB/OL]. http://www. earth, nasa. gov, 2001
    [62] NASA.NASA Earth Science Enterprise Research Strategy for 2000-2010[R].http: //www.earth.nasa.gov, 2000
    [63] Nesbitt R.W., Young G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites, Nature, 1982, 229:715-717
    [64] Okay A. I., Xu S., Sengor A. M. C. Coesite from the Dabie Shan eclogites, central China: Eur. Jour. Mineral. 1989, 1:595-598
    
    [65] Passage R., Texture as characteristic of clastic deposition. Bull. AAPG., 1957, 41: 1952-1954
    [66] Pettijohn F. J., Potter P. E., Siever R. Sand and sandstone. New York:Springer Verlag, 1987: 533
    [67] Pittman E. D. Plagioclase as an indicator of provenance in sedimentary rocks. Journal of Sedimentary Petrology 1970, 40:591-598
    [68] Roser B. P. and Korsch R. J. Determination of tectonic setting of sandstone-mudstone suites using SiO_2 content and K_2O/Na_2O ratios. Journal of Geology, 1986, 94:635-650
    [69] Roser B. P. and Korsch R. J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major element data. Chemical Geology, 1988, 67: 119~139.
    [70] Satio S. Major and trace elements geochemistry of sediments from East Greenland Continental Rise: an implication for sediment provenance and source area weathering. In:Saunders A. D., Larsen H. C., Wise, S. W. (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, 1998, 152: 19~28
    [71] Schieber J. A combined petrographical-geochemical provenance study of the Newland Formation, Mid-Proterozoic of Nontana. 2003 (unpublished)
    [72] Stewart L. K., Woolfe K J, Zwartz D. P. A new tool for the integration, graphical presentation and comparison of files contain paleocurrent data. Computers and Geosciences, 2001, 27: 351~355
    [73] Taylor S. R., Mclennan S. M. The continental crust: its composition and evolution. Oxford: Blackwell, 1985: 312
    [74] Visher G. S. Fluvial processes as interpreted from ancient and recent fluvial deposits, In: Middleton G. V. (eds.) Primary sedimentary structures and their hydrodynamic interpretation, Soc. Econ, Paleontologists Mineralogists Spec. Publ., 1965, 12: 116~132
    [75] Visher G. S. Grain size distributions and depositional processes, J. Sedim. Petro., 1969, 39: 1074~1106
    [76] Wang Q., Liu X., Maruyama S. et al. Top boundary of the Dabie UHPM rocks, Central China. J. SE. Asia Geol., 1995, 11: 295~300
    [77] Wang Q., Cong B. Deformation sequence of UHP rocks from the Dabie mountains, China. Chinese Science Bulletin, 1995, 40 (Su.): 154~155
    [78] Wang Q., Liou J. G., Maruyama S. Coesite-bearing eclogites from the Dabie Mountains, Central China: Petrology and P-T path. Journal of Geology, 1992, 100: 231~250
    [79] Wang Q., Liu X., Maruyama S. Top boundary of the Dahie UHP rocks, Central China. GSA Abstract with Programs, 1993, 25: 99
    [80] Webb L. E., Hacker B. R., Ratschbacher L., et al. Thermochronologic constraints on deformation and cooling history of high-and ultrahigh-pressure rocks in the Qingling-Dabie orogen, eastern China. Tectonics, 1999, 18: 621~638
    [81] Woolfe K. L., Stewart L. K., Francis J. E., et al. PC99: a new freeware for manipulating and graphically displaying palaeocurrent data. Sedimentary Geology, 2000, 133: 1~5
    [82] 安徽省地质局区域地质调查队.中华人民共和国区域地质调查报告(六安幅、岳西幅).1974
    [83] 安徽省地质矿产局.安徽省区域地质志.北京:地质出版社,1987,1~577
    [84] 毕思文.地球系统科学(科学版研究生教材).北京:科学出版社,2003,8
    [85] 毕思文.地球系统科学导论(科学版本科生教材).北京:科学出版社,2003:10
    [86] 毕思文.地球系统科学综述.地球物理学进展,2004,19(3):504~514
    [87] 毕治国,李玉发,汤加富,等.皖西白大山群的发现及其地质意义.安徽地质,1994,4(2):135~140.
    [88] 蔡雄飞,黄思骥,肖劲东等.人工重矿物组分的研究法在岩相古地理研究中的应用~以厂坝王家山组浅变质岩系为例.岩相古地理,1990,1:12~17
    [89] 陈海泓,孙枢,李继亮,等.前陆盆地的构造制约~以湘西中生代沅麻盆地为例.见:李继亮主编.中国东南海陆岩石圈结构与演化研究.北京:中国科学技术出版社,1992:17~31
    [90] 陈建平,钟建华,饶孟余,等。合肥盆地中、新生代沉积相初步研究.沉积与特提斯地质,2003,23(2):48~53
    [91] 陈泮勤,马振华,王庚辰译.地球系统科学.北京:地震出版社,1992
    [92] 陈泮勤,孙成权主编.国际全球变化研究核心计划.北京:气象出版社,1992.
    [93] 陈泮勤.地球系统科学的发展与展望.地球科学进展,2003,18(6):974~979
    [94] 陈泮勤.国际地圈生物圈计划——全球变化的研究.中国科学院院刊,1987,2(2):206~211
    [95] 陈丕基.中国陆相侏罗—白垩系划分对比评述.地层学杂志,2000,24(2):114~119
    [96] 丁丽荣,柳忠泉,雷敏,等.合肥盆地演化及构造样式.2002,石油实验地质,24(3),204~108
    [97] 董树文,孙先知,张勇,等.大别山碰撞造山带基本结构.科学通报,1993,38(6):542~545
    [98] 董树文,王小凤,黄得志,等.大别山超高压变质带内浅变质岩片发现及意义.科学通报,1996.41(9):815~520
    [99] 杜远生,冯庆来,殷鸿福,等.东秦岭—大别山晚海西—早印支期古海洋探讨.地质科学,1997,32(2):129~134
    [100] 范国清.华北石炭纪海侵活动规律.中国区域地质,1991,(4):349~355
    [101] 方盛明,余钦范,张先康.中国东部及其邻域岩石圈底界面特征及地震活动性.地球物理学报,2001,44(1),49~54
    [102] 冯宁升,丁宝良.浙江白垩系古地磁研究的新认识.《第三界全国地层会议论文集》编委会,第三界全国地层学会议论文集,北京:地质出版社,2002:300~303.
    [103] 国家自然科学基金委员会地球科学部.21世纪初地球科学战略重点.北京:中国科学技术出版社,2002:159
    [104] 国家自然科学基金委员会地球科学部.21世纪初地球科学战略重点.北京:中国科学技术出版社,2002:3
    [105] 韩金炎.数学地质.北京:煤炭工业出版社.1996
    [106] 韩树芬,等.安徽北部中新代沉积盆地分析.北京:地质出版社,1996.84~99
    [107] 郝杰,刘小汉,等.桐柏一大别碰撞带推覆—滑脱构造及其演化.地质科学,1988,18(1):5~10
    [108] 郝天珧,刘建华,宋海斌,等.华南及其相邻边缘海域—些重要断裂的地球物理证据.地球物理学进展,2002,17(1),1~11
    [109] 和钟铧,刘招君,张峰.重矿物在盆地分析中的应用研究进展.地质科技情报,2001,20(4):29~32
    [110] 河南省地质矿产局.河南省区域地质志.北京:地质出版社,1989:1~690
    [111] 河南省地质矿产局.河南省区域地质志.北京:地质出版社,1985
    [112] 侯遵泽,杨文采.中国重力异常的小波变换与多尺度分析.地球物理学报,1997,40(1),85~95
    [113] 贾红义,吕希学,李云平,等.合肥盆地重力场特征.石油实验地质,2002,24(3),232~242
    [114] 焦养泉,李珍,周海民.沉积盆地物质来源综合研究—以南堡老第三纪亚断陷盆地为例.岩相古地理,1998,18(5):16~20
    [115] 金成伟,郑祥身.大别岳西地区花岗岩类岩石学及其成因.岩石学报,1998,14(4):493~502
    [116] 金福全,张廷秀,王家文.河南固始花园墙组时代的新认识.地层学杂志,1994,18(4):301~308.
    [117] 金福全,刘因,王道轩,等.关于三尖铺组~大别山北麓的侏罗纪地层问题.安徽地质,1999,9(4):241~249
    [118] 金福全,王道轩,李双应,等.大别山北麓侏罗系一个典型的古冲积扇~凤凰台组.安徽地质,2001,11(1):3~7
    [119] 金福全,王道轩,李双应,等.大别山北麓侏罗系一个典型的古冲积扇—凤凰台组.安徽地质,2001,11(1):1~8
    [120] 李宝芳, 李祯, 付泽明,等.华北南部晚古生代陆表海的沉积充填、聚煤特征和构造演化.地球科学~中国地质大学学报,1989,14(4):367~378.
    [121] 李春昱.中国板块构造轮廓.中国地质科学院.中国地质科学院院报.北京:地质出版社,1980,(1):11~18
    [122] 李继亮,肖文交,闫臻.盆山耦合与沉积作用.沉积学报,2003,21(1):52~60
    [123] 李锦轶.中朝地块与扬子地块碰撞的时限与方式—长江中下游地区震旦纪—侏罗纪沉积环境的演变.地质学报,2001,75(1):25~34
    [124] 李丕龙,李学田,宋明水,等.合肥盆地石油地质与地球物理特征研究及进展.北京:地质出版社,2003
    [125] 李任伟,江茂生,李忠,等.大别山北麓侏罗系大理岩砾石的碳~氧同位素组成及地质意义.岩石学报,2002,15(40):623~629
    [126] 李任伟,李忠,江茂生,等.合肥盆地碎屑石榴石组成及其对源区恢复和地层对比的意义.中国科学(D辑),2002,30(增刊):91~98
    [127] 李任伟,桑海清,张任祜,等.合肥盆地侏罗系沉积岩中高压~超高压变质岩物质源年代学.科学通报,2003,48(5):480~485
    [128] 李任伟,孙枢,李忠,等.大别造山带高压~超高压岩石对合肥盆地侏罗系沉积的贡献.岩石学报,2002,18(4):526~530
    [129] 李任伟,万渝生,陈振宇,等.根据碎屑锆石SHRIMP U—Pb测年恢复早侏罗世大别造山带源区特征.中国科学(D辑),2004,34(4):320~328
    [130] 李曙光,聂永红,Hart S.R. 俯冲陆壳与上地幔的相互作用——Ⅱ大别山同碰撞镁铁—超镁铁岩的Sr,Nd同位素地球化学.中国科学(D辑),1998,28(1):18~22
    [131] 李曙光.论华北与扬子陆块的碰撞时代.安徽地质,1992,2(4):13~23
    [132] 李曙光,Jagoutz E.,肖益林,等.大别山~苏鲁超高压变质年代学——I.Sm—Nd同位素体系.中国科学(D辑),1996,26(3):249~257
    [133] 李双应, 岳书仓,王道轩,等.大别造山带超高变质岩折返隆升的地层学证据—晚侏罗世榴辉岩砾石的启示.地质论评,2002,48(4):345~352
    [134] 李双应,王道轩,刘因,等.大别造山带北缘中生代冲积体系对源区构造的沉积响应.地质通报,2002,21(8~9):541~546
    [135] 李双应,岳书仓,王道轩,等.大别造山带北缘中生代地层格架厘定.地层学杂志,2002,26(3):178~187
    [136] 李双应,岳书仓,王道轩,等.大别造山带北缘中生代地层格架厘定.地层学杂志,2002,26(3):178~220
    [137] 李双应.大别造山带北缘中生代沉积学、盆地分析和构造演化:[博士学位论文].合肥,合肥工业大学,2003.
    [138] 李双应,等.大别造山带北缘中生代冲积体系对源区构造的沉积响应.地质通报,2002,21(8~9):541~546。
    [139] 李思田.沉积盆地的动力学分析.地学前缘,1995,2(3~4):1~8
    [140] 李耀西,讲迎平,丁保良.中国东南部白垩系综合地层学研究的新进展.地质学报,2001,75(4):451~458
    [141] 李勇,曾允孚.龙门山逆冲推覆作用的地层标识.成都理工学院学报,1995,22(2):1~10
    [142] 李云安,傅昭仁.秦岭群的东延及其意义.现代地质,1997,11(1):125~129
    [143] 李忠,李任伟,孙枢等.合肥盆地南部侏罗系砂岩碎屑成分及其物源构造属性.岩石学报,1999,15(3):438~445
    [144] 李忠,李任伟,孙枢,等.大别地块北缘侏罗系花岗岩类砾石的Rb—Sr年代学特征.科学通报,2001,46(7):582~585
    [145] 李忠,李任伟,孙枢,等.合肥盆地南部侏罗系砂岩碎屑成分及其物源构造属性.岩石学报,1999,15(3):438~445
    [146] 李忠,李任伟,孙枢.大别山中生代构造演化:来自盆地沉积充填记录的启示.地质通报,2002,21(8~9):547~553
    [147] 李忠,孙枢,李任伟,等.合肥盆地中生代充填序列及其对大别山造山作用的指示.中国科学(D辑),2000,30(3):256~263
    [148] 林传勇,徐义刚,史兰斌,等.吉林伊通幔源包体中富K和Na包体:上地幔流体存在的证据.科学通报,1994,39(9):820~823
    [149] 刘宝珺,余光明,魏沐潮,等.岩相古地理学教程(内部试用).地质矿产部岩相古地理工作协作组,1990
    [150] 刘德良,沈修志,李秀新,等.合肥盆地深部推覆~伸展构造及含油气控制分析.南京大学学报(地球科学版),1993,5(2):208~215
    [151] 刘和甫,梁慧杜,蔡立国,等.川西龙门山冲断系构造样式与前陆盆地演化.地质学报,1994,68(2):101~118
    [152] 刘和甫,梁慧社,蔡立国,等.天山两侧前陆冲断系构造样式与前陆盆地演化.地球科学,1994,19(6):727~741
    [153] 刘和甫,梁慧社,李晓清等.中国东部中新生代裂陷盆地与伸展山岭耦合机制.地学前缘,2000,7(4):477~486
    [154] 刘和甫,汪泽成,熊保贤,等.中国中西部中、新生代前陆盆地与挤压造山带耦合分析.地学前缘,2000,7(3):55~72
    [155] 刘和甫,夏义平,殷进垠,等.走滑造山带与盆地耦合机制.地学前缘,1999,6(3):121~132
    [156] 刘和甫.盆地—山岭耦合体系与地球动力学机制.地球科学,2001,26(6):581~596
    [157] 刘少峰,柯爱蓉,吴丽云,等.鄂尔多斯西南缘前陆盆地沉积物物源分析及其构造意义.沉积学报,1997,15(1):156~160
    [158] 刘少峰,张国伟,张宗清,等.合肥盆地花岗岩砾石同位素年代学示踪.科学通报,2001,46(9):748~753
    [159] 刘文灿,王果胜.北淮阳地区中生代逆冲推覆构造.现代地质,1999,13(2):143~148.
    [160] 刘训,王军,张招崇,等.第四纪磨拉石组分与青藏高原隆升的关系——对新疆叶城柯克亚剖面第四系砾石成分测量结果的认识.地质通报,2002,21(11):759~763
    [161] 刘志飞,Steward L.K.图形显示和比较古水流数据的一种软件(PC99):以青藏高原北部可可西里盆地新生代古水流数据为例.沉积学报,2002,20(2):354~358
    [162] 卢华复,贾东,陈楚铭等.库车新生代构造性质和变形时间.地学前缘,1999,6(4):215~221
    [163] 马力,陈焕疆,甘克文,等.中国南方大地构造和海相油气地质.北京:地质出版社,2004:1~251
    [164] 马昌前,杨坤光,许长海,等.Ehlers C.大别山中生代钾质岩浆作用与超高压变质地体的剥露机理.岩石学报,1999,15(3):379~395
    [165] 牛树银,孙爱群,白文吉.造山带与相邻盆地间物质的横向迁移.地学前缘,1995,2(1~2):85~92
    [166] 石耀霖,马宗晋,吴忠良.新世纪地球科学视野中的新技术和新方法(代序).地学前缘,2003,10(1):1~4
    [167] 宋海斌,郝天珧,江为为,等.南海地球物理场特征与基底断裂体系研究.地球物理学进展,2002,17(1),1~11
    [168] 宋明水,江来利,李学田,等.大别山造山带对合肥盆地的构造控制.石油实验地质,2002,24(3):209~215
    [169] 孙枢.对我国全球变化与地球系统科学研究的若干思考.地球科学进展,2005,20(1):6~10
    [170] 索书田,桑隆康,韩郁菁,等.大别山前寒武纪变质地体岩石学与构造学.武汉:中国地质大学出版社,1993:1~255
    [171] 索书田,钟增球,游振东.大别地块超高压变质期后伸展变形及超高压变质岩石折返过程.中国科学(D辑),2000,30(1):9~17
    [172] 万天丰,朱鸿.中国东部中、新生代板内变形构造应力场及其应用.北京:地质出版社,1996
    [173] 汪品先.我国的地球系统科学研究向何处去.地球科学进展,2003,18(6):837—851
    [174] 汪泽成,刘和甫,熊宝贤,等.从前陆盆地充填地层分析盆山耦合关系.地球科学,2001,26(1):33~39
    [175] 王道轩,金福全,谢宪德,等.合肥盆地三尖铺组40Ar—39Ar同位素年代地层学研究.地层学杂志,2000,24(3):236~242
    [176] 王道轩,李双应,刘因,等.六安小华山周公山组火山碎屑岩的发现及其意义.安徽地质,2000,10(4):248~251
    [177] 王道轩,李双应,刘因,等.六安小华山周公山组火山碎屑岩的发现及其意义.安徽地质,2000,10(4):248~251
    [178] 王道轩,刘因,李双应,金福全.大别超高压变质岩折返至地表的时间下限:大别山北麓晚侏罗世中发现榴辉岩砾石.科学通报,2001,46(14):1216~1220
    [179] 王建伟,王晓莺,谢兰芳,等.安徽省重力场基本特征.安徽地质,2004,14(3),192~195
    [180] 王清晨,从柏林,马力.大别山造山带与合肥盆地的构造耦合.科学通报,1997,42:575~580
    [181] 王清晨,Rumble D..中国大别山双河超高压变质大理岩的氧、碳同位素.中国科学(D辑),1999,29(3):214~221
    [182] 王清晨,从柏林,马力.大别造山带与合肥盆地的构造耦合.科学通报,1997,42(6):575~580
    [183] 王清晨,从柏林.大别山超高压变质带的大地构造框架.岩石学报,1998,14(4):481~492
    [184] 王清晨,从柏林.大别山超高压变质岩地球动力学意义.中国科学(D辑),1996,26(3):271~276.
    [185] 王清晨,李忠.盆山耦合与沉积盆地成因.沉积学报,2003,21(1):24~30
    [186] 王清晨,彭海波,孙枢.赣北安源煤系沉积对构造活动的响应.地质科学,1991,25(3):231~238
    [187] 王蓉,沈后.合肥盆地侏罗~白垩系界线附近的孢粉组合:见:地球科学进展学术讨论会编辑委员会编 地球科学进展学术谈论会论文摘要.武汉:中国地质大学出版社,1992:78~79
    [188] 王小凤,李中坚,陈柏林,等.郯庐断裂带.北京:地质出版社,2000,316~321
    [189] 王亚琳,张交东,邱连贵,等.试论合肥中新生代盆地构造单元划分.2002,12(2):97~103
    [190] 王玉新.鄂尔多斯西缘褶皱—冲断带及其前陆盆地的形成与形变.北京:中国地质大学,1991
    [191] 吴根耀,马力,钟大赉,等.滇桂交界区印支期增生弧型造山带:兼论与造山作用耦合的盆地演化.石油实验地质,2001,23(1):8~18
    [192] 吴根耀,马力.“盆”“山”耦合和脱耦:含油气盆地研究新思路.见:中国石油学会石油地质专业委员会编.油气盆地研究新进展第一辑.北京:石油工业出版社,2002:20~36
    [193] 吴根耀,马力.2003b.试论“盆”“山”的耦合和脱耦及其运动学.石油实验地质,25(2):99~109
    [194] 吴根耀,马力.“盆”“山”耦合和脱耦在含油气盆地分析中的应用.石油实验地质,2003:25(6):533~545
    [195] 吴根耀.盆地研究的活动论构造观.石油实验地质,1998,20(4):309~318
    [196] 吴根耀.造山带地层学.成都:四川科学技术出版社,乌鲁木齐:新疆科技卫生出版社,2000:218
    [197] 吴根耀.初论造山带古地理学.地层学杂志,2003,27(2):81~98
    [198] 吴利仁,徐贵忠.东秦岭~大别山碰撞造山带的地质演化.北京:科学出版社,1998:177~183
    [199] 谢窦克,史鸿歧,郭坤一.大别山区域变质带及地质构造研究.南京地质矿产研究所.南京地质矿产研究所刊.北京:地质出版社,1983,2(2):87-98
    [200] 徐春华,邱连贵,雷敏,等.合肥盆地沉积构造样式与大别造山带的演化历史.沉积与特提斯地质,2002,22,(2):91~98
    [201] 徐嘉炜,刘德良,杨学忠,等.中国东部中生代南北陆块的对接.庆祝中国地质学会成立60周年论文选集.北京:地质出版社,1987:99~122
    [202] 徐树桐,陈冠宝,陶正,等.中国东部徐~淮地区地质构造格局及其形成背景.北京:地质出版社,1993
    [203] 徐树桐,江来利,刘贻灿,等.大别山区(安徽部分)的构造格局和演化过程.地质学报,1992,66(1):1~14
    [204] 徐树桐,刘贻灿,江来利,等.大别山的构造格局和演化.北京:地质出版社,1994:34~60
    [205] 徐树桐,刘贻灿,江来利,等.大别山的构造格局和演化.北京:科学出版社,1994
    [206] 徐树桐,刘贻灿,江来利.大别山的构造格局和演化.北京:北京科学技术出版社,1994
    [207] 徐佑德,赵明,徐春华,等.合肥盆地安参1井中生代地层特征.石油实验地质,2002,24(3):223~227
    [208] 许长海.大别造山带碰撞后构造热/岩浆演化过程:[博士学位论文].上海:同济大学海洋与地球科学学院,2003
    [209] 许长海,周祖翼,Van Den Haute P.,等.大别造山带磷灰石裂变径迹(AFT)年代学研究.中国科学(D辑),2004,34(7):622~634
    [210] 许长海,周祖翼,马昌前,等.大别造山带140~85Ma热窿伸展作用:年代学约束.中国科学(D辑),2001,31(11):925~937
    [211] 薛爱民,金维浚.合肥盆地油气地质及其与大别造山带构造耦合.北京:石油工业出版社,2001:1~169
    [212] 闫义,林舸,陈卓.北票盆地侏罗纪砾岩沉积特征及对区域构造演化的指示.大地构造与成矿学,2001,25(4):361~367
    [213] 杨坤光,马昌前,许长海,等.东大别山北缘姚河岩体与边部糜棱岩带的研究及其地质意义.地震地质,1998,20(4):305~311
    [214] 杨森楠,吴鉴,杨学忠,等.大别山晚前寒武纪构造发展.地球科学,1983,8(3):81~90
    [215] 杨巍然,简平,王国灿.大别造山带构造年代学.武汉:中国地质大学出版社,2000:1~107
    [216] 杨为民,杨友根.北淮阳地区的中生界.安徽地质,1995,5(4):11~17
    [217] 杨文采,施志群,侯遵泽等,2001,离散小波变换与重力多种分解,地球物理学报,44(4),534~541
    [218] 杨志坚.合肥凹陷中、新生界地层的初步认识.第一届全国地层会议文件,1959
    [219] 姚玉鹏,马福臣.美国地球系统科学教育概况及对我国地球科学教育的启示.地球科学进展,2004,19(5):712~714
    [220] 叶伯丹,简平,许俊文,等.桐柏—大别造山带北坡苏家河群地体拼接带及其构成河演化.武汉:中国地质大学出版社,1993:1~81
    [221] 游振东,韩郁菁,杨巍然,等.东秦岭大别高压超高压变质带.武汉:中国地质大学出版社,1998:1~154
    [222] 于兴河,王德发,郑浚茂.华北地区二叠系砂岩成分与构造背景关系的探讨.现代地质,1994,8(3):299~307
    [223] 俞云文,徐步台.浙江中生代晚期火山~沉积岩系层序和时代.地层学杂志,1999,23(2):136~145
    [224] 翟明国,从柏林.苏鲁—大别山变质带岩石大地构造学.中国科学(D辑),1996,26(3):258~264
    [225] 张国伟,李三忠,刘俊霞,等.新疆伊犁盆地的构造特征与形成演化.地学前缘,1999,6(4):203~214
    [226] 张旗,马宝林,刘若新,等.一个消减带之上的大陆岩石圈地幔残片~安徽饶拔寨超镁铁岩的地球化学特征.中国科学,1995,25(8):867~873
    [227] 赵红格,刘池洋.物源分析方法及研究进展.沉积学报,2003,21(3):409~415.
    [228] 赵鹏大.定量地学方法及应用.北京:高等教育出版社,2004
    [229] 赵宗举,李大成,朱炎,等.合肥盆地构造演化及油气系统分析.石油勘探与开发,2001,28(4),8~13
    [230] 赵宗举,杨树锋,陈汉林,等.合肥盆地基底构造属性.地质科学,2000,35(3):288~ 296
    [231] 赵宗举,杨树锋,周进高,等.合肥盆地逆掩冲断带地质—地球物理综合解释及其大地构造属性.成都理工学院学报,2000,27(2):152~156
    [232] 赵宗举,朱琰,徐春华,等.合肥盆地与大别~张八岭造山带的耦合关系.石油实验地质,2003,25(6):670~678
    [233] 郑洪波,Butcher K,Powell C.新疆叶城晚新生代山前盆地演化与青藏高原北缘的隆升.沉积学报,2002,20(2):274~281
    [234] 郑祥身,金成伟,翟国明,等.北大别灰色片麻岩的岩石化学特征及大地构造背景.岩石学报,1999,15(3):350~358
    [235] 中国科学院资源环境科学信息中心.国际地球科学研究动态.北京:中国科学院,2001.
    [236] 周安朝.浅谈造山带与沉积盆地的关系.太原理工大学报,2002,33(4):449~456
    [237] 周高誌,Liou J.G.,刘源骏.湖北北部高压、超高压变质带.武汉:中国地质大学出版社,1996:1~222
    [238] 朱光,徐嘉伟,孙世群.郯庐断裂带平移时代的同位素年龄证据.地质论评,1995,41(5):462~456

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700