用户名: 密码: 验证码:
桐柏—大别造山带南缘边界断裂中生代变形特征及其对碰撞造山过程的启示
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桐柏-大别造山带以广泛出露的超高压物质受到全世界地质学家的关注。地质和地球物理资料揭示整个造山带内部表现为被断层(或剪切带)围限的总体北倾的岩片组成的构造堆叠体。造山带碰撞-挤出-隆升过程中不同构造岩片分别沿其顶、底滑面运移,从而形成了一系列相互关联彼此联系的断裂-剪切网络。对这些剪切网络的运动轨迹和演化历史进行系统分析,对解决大别造山带造山过程和探讨造山带动力学具有重要科学意义。大别造山带折返地体北界主要由磨子潭-晓天断裂和浒湾剪切带构成,南缘主要有新城-黄陂断裂和襄樊-广济断裂,东缘被郯城-庐江断裂围限。由于变形分解作用,上述边界断裂承担了造山过程中绝大多数的构造变形和位移量,是造山动力学过程研究的重要窗口。
     本论文将研究重点集中在前人研究程度较低,但对造山带构造意义重大的造山带南界断层:襄樊-广济断裂(襄广断裂)和新城-黄陂断裂(新黄断裂)。通过野外露头和室内显微构造分析、运动学和动力学分析、U-Pb锆石和云母40Ar/31Ar年代学分析,并结合地球物理和地球化学资料对上述两条主要边界断层进行了系统研究。最后结合前人资料对造山带主要边界断裂体系进行了系统研究,并在此基础上提出了超高压地体两阶段构造挤出的运动轨迹和构造意义。
     襄广断裂地处桐柏-大别造山带与扬子前陆的接合部位,是分隔桐柏-大别造山带和扬子陆块的分界线,与造山带构造变形关系密切。造山带变质片岩沿该断裂向南逆冲在未变质-浅变质的扬子陆块北缘岩系之上。对襄广断裂的解析能帮助我们更好地限制桐柏-大别造山带超高压变质地体的折返过程和造山后期扬子陆块与桐柏-大别造山带相互作用过程。前人对襄广断裂的变形模式解释多数是为了配合造山带整体俯冲-折返模型,缺少对其专门的构造地质学研究。复杂多样的俯冲-折返模式也导致了襄广断裂复杂多样的成因机制。如燕山期扬子-大别陆内俯冲缝合带;勉县-略阳缝合带东延;大别南缘扬子盖层向南的重力滑脱面;超高压岩片底部滑动面等等。襄广断裂的多种成因和变形模式也说明它在大别造山带构造演化中的重要地位。
     本次研究沿襄广断裂实施了8条实测横切剖面。以商麻断裂为界,襄广断裂东西两段构造差异明显。断裂东段断层走向NW~NNW,现今控制性地表构造显示自南而北的逆冲,主断面南缘的次级断裂中局部保留了早期自北而南的逆冲构造。而地质与地球物理资料揭示襄广断裂东段实际是一个指向南的大规模的低角度逆冲推覆断层。逆冲过程中襄广断裂相对扬子前陆发生了顺时针的旋转,导致二者早期平行的构造元素推覆后呈大角度相交。
     襄广断裂西段地表构造总体表现为自北而南的逆冲滑脱。襄广断裂带附近的扬子北缘古生代地层中发育丰富的不协调滑脱褶皱,指示断层性质应为低角度逆冲推覆。板桥店一带被断层围限在扬子古生代地层之上的变质片岩被确定为来自大别山南缘的飞来峰,据此推测襄广断裂向扬子前陆的逆冲推覆距离在30km以上。襄广断裂西段的深部构造行迹与地表一致,亦为向南西的低角度逆冲推覆,并在约15~20km处与扬子中下地壳滑脱层合并后消失,并未切穿moho面。
     新城-黄陂断裂西起南阳盆地东缘的河南新城,东过黄陂至浠水马垄镇,再向东还包括张八岭剪切带,绵延500余公里,走向NW-SE,为一韧性逆冲、韧性走滑、脆性逆冲和脆性正滑多期多次联合作用的复杂断层。断层两侧地质体变质、变形特征差异巨大。其南侧为蓝片岩-绿片岩相中浅变质的随州-应城-张八岭构造带,而其北侧则为深变质的高温-超高压变质带,普遍经历了高角闪岩相、麻粒岩相变质作用,甚至出现混合岩化。以往的研究认为新黄断裂是一条形成于白垩纪的右行剪切带,其与同时代的大别北缘的磨子潭-晓天左行剪切带作为南北边界均形成于白垩纪大别山岩片向南东的构造挤出过程中。
     本次研究在新城-黄陂剪切带完成了4条大比例尺实测剖面。剖面显示剪切带内岩石主要由斜长片麻岩、片岩和长英质糜棱岩组成,剪切带北侧发育同构造眼球状花岗岩。两侧岩石显示明显的右行剪切特征,但部分观测点见明显指示左行剪切的S-C组构,呈被断层围限的透镜体状夹持于总体右行的剪切带中或被右行剪切叠加。左行剪切拉伸线理方向指向南西,与剪切带走向近垂直,指示上盘指向南西的逆冲型韧性剪切。而右行剪切指向与剪切带走向一致,均为北西-南东向。可以肯定的是在控制现在格局的右行走滑剪切之前,新黄断裂带曾发生过指向南西的逆冲型韧性剪切运动。对逆冲型剪切糜棱岩进行的39Ar/40Ar测年结果显示其变形时间在231~235Ma,冷却时间在220Ma-193Ma,分别对应超高压岩片变质峰期和折返时间,证实在陆陆俯冲阶段和超高压岩片折返过程中桐柏剪切带已经启动。
     本论文以大陆动力学和岩石流变学思想为指导,以大别造山带南缘襄樊广济断裂和新城-黄陂断裂为研究对象,利用野外构造地质学、显微构造学、流变学、构造年代学、变质地质学等学科方法探讨襄樊-广济断裂和新城黄陂断裂的运动轨迹、时空演化、成因机制和动力过程问题,并结合前人研究成果,对大别山主要边界断裂进行系统分析,为大别造山带造山动力学和超高压折返机制提供重要信息和证据。获得了以下几点认识。
     1.以商麻断裂为界,襄广断裂东西两段构造差异明显。断裂东段断层走向NW-NNW,现今控制性地表构造显示自南而北的逆冲,主断面南缘的次级断裂中局部保留了早期自北而南的逆冲构造。而地质与地球物理资料揭示襄广断裂东段实际是一个指向南的大规模的低角度旋钮式逆冲推覆断层。襄广断裂西段地表构造总体表现为自北而南的逆冲推覆。板桥店一带被断层围限在扬子古生代地层之上的变质片岩被确定为来自大别山南缘的飞来峰,据此推测襄广断裂向扬子前陆的逆冲推覆距离在30km以上。襄广断裂西段的深部构造行迹与地表一致,亦为向南西的低角度逆冲推覆,并在约15~20km处与扬子中下地壳滑脱层合并后消失,并未切穿moho面。
     2.襄广断裂经历了五期构造变形:D1期构造变形形成于扬子板块向华北板块陆陆俯冲的峰期阶段(234Ma~231Ma),大别造山带变质片岩逆冲在扬子北缘古生代盖层之上。燕山期(170~160Ma)襄广断裂卷入陆内挤压构造(D2),伴随南北陆块的持续汇聚,襄广断裂变形带向南扩展,早中侏罗世沉积的前陆盆地卷入变形,以发育纵弯褶皱和褶皱相关高角度断层为特征。D3期构造(143~138Ma)仅在断裂东段发育,表现为大别造山带向扬子前陆的顺时针旋钮式逆冲推覆。随后,大约在140~90Ma(D4),来自江南-雪峰陆内造山带(江南隆起)的自南而北的陆内挤压应力场改造了襄广断裂东段的几何形态,将襄广断裂东段总体倾向北东的构造面转换为总体倾向南。而深部(中下地壳)构造形态则变化不大,仍保持自北而南逆冲的构造形态。早白垩世后,襄广断裂进入伸展正滑构造阶段(D5),沿襄广断裂发育了一些小规模的晚白垩世红盆。对襄广断裂张裂石英脉进行的ESR定年显示襄广断裂在新生代张裂作用仍很活跃,因此拉张活动一直持续到新生代。
     3.新城-黄陂断裂为一条倾向北东的岩石圈尺度的深大断裂,构造和地貌反映明显,对桐柏-大别造山带构造格局具有重大影响,并至今仍对造山带具有控制意义。主剪切带以指示右行的韧性剪切为主,明显的糜棱岩化大致从南界的脆性断裂向北东延伸1~2km。剪切带内南侧夹有指示逆冲型韧性剪切的糜棱岩、超糜棱岩,指示在右行剪切之前新黄断裂还经历了强烈的逆冲型韧性剪切。
     4.新城-黄陂断裂自印支期以来主要经历了四期性质迥异的构造运动。第一期(D1)为指向南西的逆冲型韧性剪切,剪切带变形温度在550~650℃,变形机制以简单剪切为主。同位素测年指示其变形时间为230~235Ma,并在220-195Ma超高压物质退变质过程中以1.5mm/yr速率折返至中地壳尺度。第二期(D2)为指向南东的右行走滑剪切,变形温度在400~500℃,有限应变测量显示剪切带变形以压扭性变形为特征,变形时间为138~144Ma。第三期(D3)和第四期(D4)为新黄断裂后期的脆性变形,形成于白垩纪之后,对新黄断裂的地表出露格架进行了改造。
     5.造山带周缘断裂记录了造山带在印支期和燕山期经历了两阶段挤出。超高压地体在235~230Ma沿顶、底拆离面发生向上折返,并在220~195Ma以1.5~1.9mm/yr的速率折返至中地壳,折返动力机制以浮力为主,之后通过构造剥蚀出露地表。燕山期(150~140Ma)超高压地体沿其南、北边界断层发生了向东的侧向构造挤出,受其影响造山带东段发生了向扬子盆地方向的旋钮式挤压。
The Tongbai-Dabie Orogen Belt (DOB) in eastern central China is a600km long, NW-SE trending continental-continental collisional orogen and it was formed by Triassic northward subduction of the Yangtze craton beneath the Sino-Korean craton. The DOB contains one of Earth's three giant UHP terranes (>10,000km2). Geologists have made great efforts on revealing the ultra-high pressure (UHP) exhumation processes. The dynamic mechanism concerning the exact exhumation paths can be mainly divided into four types:buoyancy, disintegration, syn-collisional extrusion and plate detachment. Most of these models are based on petrology, isotope geochemistry and geochronology with only few studies based on structural work. Furthermore, most of the Triassic syn-collisional structures of the DOB have been destroyed by post-collisional extension, igneous intrusion and large-offset strike-slip faulting, which makes it difficult to understand the syn-collisional deformation processes of the DOB.
     Several seismic profiles across the DOB have revealed its three-dimensional architecture.The DOB is composed of several fault-bounded slices with continuously changing metamorphic and deformation intensities. These tectonically stacked terranes were extruded upward along their boundary detachment faults. It is widely recognized that systematic studies on kinematics and evolution of these boundary faults can provide firsthand information on the exhumation paths of the orogen. Structural geologists did much work on the Huwan fault and the Mozitan-xiaotian fault in the northern margin, the Tanlu fault along the eastern margin of the DOB. However, the southern boundary faults of the DOB are still poorly understood.
     The southern DOB includes two major boundary faults, the Xiangfan-Guangji fault (XGF) and the Xincheng-Huangpi fault (XHF). The XGF separates the DOB from the Yangtze craton and it is the lower boundary detachment of the orogen. Various extrusion models of the DOB give birth to various deformation mechanisms of the X-GF, such as a Jurassic continental-continental subduction zone, eastern extension of the Mianlue suture, S-dipping detachment surface of the Dabieshan dome, lower detachment surface of the UHP terrane. Multi-explanations of the XGF prove that the XGF played an important part in this evolution, but is still porrly understood.
     The XHF is the other major boundary fault in the southern DOB. It separates the southern DOB greenschist/blueschist unit (BU) from the DOB UHP complex (UC). The UC is characterized by extensively out-cropping coesite-bearing UHP rocks and is intruded by voluminous Cretaceous plutons, while the BU is composed of HP blueschists and greenschists with rare Cretaceous intrusions. This major fault was even considered as the suture zone between the South China Block and the North China Block.
     This study presents integrated macro-and micro structural data constraints on the architecture and kinematics of the two boundary faults in the southern DOB.40Ar/39Ar and U/Pb zircon geochronology is used to determine the deformation time of the faults. We then discuss the implications of the two boundary faults combined with other major boundary faults for the exhumation processes of the DOB. We got following major conclusions.
     1. Because of differential deformation and later reconstruction, the structural characters of the western part of the XGF are significantly different from the eastern part. The eastern X-GF trends NWN with15°-60°dip angles to the WSW. The fault is represented by incohesive fault breccia and fault gouge showing brittle deformation characters. Drag folds, fault rock fabrics and slickenlines show reverse fault characters, while the deep pattern of the X-GF represents as a low angle S-Directed thrust. The western part of the X-GF is composed of several NW-SE trending, NE dipping reverse faults. The general attitude of the fault belt is25-60°∠15°~65°. Several Fault-bounded Proterozoic albite-quartz-sericite schist klippes that belong to the DOB were found upon the Paleozoic unmetamorphosed rocks in the Banqiaodian area about30km south from the X-GF. These klippes reveal that the X-GF must have reached a further southern position (at least30km) than present and then it was eroded. The Dengxian-Nanzhang seismic reflection profile across the X-GF reveals that the X-GF is a listric continental crustal subduction fault along which the Yangtze craton subducted beneath the DOB. The dip angle of X-GF becomes gentler with depth and then it is combined to a subhorizontal detachment along the bottom of the upper crust at a depth of about20km.
     2. Five distinct episodes of deformation (designated as D1-D5), distinguished on the basis of cross-cutting relationships and deformation overprints, have been recognized in the X-GF. The Dl of the X-GF was characterized by the formation of greenschist facies mylonitic gneisses and it was the main deformation episode. The greenschist/blueschist facies rocks of DOB thrusted onto the Yangtze craton along the X-GF during this stage, the deformation developed in the temperature range from350℃to450℃during234-231Ma and it was a little earlier than the "main" UHP metamorphic event. The succedent D2deformation was characterized by brittle phase NE-dipping reverse faults, conjugated kink zones and buckle folds and it showed NE45°-trending coaxial compression during200-190Ma. The D3deformation is characterized by shallow brittle thrusting and tectonic rotation during-150-140Ma. the western and the eastern parts of the X-GF experienced different kinematic processes during this stage. The D3deformation was subsequently overprinted by a strong N-directed compression (D4deformation) during the Jiangnan intraplate orogeny. Field outcrops reveal that the former N-dipping faults and fold axial planes were reversed to be S-dipping (Fig.6, f). However, the middle-lower crust present early N-dipping reflectors. The stress field from the Jiangnan orogen reached to Wuhan to the north and the western part of the X-GF was scarcely influenced. The D5deformation of X-GF is characterized by local thrusts in a dominantly extensional stage. The Upper Cretaceous red beds locally overlapped on Paleozoic strata. This small thrust of the XGF indicates that the XGF was still active in the late Cretaceous.
     3. The Xincheng-Huangpi fault (XHF) is a1-2km wide, NW-trending belt extending for more than500km and is characterized by widely exposed mylonites and ultramylonites. The southern contact of the XHF is cut by later brittle normal faults parallel to the mylonite foliation. Along the ductile XHF a1to2km wide belt of protomylonites, mylonites and locally ultramylonites are exposed. To the north, the XHF gradually transitions into the granulite facies DOB UHP complex.
     4. The Xincheng-Huangpi fault (XHF) experienced two episodes of shearing during Mesozoic. It exhumed to middle crustal levels during234-195Ma with exhumation rates of ca.1.5mm/yr. It was contemporary with the Huwan shear zone along the northern boundary of the DC. Coeval thrust-slip and normal sense shear zones along the southern and northern margins of the Tongbai-Dabie UHP complex would have caused southward vertical extrusion of the UHP slab. The UHP metamorphosed rocks then exhumed to the surface by erosion. The later NW-trending dextral strike-slip shearing occurred during145-140Ma.
     5. The UHP terrane of Tongbai-Dabie orogen experienced two stage extrusion during Mesozoic. The UHP terrane extruded upperward around234Ma and exhumed to middle crustal levels during220-195Ma with an average exhumation rates of ca.1.5mm/yr. The UHP rocks then exhumed to the surface by erosion. Later NW-SE trending dextral strike-slip shearing of the XHF occurred between145-140Ma and was generally contemporaraneous with sinistral-oblique slip of the Xiaotian-Mozitan fault along the northern margin of the UC. Coeval dextral and sinistral-oblique shearing along the southern and northern margins of the UC would have caused southeastern lateral extrusion. This lateral extrusion has no relationship with the UHP exhumation.
引文
1 New departures in structural geology and tectonics, A White Paper resulting from a workshop held at Denver Colorado, September 22nd and 23rd,2002. http://www.pangea.stanford.edu/~dpollard/NSF/
    [1]郑亚东,常志忠.岩石有限应变测量及韧性剪切带[M].地质出版社,1985.p1-4
    [2]许志琴.中国主要大陆山链韧性剪切带及动力学[M].地质出版社,1997.p1-27
    [3]嵇少丞,钟大赉,许志琴,等.流变学:构造地质学和地球动力学的支柱学科[J].大地构造与成矿学,2008,32(3):257-264.
    [4]Peng S I, Yu R, Dongpo L, et al. The combined influence of background climate and urbanization on the regional warming in Southeast China[J]. Journal of Geographical Sciences,1993,12(6):245-260
    [5]Hacker B R, Ratschbacher L, Webb L, et al. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China[J]. Earth and Planetary Science Letters,1998,161(1-4): 215-230.
    [6]Meng Q, Zhang G. Geologic framework and tectonic evolution of the Qinling orogen, central China[J]. Tectonophysics,2000,323(3-4):183-196.
    [7]Xu Z. Etude tectonique et microtectonique de la chaine paleozoique et triasique des Qinlings (Chine)[J]. Unpublished Phd Thesis, Universite De Montpellier Ii, France,1987,162.
    [8]Liu Y C, Gu X F, Rolfo F, et al. Ultrahigh-pressure metamorphism and multistage exhumation of eclogite of the Luotian dome, North Dabie Complex Zone (central China):Evidence from mineral inclusions and decompression textures[J]. Journal of Asian Earth Sciences,2011,42(4SI):607-617.
    [9]Dong S W, Chen J F, Huang D Z. Differential exhumation of tectonic units and ultrahigh-pressure metamorphic rocks in the Dabie mountains, China[J]. Island Arc,1998,7(1-2):174-183.
    [10]Hacker B R, Wallis S R, Ratschbacher L, et al. High-temperature geochronology constraints on the tectonic history and architecture of the ultrahigh-pressure Dabie-Sulu Orogen[J]. Tectonics,2006,25(TC50065).
    [11]刘福来,薛怀民.苏鲁-大别超高压岩石中锆石Shrimp U-Pb定年研究——综述和最新进展[J].岩石学报,2007(11):2737-2756.
    [12]Hacker B R, Ratschbacher L, Webb L, et al. Exhumation of ultrahigh-pressure continental crust in east central China:Late Triassic-Early Jurassic tectonic unroofing[J]. Journal of Geophysical Research-Solid Earth,2000,105(B6):13339-13364.
    [13]OKAY A I, SENGOR A. EVIDENCE FOR INTRACONTINENTAL THRUST-RELATED EXHUMATION OF THE ULTRA-HIGH-PRESSURE ROCKS IN CHINA[J]. Geology, 1992,20(5):411-414.
    [14]Li Z, Zengqiu Z, Linsen W, et al. Pb isotope mapping in the Tongbai-Dabie orogenic belt, Central China[J]. Acta Geologica Sinica-English Edition,2008,82(1):126-133.
    [15]Li S Z, Kusky T M, Zhao G C, et al. Two-stage Triassic exhumation of HP-UHP terranes in the western Dabie orogen of China:Constraints from structural geology[J]. Tectonophysics,2010,490(3-4):267-293.
    [16]Li S, Kusk T M, Liu X, et al. Two-stage collision-related extrusion of the western Dabie HP-UHP metamorphic terranes, central China:Evidence from quartz c-axis fabrics and structures[J], Gondwana Research,2009,16(2):294-309.
    [17]袁学诚,任纪舜,徐明才,等.东秦岭邓县—南漳反射地震剖面及其构造意义[J].中国地质,2002(1):14-19.
    [18]Dong S W, Gao R, Cong B L, et al. Crustal structure of the southern Dabie ultrahigh-pressure orogen and Yangtze foreland from deep seismic reflection profiling[J]. Terra Nova,2004,16(6):319-324.
    [19]Klemperer S L, Chetwin E. Crustal structure and exhumation of the Dabie Shan ultrahigh-pressure orogen,eastern China,from seismic reflection profiling:Comment and Reply:中国科学院地质与地球物理研究所2004学术年会,中国北京,2004[C].
    [20]Bai Z M, Zhang Z J, Wang Y H. Crustal structure across the Dabie-Sulu orogenic belt revealed by seismic velocity profiles[J]. Journal of Geophysics and Engineering,2007,4(4):436-442.
    [21]刘福田,徐佩芬,刘劲松,等.大陆深俯冲带的地壳速度结构——东大别造山带深地震宽角反射/折射研究[J].地球物理学报,2003,46(3):366-372.
    [22]吴丹刘建华刘福田孙若昧吴华.秦岭-大别造山带及其南北缘地震层析成像[J].地球物理学报,1995(1):34-45.
    [23]Wang C Y, Zeng R S, Mooney W D, et al. A crustal model of the ultrahigh-pressure Dabie Shan orogenic belt, China, derived from deep seismic refraction profiling[J]. Journal of Geophysical Research-Solid Earth, 2000,105(B5):10857-10869.
    [24]赵志新,徐纪人.广角反射地震探测得到的中国东部地壳三维P波速度结构[J].科学通报,2009(7):931-937.
    [25]Lin W, Michel F, Wang Q C, et al. Tectonic evolution of the Dabieshan orogen:In the view from polyphase deformation of the Beihuaiyang metamorphic zone[J]. Science in China Series D-Earth Sciences, 2005,48(7):886-899.
    [26]Ratschbacher L, Hacker B R, Webb L E, et al. Exhumation of the ultrahigh-pressure continental crust in east central China:Cretaceous and Cenozoic unroofing and the Tan-Lu fault[J]. Journal of Geophysical Research-Solid Earth,2000,105(B6):13303-13338.
    [27]索书田,钟增球,游振东.大别地块超高压变质期后伸展变形及超高压变质岩石折返过程[J].中国科学(D辑:地球科学),2000,30(1):9-17.
    [28]Li S, Kusky T, Wang L, et al. Collision leading to multiple-stage large-scale extrusion in the Qinling orogen:Insights from the Mianlue suture[J]. Gondwana Research,2007,12(1-2):121-143.
    [29]刘鑫,李三忠,索艳慧,等.造山带挤出构造与高压-超高压岩石剥露机制:以大别山为例[J].地学前缘,2010(4):185-196.
    [30]Webb L E, Hacker B R, Ratschbacher L, et al. Thermochronologic constraints on deformation and cooling history of high-and ultrahigh-pressure rocks in the Qinling-Dabie orogen, eastern China[J]. Tectonics, 1999,18(4):621-638.
    [31]Faure M, Lin W, Scharer U, et al. Continental subduction and exhumation of UHP rocks. Structural and geochronological insights from the Dabieshan (East China)[J]. Lithos,2003,70(3-4):213-241.
    [32]Suo S T, Zhong Z Q, Zhou H W, et al. Meso-and Micro-structures of Foliated Eclogites in Dabie-Sulu UHP Belt and Implications for the Earliest Stages of Exhumation of UHP Metamorphic Rocks:An Example from Taohang, Southeastern Shandong, China[J]. Journal of Earth Science,2009,20(4):649-658.
    [33]Yang K, Liu Q, Xie J, et al. Deformation features of garnet-bearing granites from Huwan, western Dabie Mountains[J]. Science in China Series D:Earth Sciences,2009,52(1):55-65.
    [34]Xiang B, Wang Y, Li C, et al. Evolution of the Xiaotian-Mozitan fault and its implications for exhumation of Dabie HP-UHP rocks[J]. Progress in Natural Science-Materials International,2008,18(6):713-722.
    [35]李树钧,王国芝.湖北房县青峰断裂带的变形与变质作用研究[J].成都地质学院学报,1993,20(4):46-54.
    [36]杨坤光,程万强,朱清波,等.论大别山南缘襄樊广济断裂的两次向南逆冲推覆明.地质论评,2011,57(4):480-494.
    [37]董云鹏,张国伟,姚安平,等.襄樊广济断裂西段三里岗—三阳构造混杂岩带构造变形与演化[J].地质科学,2003(4):425-436.
    [38]Li S Z, Zhao G C, Zhang G W, et al. Not all folds and thrusts in the Yangtze foreland thrust belt are related to the Dabie Orogen:Insights from Mesozoic deformation south of the Yangtze River[J]. Geological Journal,2010,45(5-6):650-663.
    [39]杨文采.东大别超高压变质带的深部构造[J].中国科学D辑,2003(02).
    [40]董树文,胡健民,李三忠,等.大别山侏罗纪变形及其构造意义[J].岩石学报,2005,21(4):1189-1194.
    [41]张国伟,董云鹏,赖绍聪,等.秦岭-大别造山带南缘勉略构造带与勉略缝合带[J].中国科学(D辑:地球科学),2003(12):1121-1135.
    [42]Xiang B, Wang Y, Li C, et al. Evolution of the Xiaotian-Mozitan fault and its implications for exhumation of Dabie HP-UHP rocks[J]. Progress in Natural Science,2008,18(6):713-722.
    [43]Wang E, Meng Q, Burchfiel B, et al. Mesozoic large-scale lateral extrusion, rotation, and uplift of the Tongbai-Dabie Shan belt in east China[J]. Geology,2003,31(4):307-310.
    [44]殷鸿福,张克信.中央造山带的演化及其特点[J].地球科学,1998(5):3-5.
    [45]汤加富.大别山及邻区地质构造特征与形成演化:地幔差速环流与陆内多期造山[M].地质出版社,2003.
    [46]凌文黎,段瑞春,柳小明,等.南秦岭武当山群碎屑锆石U-Pb年代学及其地质意义[J].科学通报,2010(12):1153-1161.
    [47]李福林,李益龙,周国华,等.湖北随州大狼山群片岩中碎屑锆石的U-Pb年龄及其意义[J].岩石矿物学杂志,2010,29(5):488-496.
    [48]凌文黎,任邦方,段瑞春,等.南秦岭武当山群、耀岭河群及基性侵入岩群锆石U-Pb同位素年代学及其地质意义[J].科学通报,2007,52(12):1445-1456.
    [49]蔡志勇,熊小林,罗洪,等.武当地块耀岭河群火山岩的时代归属:单锆石U-Pb年龄的制约[J].地质学报,2007,81(5):620-625.
    [50]陈玲,马昌前,佘振兵,等.大别山北淮阳构造带柳林辉长岩:新元古代晚期裂解事件的记录[J].地球科学,2006,31(4):578-584.
    [51]刘贻灿,刘理湘,古晓锋,等.大别山北淮阳带西段新元古代浅变质岩片的岩石组成及其大地构造意义[J].地质科学,2011,46(2):273-287.
    [52]徐树桐,刘贻灿,江来利,等.大别山造山带的构造几何学和运动学:“十五”重要地质科技成果暨重大找矿成果交流会[C],中国北京,2006.
    [53]陈能松游振东.大别山区深部地壳的变质岩石学证迹:罗田惠兰山一带的麻粒岩研究[J].岩石学报,1995(2):137-147.
    [54]Malaspina N, Hermann J, Scambelluri M, et al. Multistage metasomatism in ultrahigh-pressure mafic rocks from the North Dabie Complex (China)[J]. Lithos,2006,90(1):19-42.
    [55]Xu S T, Wu W P, Xiao W S, et al. Moissanite in serpentinite from the Dabie Mountains in China[J]. Mineralogical Magazine,2008,72(4):899-908.
    [56]Liu Y C, Gu X F, Rolfo F, et al. Ultrahigh-pressure metamorphism and multistage exhumation of eclogite of the Luotian dome, North Dabie Complex Zone (central China):Evidence from mineral inclusions and decompression textures[J]. Journal of Asian Earth Sciences,2011,42(4):607-617.
    [57]万天丰.中国大地构造学纲要[M].地质出版社,2004.
    [58]Hacker B R, Ratschbacher L, Liou J G. Subduction, collision, and exhumation in the Qinling-Dabie Orogen[J]. Geological Society of London Special Publication,2004,226:157-175.
    [59]Wang L, Jin Z M, Kusky T, et al. Microfabric characteristics and rheological significance of ultra-high-pressure metamorphosed jadeite-quartzite and eclogite from Shuanghe, Dabie Mountains, China[J]. Journal of Metamorphic Geology,2010,28(2):163-182.
    [60]Ernst W, Liou J. Contrasting plate-tectonic styles of the Qinling-Dabie-Sulu and franciscan metamorphic belts[J]. Geology,1995,23(4):353-356.
    [61]Li Shuguang, Huang Fang, Zhou Hongying,等. U-Pb Isotopic Compositions of the Ultrahigh Pressure Metamorphic (Uhpm) Rocks From Shuanghe and Gneisses From Northern Dabie Zone in the Dabie Mountains, Central China:Constraint On the Exhumation Mechanism of Uhpm Rocks[J]. Science in China Series D:Earth Sciences,2003,46(3):200-209.
    [62]Aral I. Petrology of a diamond and coesite-bearing metamorphic terrain:Dabie Shan. China[J]. Eur. J. Mineral,1993,5:659-675.
    [63]周建波,郑永飞,李龙,等.扬子板块俯冲的构造加积楔[J].地质学报,2001,75(3):338-352.
    [64]周建波,程日辉,刘鹏举,等.浅变质岩在示踪大别—苏鲁造山带大陆板块俯冲与折返过程中的意义[J].地球科学进展,2004,19(5):736-742.
    [65]Wu Y B, Zheng Y F, Gong B, et al. Zircon U-Pb ages and oxygen isotope compositions of the Luzhenguan magmatic complex in the Beihuaiyang zone[J]. Acta Petrologica Sinica,2004,20(5):1007-1024.
    [66]王世锋,黄少瑛,徐备.北淮阳区地层研究进展[J].地质科技情报,2003,22(1):29-33.
    [67]王果胜,马文璞,徐毅.北淮阳东段变质构造地层的古构造环境[J].现代地质,2005,19(2):217-223.
    [68]Li S G, Huang F, Nie Y H, et al. Geochemical and geochronological constraints on the suture location between the North and South China blocks in the Dabie Orogen, Central China[J]. Physics and Chemistry of the Earth Part a-Solid Earth and Geodesy,2001,26(9-10):655-672.
    [69]吴元保,郑永飞,龚冰,等.北淮阳新开岭地区花岗岩锆石U-Pb年龄和氧同位素组成[J].地球科学,2005,30(6):659-672.
    [70]Chen F, Guo J H, Jiang L L, et al. Provenance of the Beihuaiyang lower-grade metamorphic zone of the Dabie ultrahigh-pressure collisional orogen, China:evidence from zircon ages[J]. Journal of Asian Earth Sciences,2003,22(4):343-352.
    [71]Chen F K, Zhu X Y, Wang W, et al. Single-grain detrital muscovite Rb-Sr isotopic composition as an indicator of provenance for the Carboniferous sedimentary rocks in northern Dabie, China[J]. Geochemical Journal,2009,43(4):257-273.
    [72]Zheng Y F, Zhou J B, Wu Y B, et al. Low-grade metamorphic rocks in the Dabie-Sulu orogenic belt:A passive-margin accretionary wedge deformed during continent subduction[J]. International Geology Review,2005,47(8):851-871.
    [73]郑晔,滕吉文.随县—马鞍山地带地壳与上地幔结构及郯庐构造带南段的某些特征[J].地球物理学报,1989(6):648-659.
    [74]王椿镛,郑金涵,胡鸿翔,等.大别造山带的地壳结构研究[J].中国科学D辑,1997(03).
    [75]Schmid R, Ryberg T, Ratschbacher L, et al. Crustal structure of the eastern Dabie Shan interpreted from deep reflection and shallow tomographic data[J]. Tectonophysics,2001,333(3-4):347-359.
    [76]彭聪,姜枚,宿和平,等.大别山超高压变质带层析地震调查[J].地质论评,2000(03).
    [77]徐佩芬,孙若昧,刘福田,等.扬子板块俯冲、断离的地震层析成象证据[J].科学通报,1999(15).
    [78]杨文采.中央造山带东段岩石圈的构造格架[J].中国地质,2005(02).
    [79]董树文,吴宣志,高锐,等.大别造山带地壳速度结构与动力学[J].地球物理学报,1998(03).
    [80]Dong S W, Li Q S, Gao R, et al. Moho-mapping in the Dabie ultrahigh-pressure collisional orogen, central China[J]. American Journal of Science,2008,308(4):517-528.
    [81]王椿镛,张先康,丁志峰,等.大别造山带上部地壳结构的有限差分层析成像[J].地球物理学报,1997(04).
    [82]王有学.苏鲁-大别超高压变质造山带广角地震测深地壳结构研究[D].北京:中国地质大学地球探测与信息技术,2002.
    [83]Hua L, LiangShu W, Cheng L, et al. Structure of the crust and uppermost mantle from broadband seismic array in the western Dabie Mountains, east central China[J]. Science in China Series D-Earth Sciences, 2009,52(2):203-212.
    [84]张景廉,朱炳泉,张平中.地球化学中的应用[J].地球科学进展,1997,12(1).
    [85]Zartman R E, Doe B R. Plumbotectonics-the model[J]. Tectonophysics,1981,75(1):135-162.
    [86]张本仁,张宏飞,赵志丹,等.东秦岭及邻区壳、幔地球化学分区和演化及其大地构造意义[J].中国科学(D辑:地球科学),1996,26(3):201-208.
    [87]Huang F, Li S, Dong F, et al. Recycling of deeply subducted continental crust in the Dabie Mountains, central China[J]. Lithos,2007,96(1):151-169.
    [88]李曙光,黄方,周红英,等.大别山双河超高压变质岩及北部片麻岩的U-Pb同位素组成——对超高压岩石折返机制的制约[J].中国科学D辑,2001(12).
    [89]张宏飞,张本仁,张海祖,等.桐柏山地壳结构的Pb同位素地球化学示踪研究[J].自然科学进展,2002,10(10):47-52.
    [90]路凤香,张本仁,韩吟文,等.秦岭-大别-苏鲁地区岩石圈三维化学结构特征[M].北京:地质出版社,2006.
    [91]McCulloch M T, Wasserburg G J. Sm-Nd and Rb-Sr chronology of continental crust formation[J]. Science, 1978,200(4345):1003-1007.
    [92]Heller P L, Frost C D. Isotopic provenance of clastic deposits:application of geochemistry to sedimentary provenance studies[J]. New Perspectives in Basin Analysis. Springer-Verlag, New York,1988:27-42.
    [93]Zheng Y F, Fu B, Gong B, et al. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China:implications for geodynamics and fluid regime[J]. Earth-Science Reviews, 2003,62(1-2):105-161.
    [94]Zheng Y. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt[J]. Chinese Science Bulletin,2008,53(20):3081-3104.
    [95]黄皓,薛怀民.北淮阳早白垩世金刚台组火山岩La-Icp-Ms锆石U-Pb年龄及其地质意义[J].岩石矿物学杂志,2012(3):371-381.
    [96]黄丹峰,罗照华,卢欣祥.大别山北缘金刚台火山岩SHRIMP锆石U-Pb年龄及构造意义[J].地学前缘,2010(1):1-10.
    [97]王岳军,范蔚茗,郭锋.北淮阳晚中生代火山岩定年及火山砾石地球化学:对大别灰色片麻岩隆升和中生代地层格架的约束[J].科学通报,2002(20):1528-1534.
    [98]祝禧艳,陈福坤,王伟,等.豫西地区秦岭造山带武当群火山岩和沉积岩锆石U-Pb年龄[J].地球学报,2008,29(6):817-829.
    [99]Yin C, Tang F, Liu Y, et al. U-Pb zircon age from the base of the Ediacaran Doushantuo Formation in the Yangtze Gorges, South China:constraint on the age of Marinoan glaciation[J]. Episodes,2005,28(1): 48-49.
    [100]刘贻灿,李曙光,古晓锋,等.北淮阳王母观橄榄辉长岩锆石Shrimp U-Pb4年龄及其地质意义[J].科学通报,2006,51(18):2175-2180.
    [101]薛怀民,马芳,宋永勤.扬子克拉通北缘随(州)-枣(阳)地区新元古代变质岩浆岩的地球化学和Shrimp锆石U-Pb年代学研究[J].岩石学报,2011,27(4):1116-1130.
    [102]周鼎武,张宗清.武当地块基性岩墙群的Sm-Nd定年及其相关问题讨论[J].地球学报:中国地质科学院院报,1998,19(1):25-30.
    [103]周鼎武,桑海清.武当地块基性岩墙群40Ar-39Ar定年及其地质意义[J].岩石学报,1999,15(1):14-20.
    [104]胡健民,孟庆任,马国良,等.武当地块基性岩席群及其地质意义[J].地质论评,2002,48(4):353-360.
    [105]Jahn B, Wu F, Lo C H, et al. Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China[J]. Chemical Geology,1999,157(1):119-146.
    [106]陈玲,马昌前,张金阳,等.首编大别造山带侵入岩地质图(150万)及其说明[J].Geological Bulletin of China,2012,31(1):13-19
    [107]杨坤光,马昌前,杨巍然.北淮阳马畈加里东岩体的研究及其地质意义[J].地球科学,1998,23(3):236-241.
    [108]马昌前,佘振兵,许聘,等.桐柏-大别山南缘的志留纪a型花岗岩类Shrimp锆石年代学和地球化学证据[J].中国科学D辑,2004,34(12):1100-1110.
    [109]吴元保.北大别片麻岩的锆石U—Pb年龄离子探针测定及其地质意义[J].地质论评,2001,47(3):239-244.
    [110]刘贻灿,徐树桐.大别山北部中酸性片麻岩的岩石地球化学特征及其古大地构…[J].大地构造与成矿学,1999,23(003):222-229.
    [111]张利,王林森.北秦岭弧后盆地俯冲消减与陆壳物质再循环—桃园岩体和黄岗杂岩体的地球化学[J].地球科学:中国地质大学学报,2001,26(001):18-24.
    [112]Xu H, Ma C, Ye K. Early cretaceous granitoids and their implications for the collapse of the Dabie orogen, eastern China:SHRIMP zircon U-Pb dating and geochemistry[J]. Chemical Geology,2007,240(3-4): 238-259.
    [113]Ma C, Yang K, Ming H, et al. The timing of tectonic transition from compression to extension in Dabieshan:Evidence from Mesozoic granites[J]. Science in China Series D-Earth Sciences,2004,47(5): 453-462.
    [114]魏春景.变质作用Ptt轨迹的研究方法与进展[J].地学前缘,2011,18(2):1-16.
    [115]Cheng H, King R L, Nakamura E, et al. Coupled Lu-Hf and Sm-Nd geochronology constrains garnet growth in ultra-high-pressure eclogites from the Dabie orogen[J]. Journal of Metamorphic Geology,2008, 26(7):741-758.
    [116]王瑜.构造热年代学——发展与思考[J].地学前缘,2004,11(4):435-443.
    [117]王清晨.中国超高压变质岩十五年研究进展[J].地球学报,2001,22(1):11-16.
    [118]Ames L, Tilton G R, Zhou G. Timing of collision of the Sino-Korean and Yangtse cratons:U-Pb zircon dating of coesite-bearing eclogites[J]. Geology,1993,21(4):339.
    [119]Eide E, Mcwilliams M, Liou J.40AR/39AR Geochronology and exhumation of high-pressure to ultrahigh-pressure metamorphic rocks in east-central China[J]. Geology,1994,22(7):601-604.
    [120]游振东,索书田,钟增球,等.大别山超高压变质岩的退变质显微构造:折返过程的启示[J].地质学报,2000,74(3):224-234.
    [121]Cheng H, King R L, Nakamura E, et al. Transitional time of oceanic to continental subduction in the Dabie orogen:Constraints from U-Pb, Lu-Hf, Sm-Nd and Ar-Ar multichronometric dating[J]. Lithos,2009, 110(1-4):327-342.
    [122]Cheng H, DuFrane S A, Vervoort J D, et al. Protracted oceanic subduction prior to continental subduction: New Lu-Hf and Sm-Nd geochronology of oceanic-type high-pressure eclogite in the western Dabie orogen[J]. American Mineralogist,2010,95(8-9):1214-1223.
    [123]Ratschbacher L, Franz L, Enkelmann E, et al. Geochemical, age, and isotopic constraints on the location of the Sino-Korean/Yangtze Suture and evolution of the Northern Dabie Complex, east central China[J]. Geological Society of America Bulletin,2004,116(5-6):698-717.
    [124]张国伟,程顺有,郭安林,等.秦岭-大别中央造山系南缘勉略古缝合带的再认识——兼论中国大陆主体的拼合[J].地质通报,2004,23(9-10):246-253.
    [125]董云鹏,张国伟,赵霞,等.鄂北大洪山岩浆带地球化学及其构造意义——南秦岭勉略洋盆东延及其俯冲的新证据[J].中国科学D辑,2003(12).1143-1153
    [126]Faure M, Lin W, Scharer U, et al. Continental subduction and exhumation of UHP rocks. Structural and geochronological insights from the Dabieshan (East China)[J]. Lithos,2003,70(3-4):213-241.
    [127]林伟,王清晨,石永红.大别山-苏鲁碰撞造山带构造几何学、运动学和岩石变形分析[J].岩石学报,2005,21(4):1195-1214.
    [128]Hacker B R, Wallis S R, McWilliams M O, et al.40Ar/39Ar Constraints on the tectonic history and architecture of the ultrahigh-pressure Sulu orogen[J]. Journal of Metamorphic Geology,2009,27(9): 827-844.
    [129]高锐,董树文,贺日政,等.莫霍面地震反射图像揭露出扬子陆块深俯冲过程[J].地学前缘,2004(03).
    [130]Yang J H, Cawood P A, Du Y S. Detrital record of mountain building:Provenance of Jurassic foreland basin to the Dabie Mountains[J]. Tectonics,2010,29 (TC4011),
    [131]Liu S F, Heller P L, Zhang G W. Mesozoic basin development and tectonic evolution of the Dabieshan orogenic belt, central China[J]. Tectonics,2003,22(4):1038-1049.
    [132]Liu S F, Steel R, Zhang G W. Mesozoic sedimentary basin development and tectonic implication, northern Yangtze Block, eastern China:record of continent-continent collision[J]. Journal of Asian Earth Sciences, 2005,25(1):9-27.
    [133]Deng J F, Mo X X, Zhao H L, et al. A new model for the dynamic evolution of Chinese lithosphere: 'continental roots-plume tectonics'[J]. Earth-Science Reviews,2004,65(3-4):223-275.
    [134]董树文,高锐,李秋生,等.大别山造山带前陆深地震反射剖面[J].地质学报,2005,79(5):595-602.
    [135]滕吉文,胡家富,张中杰,等.大别造山带的深层动力过程与超高压变质带的形成机制[J].地震研究,2000,23(3):275-288.
    [136]Zhu G, Liu G S, Niu M L, et al. Syn-collisional transform faulting of the Tan-Lu fault zone, East China[J]. International Journal of Earth Sciences,2009,98(1):135-155.
    [137]董树文,吴宣志.大别山造山带深部地质初探[J].中国地质,1997(1):32-37.
    [138]樊华.湖北省随枣地区推覆构造格局及其演化[J].中国区域地质,1995,16(1):32-39.
    [139]Li Z, Li R W, Sun S, et al. Jurassic depositional records and sandstone provenances in Hefei Basin, central China:Implication for Dabie orogenesis[J]. Island Arc,2004,13(2):346-358.
    [140]Li R W, Wan Y S, Cheng Z Y, et al. The Dabie Orogen as the early Jurassic sedimentary provenance: Constraints from the detrital zircon SHRIMP U-Pb dating[J]. Science in China Series D-Earth Sciences, 2005,48(2):145-155.
    [141]Wang Y J, Zhao G C, Xia X P, et al. Early Mesozoic unroofing pattern of the Dabie Mountains (China): Constraints from the U-Pb detrital zircon geochronology and Si-in-white mica analysis of synorogenic sediments in the Jianghan Basin[J]. Chemical Geology,2009,266(3-4):240-250.
    [142]Li J, Zhao X, Zhou M, et al. Late Mesozoic magmatism from the Daye region, eastern China:U-Pb ages, petrogenesis, and geodynamic implications[J]. Contributions to Mineralogy and Petrology,2009,157(3): 383-409.
    [143]Koppers A. ArArCALC-software for Ar-40/Ar-39 age calculations[J]. Computers & Geosciences,2002, 28(5):605-619.
    [144]Liu Y, Hu Z, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology,2008,257(1-2):34-43.
    [145]McDougall I, Harrison T M. Geochronology and Thermochronology by the 40Ar/39Ar Method[M]. Oxford University Press, USA,1999.
    [146]程万强,杨坤光.大巴山构造演化的石英Esr年代学研究[J].地学前缘,2009,16(3):197-206.
    [147]张岳桥,董树文.郯庐断裂带中生代构造演化史:进展与新认识[J].地质通报,2008,27(9):1371-1390.
    [148]Wang Y. The onset of the Tan-Lu fault movement in eastern China:constraints from zircon (SHRIMP) and Ar-40/Ar-39 dating[J]. Terra Nova,2006,18(6):423-431.
    [149]桑隆康,游振东.大别山前寒武纪变质地体基本组成[J].地质论评,1994,40(3):265-273.
    [15 0]方国柱.对中国大别山地区地体构造的初步探讨[J].地质论评,1988,34(4):334-342.
    [151]马宝林.桐柏山—大别山的地体构造特征和构造演化[J].地震地质,1991,13:33-42.
    [152]韦必则,韩书杰,周汉文,等.桐柏山南坡的脆-韧性逆冲推覆构造[J].地球科学-中国地质大学学报,1993,18(2):151-158.
    [153]Gao S, Zhang B R, Gu X M, et al. Silurian-Devonian provenance changes of South Qinling basins: implications for accretion of the Yangtze (South China) to the North China cratons[J]. Tectonophysics, 1995,250(1-3):183-197.
    [154]马宝林.桐柏山—大别山的地体构造特征和构造演化[J].地震地质,1991,13(1):33-42.
    [155]徐树桐,袁学诚,吴维平,等.大别山黄石-六安反射地震剖面新的解释[J].地质通报,2008,27(1):19-28.
    [156]Hutton D, Reavy R J. Strike-slip tectonics and granite petrogenesis[J]. Tectonics,1992,11(5):960-967.
    [157]Schofield D I, D'Lemos R S. Relationships between syn-tectonic granite fabrics and regional PTtd paths:an example from the Gander-Avalon boundary of NE Newfoundland[J]. Journal of Structural Geology,1998, 20(4):459-471.
    [158]Raharimahefa T, Kusky T M. Temporal evolution of the Angavo and related shear zones in Gondwana: Constraints from LA-MC-ICP-MS U-Pb zircon ages of granitoids and gneiss from central Madagascar[J]. Precambrian Research,2010,182(1-2):30-42.
    [159]Ratschbacher L, Hacker B, Calvert A, et al. Tectonics of the Qinling (Central China):tectonostratigraphy, geochronology, and deformation history[J]. Tectonophysics,2003,366(1-2):1-53.
    [160]Wang Y S, Xiang B W, Zhu G A, et al. Structural and geochronological evidence for Early Cretaceous orogen-parallel extension of the ductile lithosphere in the northern Dabie orogenic belt, East China[J]. Journal of Structural Geology,2011,33(3SI):362-380.
    [161]Liu X C, Jahn B M, Liu D Y, et al. SHRIMP U-Pb zircon dating of a metagabbro and eclogites from western Dabieshan (Hong'an Block), China, and its tectonic implications[J]. Tectonophysics,2004, 394(3-4):171-192.
    [162]Hu S B, Kohn B P, Raza A, et al. Cretaceous and Cenozoic cooling history across the ultrahigh pressure Tongbai-Dabie belt, central China, from apatite fission-track thermochronology[J]. Tectonophysics,2006, 420(3-4):409-429.
    [163]Passchier C W, Trouw R. Micro-tectonics[M]. Springer, Berlin),2005.
    [164]Klaper E M. Quartz c-axis fabric development and large-scale post-nappe folding (wandfluhhorn fold, penninic nappes)[J]. Journal of Structural Geology,1988,10(8):795-802.
    [165]Kirschner D, Teyssier C. Quartz c-axis fabric differences between porphyroclasts and recrystallized grains[J]. Journal of Structural Geology,1991,13(1):105-109.
    [166]Law R D, Miller E L, Little T A, et al. Extensional origin of ductile fabrics in the schist belt, central brooks range, alaska.2. microstructural and petrofabric evidence[J]. Journal of Structural Geology,1994,16(7): 919-925.
    [167]Kruhl J H. Prism-and basal-plane parallel subgrain boundaries in quartz:A microstructural geothermobarometer[J]. Journal of Metamorphic Geology,1996,14(5):581-589.
    [168]王勇生,江来利,朱光,等.大别造山带现今构造格局的形成——来自石英C轴组构的证据[J].岩石学报,2009,25(01):219-231.
    [169]Tullis J, Yund R A. Dynamic recrystallization of feldspar:a mechanism for ductile shear zone formation[J]. Geology,1985,13(4):238-241.
    [170]Liu X, Li S Z, Suo V H, et al. Structural anatomy of the exhumation of high-pressure rocks:constraints from the Tongbai Collisional Orogen and surrounding units[J]. Geological Journal,2011,46(2-3SI): 156-172.
    [171]杨森楠,陈仁义,钱熊虎.中生代时期大别山的造山运动和造山带构造[J].地球科学,1987,5(5):495-502.
    [172]郑伯让,金淑燕.构造岩组学[M].武汉:中国地质大学出版社,1989.
    [173]Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest Earth[J]. Science,2005,308(5723):841-844.
    [174]索书田,游振东.超高压——高压剪切带[J].地质科技情报,1997,16(2):1-6.
    [175]马杏垣.解析构造学[M].地质出版社,2004.
    [176]Faure M, Lin W, Le Breton N. Where is the North China-South China block boundary in eastern China?[J]. Geology,2001,29(2):119-122.
    [177]索书田,钟增球,游振东.大别-苏鲁构造带三叠纪碰撞缝合线的位置[J].地球科学-中国地质大学学报,2000,25(02).111-116
    [178]Ratschbacher L, Franz L, Enkelmann E, et al. The Sino-Korean-Yangtze suture, the Huwan detachment, and the Paleozoic-Tertiary exhumation of (ultra) high-pressure rocks along the Tongbai-Xinxian-Dabie Mountains[J]. Ultrahigh-Pressure Metamorphism:Deep Continental Subduction,2006,403:45-75.
    [179]向必伟,王勇生,朱光,等.晓天—磨子潭断裂的构造演化对大别高压—超高压岩石折返过程的指示[J].自然科学进展,2007(12):1639-1650.
    [180]向必伟,王勇生,朱光,等.晓天-磨子潭断裂的构造演化对大别高压-超高压岩石折返过程的指示[J].自然科学进展,2007,17(12):1639-1650.
    [181]向必伟,朱光,姜大志,等.晓天-磨子潭韧性剪切带变形模拟及其对北大别穹隆构造演化的指示[J].地质论评,2009,55(2):159-172.
    [182]汤加富,许卫.郯庐断裂带南段并无巨大平移—来自安徽境内的证据[J].地质论评,2002,48(5):449-456.
    [183]朱光,王勇生,王道轩,等.前陆沉积与变形对郯庐断裂带同造山运动的制约[J].地质科学,2006,41(00]):102-121.
    [184]万天丰,朱鸿.郯庐断裂带的形成与演化:综述[J].现代地质,1996,10(2):159-168.
    [185]王小凤.郯庐断裂带[M].地质出版社,2005.
    [186]Liu Y, Li S. Detachment within subducted continental crust and multi-slice successive exhumation of ultrahigh-pressure metamorphic rocks:Evidence from the Dabie-Sulu orogenic belt[J]. Chinese Science Bulletin,2008,53(20):3105-3119.
    [187]Wang Q C, Shin Y H, Lin W, et al. Exhumation of the Dabie UHP terrane, China[J]. International Geology Review,2008,50(1):15-31.
    [188]Xu S. T., Liu Y. C.. Architecture, Kinematics and Deformation Analysis in Dabie-Sulu Collision Zone.[J]. Acta Geologica Sinica,2005,21(4):1195-1214.
    [189]Liu F L, Liou J G. Zircon as the best mineral for PT-time history of UHP metamorphism:A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks[J].2010.
    [190]Grasemann B, Ratschbacher L, Hacker B R. Exhumation of ultrahigh-pressure rocks:thermal boundary conditions and cooling history[J]. When Continents Collide:Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks,1998:117-139.
    [191]Wan Y S, Li R W, Wilde S A, et al. UHP metamorphism and exhumation of the Dabie Orogen, China: Evidence from SHRIMP dating of zircon and monazite from a UHP granitic gneiss cobble from the Hefei Basin[J]. Geochimica Et Cosmochimica Acta,2005,69(17):4333-4348.
    [192]杨坤光,刘强,刘育燕,等.大别山双河同构造花岗岩体显微构造与磁组构研究[J].中国科学D辑Jdxk,2003,33(11):1050-1056.
    [193]吴开彬,邓新,杨坤光.大别山核部石鼓尖同构造花岗岩的变形与侵位:对造山带构造体制转换的启示田.中国科学(D辑),2012,待刊.
    [194]Wang Y J, Zhao G C, Xia X P, et al. Early Mesozoic unroofing pattern of the Dabie Mountains (China): Constraints from the U-Pb detrital zircon geochronology and Si-in-white mica analysis of synorogenic sediments in the Jianghan Basin[J]. Chemical Geology,2009,266(3-4):240-250.
    [195]朱光,王道轩,徐春华,等.大别高压-超高压变质岩剥露历史在合肥盆地的记录[J].高校地质学报,2004,12(4):594-605.
    [196]向必伟,朱光,王勇生,等.糜棱岩化过程中矿物变形温度计[J].地球科学进展,2007,22(2):126-135.
    [197]胡玲.变形显微构造识别手册[M].地质出版社,2009.
    [198]Ludwig K R. Isoplot 3.00, Special Publication No.4[J]. Berkeley Geochronology Center,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700