用户名: 密码: 验证码:
北山南带构造岩浆演化与金的成矿作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北山南带迄今为止已发现中型金矿床四处,小型金矿床(点)数十处,是我国西北地区最为重要的金矿集中区之一。该区地处塔里木板块和哈萨克斯坦板块的结合部位,区内前长城系地层出露广泛,深大断裂和韧性剪切带发育,岩浆活动频繁,具有良好的成矿地质条件。本文从总结区域成矿地质背景着手,选择北山南带拾金坡、新老金厂、小西弓三个典型金矿床开展重点解剖研究,通过野外地质调查和室内研究相结合,查明典型金矿床区域成矿地质背景、矿床地质特征、成矿流体来源与演化、成矿物质来源以及成矿时代,阐明矿床形成机制。在典型金矿床解剖研究并与区内其它金矿床对比的基础上,划分北山南带金矿床类型,分析成矿规律和控矿因素,探讨区域构造岩浆演化与金成矿作用的关系,指明找矿方向。
     拾金坡金矿床赋存在拾金坡复式花岗岩体的边缘部位,金矿体以含金石英脉的方式产出。复式岩体的主侵入体斑状花岗岩中锆石的SHRIMP测年表明,拾金坡岩体是早泥盆世花牛山地体增生过程的产物。地球化学研究表明,斑状花岗岩和其中的二长质暗色包体是壳幔过渡带幔源基性岩浆及其诱发的壳源长英质岩浆混合作用的产物,岩体定位于俯冲造山过程中应力局部松弛地段。拾金坡金矿床成矿流体属于中低温(90~342℃)、低盐度(多小于10%NaCleq)的H_2O-CO_2-NaCl-CH_4体系,成矿流体中含有异常高的CO_2含量和少量的CH4,成矿过程中发生了显著的流体不混溶过程。氢氧同位素示踪表明,成矿流体来自岩浆演化热液和加热的大气降水,两者混合导致金的沉淀。矿石和围岩的硫铅同位素研究表明,成矿物质具有深源特征,应直接来自拾金坡花岗岩体。
     新老金厂金矿床赋存在下二叠统哲斯群火山岩和火山碎屑岩中。地球化学特征研究表明,哲斯群火山岩来自快速拉张环境中残留有石榴石的亏损地幔源区的部分熔融,在上升过程中没有陆壳物质的混染。区域构造演化分析表明,哲斯群火山岩是洋壳俯冲形成的活动大陆边缘内部或弧后盆地快速拉张阶段的产物。新老金厂矿床成矿流体属低温(100~300℃)、低盐度(小于10%NaCleq)的CO_2-H_2O-NaCl±CH_4或CO_2-H_2O-NaSO_4±CH_4体系,流体混合是引起金属沉淀的主要机制。氢氧同位素示踪表明,新金厂矿床成矿流体以岩浆水为主,而老金厂矿床混入了较多的大气降水。矿石和围岩的硫铅同位素研究表明,成矿物质具有幔源特征,应直接来自火山-沉积岩地层。根据地质特征分析,新老金厂金的成矿应紧随哲斯群火山岩-次火山岩喷发之后,成矿时代为早二叠世晚期。
     小西弓金矿床是与韧性剪切带有关的金矿床,矿体赋存在韧性剪切带持续演化过程中的韧脆性剪切变形带和脆性破碎带中。流体包裹体研究表明,小西弓金矿床成矿流体属中低温(133~400℃)、中低盐度(4%~20%NaCleq)的CO_2-H_2O-CH_4-NaCl体系,成矿流体中含有较高的CO2,成矿过程中发生了显著的流体不混溶过程。氢氧同位素研究表明,多种来源的成因水参与了成矿过程,包括岩浆水、变质水和大气降水。硫铅同位素示踪表明,成矿物质来源于赋矿的西尖山群上亚群变质岩和海西期变质重熔型中酸性花岗岩。小西弓金矿床成矿时代为267~284Ma。总结小西弓金矿床的成矿机制认为,海西期变质重熔型中酸性岩浆在金矿床形成过程中发挥了重要作用。
     以容矿围岩为基础,将北山南带金矿床划分为三类:(1)深成侵入岩型金矿床;(2)火山岩型金矿床;(3)变质岩型金矿床。研究表明,长城系、前长城系中高级变质火山-沉积岩和晚古生代海相火山-沉积岩是该区金矿床的重要矿源层。金矿床和矿体的展布受不同级别的构造控制。晚古生代以来北山南带有限洋盆双向俯冲引发的构造-岩浆热事件是金矿床形成的重要地质条件。根据北山南带金矿床的区域成矿条件、成矿规律和控矿因素,圈定出4个有利的找矿远景区:(1)小西弓外围找矿远景区;(2)白墩子-石板墩找矿远景区;(3)拾金坡-花牛山找矿远景区;(4)老金厂-古堡泉成矿远景区。
The study area, south Beishan Mountain area, is one of the important gold clusters in northwest China. Heretofore, three middle-scale gold deposits and several tens of small-scale gold deposits have been discovered, explored and mined. Located on the intergrated part of the Tarim plate and Kazakhstan plate, there are widely exposed Precambrian and Paleozoic strata, complex deep faults and shear zones and intensive magmatic activities in south Beishan Mountain. Although some research on the metallogenesis of individual gold deposit, i.e. Xiaoxigong gold deposit, have been done in the study area, systematic and comprehensive work on the gold metallogenesis and its relationship to the regional tectonic and magmatic events have not been developed. Started from the systematic summarize of regional metallogenic geological settings, three middle-scaled gold deposits, i.e. Shijinpo, Xinlaojinchang and Xiaoxigong gold deposits have been selected for anatomizing in detail. For the three representative gold deposits, combined with detailed field geologic survey and abundant experimental analysis, comprehensive work have been done involved their geological characteristics, the nature and evolution of ore-forming fluid, the origin of ore-forming materials and the ore-forming ages. Base on the detailed research on typical gold deposits and compared with other gold deposits, these gold deposits have been divided into three types. Furthermore, the main ore-controlled factors inclued the strata, magmatic rocks and tectonic elements have been analyzed, and the relationship between tectonic-magmatic evolution and gold metallogeny has been discussed.
     The Shijinpo gold deposit is located in the margin of Shijinpo composite granitic batholith and occurs as Au-bearing quartz veins. SHRIMP dating of zircon seleted from the Shijinpo porphyritic granite suggested that it is formed in early Devonian. Accroding to detailed petrologic features and geochemical data, it is indicated that the host porphyritic granite and their monzonitic enclaves were generated by mixing of mantle-derived basic magma and its induced crustal felsic magma in local tensile enviroment during the accretion of Huaniushan block. The ore-forming fluid is CO_2-H_2O-NaCl-CH_4 system with low- to intermediate-temperature (90~342℃) and low-salinity (mostly <10%NaCleq) which contain elevated CO2 and small CH4. Fluid immiscibility is common. Combined with the oxygen and hydrogen isotope features, it is concluded that the ore-forming fluids derived from the magmatic fluid and meteoric water, which mixing aroused gold deposition. The sulfur and lead isotopic character of ore minerals and wall rocks suggested that the ore-forming materials would be of deep origin and derived from the Shijinpo pluton.
     The Xinlaojinchang gold deposit occurs in lower-Permian Zhesi group volcanics and volcanic arenite. Study of geochemistry features indicated that the Zhesi group volcanics derived from melting partly of depleted mantle with rudimental garnet in fast tensile environment and has few hybridization with crustal metarials. It is formed in inner active continental margin or back-arc basin during the early Permian subduction of south Beishan limited ocean crust. The ore-forming fluids of Xinlaojinchang gold deposit is CO2-H2O-NaCl±CH4 or CO2-H2O-NaSO4±CH4 system with low temperature (100~300 ℃) and low salinity (mostly <10%NaCleq). The study of oxygen and hydrogen isotope indicate that the ore-forming fluid mainly come from magmatic water in Xinjinchang mineralized zone and meteoric water in Laojinchang. Fluid mixing is the main mechanism to bring in the gold precipitation. Tracing of sulfur and lead isotope suggest that the ore-forming materials come from the Zhesi group volcanics and volcanic arenite. According to the geological features, it is deduced that the gold mineralization of Xinlaojinchang district followed closely the magmatic activity which formed the Zhesi group volcanics and the ore-forming age is about in early Permian.
     The Xiaoxigong gold deposit is the one related to ductile shear zone, whose orebody occures in brittle-ductile transition zone and brittle crushed zone that both are continuous evolutionary parts in one identical shear zone. Study of fluid inclusions in quartz from the Xiaoxigong gold deposit indicated that the ore-forming fluids is CO_2-H_2O-CH_4-NaCl system with low- to intermediate- temperature (133~400℃) and low- to intermediate- salinity which contain elevated CO_2. Fluid immiscibility is obvious. The study of oxygen and hydrogen isotope indicate that the ore-forming fluids are multiple sources, which included magmatic water, metamorphic water and meteoric water. The ore-forming materials come from upper subgroup of Xijianshan group Archaean metamorphics and Hercynian metamorphic remelted granite. The ore-forming age of the Xiaoxigong deposit is 267~284Ma ago. It is reckoned that the Hercynian granitoids play an important role in the metallogenic process.
     Based on the host rocks and geological features, gold deposits in south Beishan area can be classified into three types: (1) pluton-related gold deposits, such as Shijinpo, Mojindong and Huaniushan; (2) hosted by volcanics gold deposits, such as Xinlaojinchang, Beijin and Jinchanggou; (3) hosted by metamophics gold deposits, such as Xiaoxigong, Jinmiaogou and Xiaowannanshan. Proterozoic and Archaean strata and late Paleozoic marine volcanic-sedimentary rocks exposed in the south Beishan Mountain compose of the source bed of gold deposits. The distribution of these gold deposits and the orebodies thereinto are controlled by degressively ranked structure. Large-scale gold metallogenesis is triggered by tectonomagmatic events during late Paleozoic bidirectional subduction of south Beishan ocean crust. Based on the regional metallogenic condition, rules and ore-controlled factors in south Beishan Mountain, four prospective targets are outlined: (1) Periphery area of Xiaoxigong gold district; (2) Baidunzi-Shibandun area; (3) Shijinpo-Huaniushan area and (4) Laojinchang-Gubaoquan area.
引文
安国堡. 2006. 甘肃北山拾金坡金矿床地质特征及成因分析. 矿床地质, 25(4):483-490.
    陈柏林, 董法先, 李中坚. 1999. 韧性剪切带型金矿床成矿模式. 地质论评, 45(2):186-192.
    陈柏林. 2002a. 论中国金矿床成矿时代特点. 地质地球化学, 30(2):66-73.
    陈柏林, 杨 农, 吴淦国, 叶得金, 刘晓春, 舒 斌. 2002b. 甘肃北山南带韧性剪切带型金矿床构造控矿解析. 矿床地质, 21(2):149-158.
    陈柏林, 吴淦国, 叶得金等. 2003. 北山南带韧性剪切带构造与金矿成矿动力学. 北京:地震出版社, 1-109.
    陈富文, 李华芹, 蔡红等. 1999. 新疆东部金窝子金矿成因讨论-同位素地质年代学证据. 地质论评, 45(3):247-254.
    陈华勇, 鲍景新, 张增杰, 刘玉琳, 倪培, 凌洪飞. 2000. 新疆望峰金矿成矿物质和流体来源同位素示踪-碰撞造山成矿作用研究示例. 中国科学(D 辑), 30(增刊):45-52.
    陈江峰, 江博明. 1999. 钕-锶-铅同位素示踪和中国东南大陆地壳演化. 见:郑永飞 主编, 化学地球动力学. 北京:科学出版社.
    陈升平, 朱云海. 1992. 新疆北山石炭纪、二叠纪火山岩岩石化学及其构造环境分析. 地球科学-中国地质大学学报, 17(6):647-656.
    陈衍景, 富士谷. 1992. 豫西金矿成矿规律. 北京:地震出版社.
    陈衍景. 1996. 陆内碰撞体制的流体作用模式及与成矿的关系-理论推导和东秦岭金矿床的研究成果. 地学前缘, 3(3-4):282-289.
    陈衍景. 1998. 影响碰撞造山成岩成矿模式的因素及其机制. 地学前缘, 5(增刊):109-118.
    陈衍景, 陈华勇, 刘玉琳, 等. 1999. 碰撞造山过程内生矿床成矿作用的研究历史和进展. 科学通报, 44(16):1691-1689.
    陈毓川. 1999. 中国主要成矿区带矿产资源远景评价. 北京:地质出版社.
    陈毓川, 李兆鼐, 毋瑞身. 2001. 中国金矿床及其成矿规律. 北京:地质出版社.
    崔惠文, 陈祖伊. 1996. 甘肃北山地区金矿地质. 北京:地质出版社.
    戴霜, 方小敏, 张翔, 王方成. 2003. 北山中部地区闪长岩-花岗岩类成因及构造背景. 兰州大学学报, 39(1):86-92.
    范宏瑞, 谢奕汉, 翟明国. 2001. 冀西北东坪金矿成矿流体研究. 中国科学(D 辑), 31(7):537-544.
    范宏瑞, 胡芳芳, 杨进辉, 沈昆, 翟明国. 2005. 胶东中生代构造体制转折过程中流体演化和金的大规模成矿. 岩石学报, 21(5):1317-1328.
    范育新, 白云来, 陈发虎. 2005. 北山地区辉长岩类的地球化学特征及其深部信息. 地球学报, 26(增刊):61-66.
    丰成友, 薛春纪, 姬金生, 等. 2000. 东天山西滩浅成低温热液金矿床地球化学. 矿床地质, 19(4):322-329.
    丰成友, 张德全, 王富春, 佘宏全, 李大新, 王彦. 2004a. 青海东昆仑复合造山过程及典型造山型金矿地质. 地球学报, 25(4):415-422.
    丰成友, 张德全, 王富春, 李大新, 佘宏全. 2004b. 青海东昆仑造山型金(锑)矿床成矿流体地球化学研究. 岩石学报, 20(4):949-960.
    甘肃省地质矿产局. 1989. 甘肃省区域地质志. 北京:地质出版社
    甘肃省地质矿产局. 1997. 全国地层多重划分对比研究-甘肃省岩石地层. 武汉:中国地质大学出版社.
    龚全胜, 刘明强, 李海林, 梁明宏, 代文军. 2002. 甘肃北山造山带类型及基本特征. 西北地质, 35(3):28-34.
    龚全胜,刘明强,梁明宏,李海林. 2003. 北山造山带大地构造相及构造演化. 西北地质, 36(1):11-17.
    韩发. 2006. 如何解释陈家杖子金矿的铅同位素资料-与佘宏全等商榷. 矿床地质, 25(5):582-589.
    何绍勋, 段嘉瑞, 刘继顺, 张曾荣. 1995. 韧性剪切带与成矿. 北京:地质出版社, 1-158.
    何世平, 周会武, 姚文光, 任秉琛, 付力浦. 2004. 甘肃北山中泥盆统砾岩中放射虫的发现及其地质意义. 西北地质, 37(3):24-28.
    候增谦, 韩发, 夏林圻等. 2003a. 现代与古代海底热水成矿作用. 北京:地质出版社.
    候增谦, 李荫清, 张琦玲, 曲晓明. 2003b. 海底热水成矿系统中的流体端元与混合过程:来自白银厂和呷村 VMS 矿床的流体包裹体证据. 岩石学报, 19(2):221-234.
    侯增谦, 杨竹森, 徐文艺,莫宣学,丁林,高永丰,董方浏,李光明,曲晓明,李光明,赵志丹,
    江思宏,孟祥金,李振清,秦克章,杨志明. 2006a. 青藏高原碰撞造山带:I.主碰撞造山成矿作用. 矿床地质,25(4):337-358
    侯增谦, 潘桂棠, 王安建, 莫宣学, 田世洪, 孙晓明,丁林,王二七,高永丰,谢玉玲,曾普胜,秦克章,许继峰,曲晓明,杨志明,杨竹森,费红彩,孟祥金,李振清. 2006b. 青藏高原碰撞造山带: Ⅱ .晚碰撞转换成矿作用. 矿床地质,25(5):521-543.
    候增谦, 曲晓明, 杨竹森, 孟祥金, 李振清, 杨志明, 郑绵平, 郑有业, 聂凤军, 高永丰, 江思宏, 李光明. 2006. 青藏高原碰撞造山带: Ⅲ.后碰撞伸展成矿作用. 矿床地质, 25(6):629-651.
    胡霭琴, 王中刚, 涂光炽. 1997. 新疆北部地质演化及成岩成矿规律. 北京:科学出版社.
    胡朋, 赫英, 张义, 江思宏, 刘妍. 2004. 浅成低温热液金矿床研究进展. 黄金地质, 10(1):48-54.
    胡朋, 聂凤军, 江思宏. 2006. 与侵入岩有关金矿床的研究现状、存在问题及在中国的前景. 地质论评, 52(4):539-549.
    江思宏, 聂凤军, 白大明, 赵省民, 王新亮, 苏新旭, 赵月明, 李景春, 李存有. 2001a. 北山北带岩浆活动与金矿成矿作用. 中国地质, 28(3):24-28.
    江思宏, 聂凤军. 2001b. 甘肃南金山金矿床的 40Ar-39Ar 同位素年龄及其地质意义. 矿物岩石地球化学通报, 20(4):344-347.
    江思宏, 聂凤军, 陈文, 刘妍, 白大明, 刘新宇, 张思红. 2003. 甘肃辉铜山燕山期钾长花岗岩的发现及其地质意义. 矿床地质, 22(2):185-190.
    江思宏, 聂凤军. 2006a. 北山地区花岗岩类的 40Ar/39Ar 同位素年代学研究. 岩石学报, 22(11):2719-2732.
    江思宏, 聂凤军. 2006b. 北山地区花岗岩类成因的 Nd 同位素制约. 地质学报, 80(6):826-842.
    江思宏, 聂凤军, 陈伟十, 靳光成. 2006c. 北山地区南金山金矿床的 40Ar-39Ar 同位素年代学及其流体包裹体特征. 地质论评, 52(2):266-275.
    雷良奇, 宋慈安, 杨启军. 1998. 甘肃公婆泉铜矿田中—晚志留世浅海相火山喷发旋回及火山作用演化. 岩石学报,14(1):99-107.
    李昌年. 1992. 火成岩微量元素岩石学. 北京:中国地质大学出版社.
    李春昱, 王荃, 刘雪亚等. 1982. 亚洲大地构造图说明书. 北京:地图出版社
    李春昱. 1983. 我国北部边陲及邻区的古板块构造与欧亚大陆的形成. 中国北方板块构造文集(1): 3-16.
    李奋其, 王成善. 2003. 甘肃小西弓金矿地质地球化学特征及成因探讨. 矿物岩石, 23(1):65-69.
    李华芹, 陈富文, 蔡红, 刘后群. 1999. 新疆东部马庄山金矿成矿作用同位素年代学研究. 地质科学, 34(2):251-256.
    李景春, 赵安生, 崔惠文. 1996. 北山北带地质构造特征. 贵金属地质, 5(1):59-68.
    李金祥, 邓军, 吴文根, 王银宏, 程敦伍, 李剑. 2004. 山东招远金矿集中区矿床及围岩中硫和铅同位素的研究. 现代地质, 18(2):187-192.
    李锦轶, 何国琦, 徐新, 李华芹, 孙桂华, 杨天南, 高立明, 朱志新. 2006a. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨. 地质学报, 80(1):148-168
    李锦轶, 王克卓, 孙桂华, 莫申国, 李文铅, 杨天南, 高立明. 2006b. 东天山吐哈盆地南缘古生代活动陆缘残片: 中亚地区古亚洲洋板块俯冲的地质记录. 岩石学报, 22(5): 1087-1102.
    李锦轶, 宋彪, 王克卓, 李亚萍, 孙桂华, 齐得义. 2006c. 东天山吐哈盆地南缘二叠纪幔源岩浆杂岩:中亚地区陆壳垂向生长的地质记录. 地球学报, 27(5):424-446.
    李明艳, 刘玉琳, 李相波. 2006. 海南抱伦造山型金矿的确认. 矿床地质(增刊):23-26.
    李四光. 1972. 地质力学概论. 北京:科学出版社.
    李新俊, 刘伟. 2002. 东天山马庄山金矿床流体包裹体和同位素地球化学研究及其对矿床成因的制约. 岩石学报, 18(4):551-558.
    李兆鼐, 毋瑞身, 林宝钦等. 2004. 中国火山岩地区金矿床. 北京:地质出版社.
    李志琛. 1994. 敦煌地块变质岩系时代新认识. 中国区域地质, (2):131-134.
    廖启林, 戴塔根. 2000. 新疆北部浅成低温热液型金矿床成矿地球化学特征初探. 地质地球化学, 28(2):19-25.
    刘斌, 沈昆. 1999. 流体包裹体热力学. 北京:地质出版社.
    刘明强, 王建军, 代文军, 党引业. 2005. 甘肃北山造山带红石山地区正εNd(t)值花岗质岩石的成因及地质意义. 地质通报, 24(9):831-836.
    刘伟, 潘小菲. 2006. 新疆-甘肃北山金矿南带的成矿流体和成矿机制. 岩石学报, 22(1):171-188.
    刘雪亚, 王荃. 1995. 中国西部北山造山带的大地构造及其演化. 地学研究, 第 28 号, 37-48.
    刘英俊, 曹励明, 李兆麟, 王鹤年, 储同庆, 张景荣. 1984. 元素地球化学. 北京:科学出版社.
    梁明宏, 龚全胜, 李海林. 2002. 造山带花岗岩类型及填图方法的实践-以甘肃北山造山带为例. 岩石矿物学杂志, 21(2):174-178.
    卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2003. 流体包裹体. 北京:科学出版社.
    栾世伟, 陈尚迪, 曹殿春. 1987. 金矿床地质及找矿方法. 成都: 四川科学技术出版社.
    罗天伟. 2003. 新金厂金矿地质特征及找矿方向. 甘肃冶金, 25(3):41-45.
    罗镇宽, 胡桂明. 1986. 甘肃北山地区变质带火山岩带特征及其地质构造意义. 西北地质, (1):15-23.
    罗镇宽, 关康. 王曼祉, 王传泰. 1993. 中国金矿床概论. 天津:天津科学技术出版社.
    马芳, 蒋少涌. 2005. 与陆相火山岩有关的铁、铜、金矿床成矿地质特征及矿床成因. 地质找矿论丛, 20(4):233-241.
    毛景文, 李晓峰, 李厚民, 曲晓明, 张长青, 薛春纪, 王志良, 余金杰, 张作衡, 丰成友, 王瑞廷. 2005. 中国造山带内生金属矿床类型、特点和成矿过程探讨. 地质学报, 79(3):342-372.
    梅华林, 于海峰, 李铨, 左国朝. 1997. 甘肃敦煌-北山早前寒武纪岩石组合-构造初步框架. 前寒武纪研究进展, 20(4):47-54.
    梅华林, 于海峰, 陆松年, 李惠民, 李铨, 林源贤, 左义成. 1998. 甘肃敦煌太古宙英云闪长岩:单颗粒锆石 U-Pb 年龄和 Nd 同位素. 前寒武纪研究进展, 21(2):41~45.
    梅华林, 李惠民, 陆松年, 于海峰, 左义成, 李铨. 1999. 甘肃柳园地区花岗质岩石时代及成因. 岩石矿物学杂志, 18(1):14-17.
    孟令顺, 管烨, 齐立. 1995. 格尔木-额济纳旗地学断面及其邻区重力场与深部地质构造. 地球物理学报, 38(增刊Ⅱ):36-45.
    苗来成, 罗镇宽, 黄佳展, 关康, Wang L G, McNaughton N J, Groves D I. 1997. 山东招液金矿带内花岗岩类侵入体锆石 SHRIMP 研究及其意义. 中国科学(D 辑), 27(3):207-213.
    穆治国, 刘驰, 黄宝玲, 侯贵廷, 左国朝, 刘春燕, 冯永忠. 1992. 甘肃北山地区同位素定年与构造岩浆热事件. 北京大学学报(自然科学版), 28(4):486-497.
    聂凤军, 裴荣富, 吴良士, 张洪涛. 1994. 内蒙古白乃庙地区岩浆活动与金属成矿作用. 北京:北京科学技术出版社.
    聂凤军, 江思宏, 白大明等. 2002a. 北山地区金属矿床成矿规律及找矿方向. 北京:地质出版社.
    聂凤军, 江思宏, 赵省民等. 2002b. 北山地区照壁山金矿床地质特征及成因. 地质科学, 37(2):207-218.
    聂凤军, 江思宏, 赵省民等. 2002c. 内蒙古流沙山金(钼)矿床地质特征及矿床类型的划分. 地质地球化学, 30(1):1-7.
    聂凤军, 江思宏, 白大明, 刘妍, 张义, 赵月明,安存杰, 王新亮, 苏新旭. 2003a. 蒙甘新相邻(北山)地区金铜矿床时空分布特征及成矿作用. 矿床地质, 22(3):234-245.
    聂凤军, 江思宏, 白大明, 张义, 赵月明, 王新亮. 2003b. 北山中南带海西-印支期岩浆活动与金的成矿作用. 地球学报, 24(5):415-422.
    裴荣富, 吴良士, 熊群尧等. 1998. 中国特大型矿床成矿偏在性与异常成矿构造聚敛场. 北京:地质出版社, 1-395.
    裴荣富, 翟裕生, 张本仁. 1999. 深部构造作用与成矿. 北京:地质出版社.
    邱家骧, 林景仟. 1991. 岩石化学. 北京:地质出版社.
    任秉琛,何世平,姚文光,傅力浦. 2001. 甘肃北山牛圈子蛇绿岩铷-锶同位素年龄及其大地构造意义. 西北地质,34(2):21-27
    任纪舜. 1980. 中国大地构造及其演化- 1:4000000 中国大地构造图简要说明. 北京:科学出版社
    任纪舜, 王作勋, 陈炳蔚等. 1999. 从全球看中国大地构造- 中国及邻区大地构造图简要说明. 北京:地质出版社.
    沙德铭, 董连慧, 毋瑞身, 田昌烈, 贾斌. 2003. 西天山地区浅成低温热液金矿地质特征与成矿模式. 西北地质, 36(2):50-59.
    沈昆, 胡受奚, 孙景贵, 凌洪飞, 赵懿英, 孙明志. 2000. 山东招远大尹格庄金矿成矿流体特征. 岩石学报, 16(4):542-550.
    司雪峰. 1999. 新、老金厂金矿床控矿特征. 甘肃地质学报, 8(增刊):79-86.
    司雪峰, 周继强, 张玉成, 乔泉, 张华, 林森. 2000a. 甘肃北山柳园金矿化集中区金矿床类型及典型金矿床简介. 西北地质, 33(1):13-26.
    司雪峰, 张华, 张树宏. 2000b. 甘肃新老金厂金矿床地质特征. 桂林工学院学报, 20(3):238-242.
    司雪峰, 崔银亮, 穆新河. 2001. 甘肃北山中带变质碎屑岩型金矿地质特征及找矿前景. 地质与勘探, 37(6):5-8.
    宋彪, 张玉海, 万渝生, 简平. 2002. 锆石 SHRIMP 样品靶制作、年龄测定及有关现象讨论. 地质论评, 48(增刊):26-30.
    宋慈安, 雷良奇, 杨启军等. 2003. 甘肃公婆泉铜矿化集中区火山岩的地球化学特征. 桂林工学院学报, 23(1):18-25.
    汤中立, 白云来. 1997. 亚欧大陆桥北山—天山接合部构造格局. 甘肃地质学报, 6(增刊):13-20.
    田春生,司雪峰. 2004. 甘肃新金厂地区金矿化密集区地质特征及金矿床. 甘肃科技, 20(9):135-138.
    田争亮, 吴锡丹. 2001. 北山成矿带金矿床(点)分布规律与找矿方向. 新疆地质, 19(2):127-141.
    田志永. 1993. 甘肃北山拾金坡岩体特征及其含金性研究. 西安地质学院学报, 15(4):62-68.
    涂光炽. 1990. 我国原生金矿类型的划分和不同类型金矿的远景剖析. 矿产与地质, 4(1):1~10.
    王伏泉. 1996. 北山地区海相火山岩中铜多金属成矿作用的构造背景. 大地构造与成矿学, 20(4):319-328.
    王伏泉. 1998. 公婆泉铜矿二矿区火山岩的全岩 Rb-Sr 等时线年龄及其构造-成矿意义. 大地构造与成矿学, 22(增刊):23-27.
    王洪亮, 何世平, 张二朋, 徐学义, 陈隽璐. 2005. 中国天山一北山地区晚古生代岩石地层系统厘定及沉积环境分析. 地层学杂志, 29(增刊):541-547.
    王鸿祯. 2005. 论中国地层分区. 王鸿祯文集, 190-209.
    王京彬, 徐新. 2006. 新疆北部后碰撞构造演化与成矿. 地质学报, 80:23-31.
    王驹, 徐国庆, 金远新, 2000. 甘肃北山地区区域地壳稳定性研究. 北京:地质出版社.
    王军. 2005. 甘肃北山南带韧性剪切带金矿床(点)地质特征及找矿方向. 地质找矿论丛, 20(增刊):33-39.
    王时麒, 穆治国, 张成业. 1985. 张家口金矿床氢、氧同位素组成与矿床成因. 矿床地质, 4(1):84-89.
    王义天, 毛景文, 李晓峰, 杨富全. 2004. 与剪切带相关的金成矿作用. 地学前缘, 11(2):393-400.
    王玉往, 姜福芝. 1997. 北山地区各时代火山岩组合特征及分布. 中国区域地质, 16(3):298-304.
    王玉往, 王京彬. 2005. 北山地区与火山活动有关铜多金属成矿条件及找矿前景浅析. 地质与勘探,41(6):34-37.
    魏菊英, 王关玉. 1988. 同位素地球化学. 北京:地质出版社
    韦学团, 赵秉玲. 2002. 新金厂金矿床地球化学异常模式. 地质与勘探, 38(2):33-36.
    韦永福, 吕英杰. 1994. 中国金矿床. 北京:地震出版社
    奚小双. 1994. 甘肃新金厂金矿伸展滑覆构造及其控矿作用. 有色金属矿产与勘查, 3(1):22-27.
    夏林圻. 2001. 造山带岩浆作用. 西北地质, 34(3):18-28.
    肖庆辉, 邓晋福, 马大铨. 2002. 花岗岩研究思维与方法. 北京:地质出版社.
    肖序常, 汤耀庆. 1991. 古中亚复合巨型缝合带南缘构造演化. 北京:北京科学技术出版社
    肖渊甫, 王道永, 邓江红, 孙 燕, 吴德超. 2004. 新疆北山晚古生代克拉通裂谷火山作用特征. 成都理工大学学报(自然科学版), 31(4):331-337.
    修群业. 1999. 甘肃北山地区花岗岩类地球化学特征及大地构造意义. 前寒武纪研究进展, 2(1):31-39.
    徐恩寿, 靳毓贵, 朱奉三, 王秀璋, 肖森宏, 杨连生, 袁棨林. 1994. 中国金、银、铂矿床. 见: 宋叔和等主编, 中国矿床(中册). 北京:地质出版社.
    许保良, 阎国翰, 路凤香, 邹天人, 童英, 蔡剑辉, 刘楚雄, 张华峰. 2001. 北山-阿拉善地区二叠-三叠纪富碱侵入岩的岩石学特征. 岩石矿物学杂志, 20(3):263-272.
    许敬龙, 孟易辰, 张建树, 马志勇, 韩文云, 拜小琪. 1997. 敦煌岩群研究新进展. 甘肃地质学报, 6(增刊):1-5.
    薛春纪, 姬金生, 张连昌, 丰成友, 杨建国. 1999. 新疆西滩金矿床同位素年代学研究. 西安工程学院院报, 21(4):6-10.
    鄢明才, 迟清华. 1997. 中国东部地壳与岩石的化学组成. 北京:科学出版社.
    杨建国, 杨合群, 杨林海, 李文明, 李英. 2004. 北山地区北东向构造对金钨锡钼(稀土)矿床控制作用初探. 大地构造与成矿学, 28(4):404-412.
    杨经绥, 吴才来, 陈松永, 史仁灯, 张建新, 孟繁聪, 左国朝, 吴汉泉, Elan Constantinovskaya. 2006. 甘肃北山地区榴辉岩的变质年龄:来自锆石的 U-Pb 同位素定年证据. 中国地质, 33(2): 317-325.
    杨雨. 1990. 甘肃北山红柳园地区发现早古生代地层. 甘肃地质科技情报, 3:39-41.
    殷先明. 2000. 甘肃岩金矿床地质. 兰州:甘肃科学技术出版社.
    应汉龙. 1999. 浅成低温热液金矿床的全球背景. 贵金属地质, 8(4):241-250.
    俞伯达. 1994. 甘肃的寒武系. 甘肃地质学报, 3(增刊):1-53.
    俞伯达. 1997. 关于甘肃长城纪地层划分的新认识. 甘肃地质学报,6(1):1-15.
    于海峰, 梅华林, 李铨, 左国朝. 1998a. 甘肃北山南带巨型韧性剪切带-一条大型金矿成矿带. 中国地质, (3):23-25.
    于海峰, 梅华林, 李铨. 1998b. 甘肃敦煌地区太古宙孔兹岩系特征. 前寒武纪研究进展,21(1):19-25.
    余钦范, 楼海, 胡中栋. 1995. 格尔木-额济纳旗地学断面岩石圈结构的磁场分析. 地球物理学报, 38(增刊Ⅱ):64-69.
    余以生. 1994. 甘肃的震旦系. 甘肃地质学报, 3(增刊):54-88.
    翟明国, 范宏瑞, 杨进辉, 苗来成. 2004. 非造山带型金矿—胶东型金矿的陆内成矿作用. 地学前缘, 11(1):85-98.
    翟裕生, 邓军, 李晓波. 1999. 区域成矿学. 北京:地质出版社.
    张德全, 丰成友, 李大新, 徐文艺, 阎升好, 佘宏全, 董英君, 崔艳合. 2001. 柴北缘-东昆仑地区的造山型金矿床. 矿床地质, 20(2):137-146.
    张发荣, 牛卯胜. 2003. 甘肃北山地区成矿带划分及基本特征. 甘肃地质学报, 12(1):50-57.
    张连昌, 姬金生, 曾章仁. 1997. 新疆康古尔金矿成矿阶段及其年代学. 新疆地质, 15(3):203-210.
    张晓琳, 邱检生, 王德滋, 王汝成, 徐夕生, 陈小明. 2005. 浙江普陀山黑云母钾长花岗岩及其岩石包体的地球化学与岩浆混合作用. 岩石矿物学杂志, 24(2):81-92.
    赵省民, 聂凤军, 江思宏, 白大明, 王新亮, 苏新旭. 2003. 敦煌方山口大型钒磷铀矿床的稀土元素地球化学研究. 岩石矿物学杂志, 22(1):55-60.
    郑明华, 张斌, 张占鳌, 周渝峰, 林文弟, 帅德权. 1983. 中国金矿床类型的初步划分. 成都地质学院学报, 1:27-42.
    郑永飞. 1999. 化学地球动力学. 北京:科学出版社.
    郑永飞, 陈江峰. 2000. 稳定同位素地球化学. 北京:科学出版社.
    周继强. 2004. 甘肃新金厂金矿床矿石特征. 黄金地质, 10(3):22-26.
    周济元, 崔炳芳, 肖惠良, 陈世忠. 2000. 甘新北山东段裂谷演化及金矿成矿规律. 火山地质与矿产, 21(1):7-17.
    周新民, 姚玉鹏, 徐夕生. 1992. 浙东大衢山花岗岩中淬冷包体及其成因机制. 岩石学报, 8(3):234-242.
    周珣若. 1994. 花岗岩混合作用. 地学前缘, 1(1-2):87-97.
    朱和平, 王莉娟, 刘建明. 2003. 不同阶段流体包裹体气相成分的四极质谱测定. 岩石学报, 19(2):314-318.
    曾长华, 吴大江, 夏文彬, 王卫国, 曹伟. 2002. 北山成矿带金矿成矿规律与远景. 新疆地质, 20(3):219-223.
    左国朝, 何国琦. 1990. 北山板块构造及成矿规律. 北京:北京大学出版社.
    左国朝. 1992. 甘肃北山中南带新发现燕山早期走滑挤压推覆构造带. 地质科学, 27(4):309-316.
    左国朝, 刘春燕, 白万成, 冯永忠. 1995. 北山泥盆纪碰撞造山火山-磨拉石地质构造及地球化学特征. 甘肃地质学报, 4(1):35-43.
    左国朝, 李茂松. 1996. 甘蒙北山地区早古生代岩石圈形成与演化. 兰州:甘肃科学技术出版社
    左国朝, 刘义科, 刘春燕. 2003. 甘新蒙北山地区构造格局与演化. 甘肃地质学报, 12(1):1-15.
    Barbarin B. 1999. A review of the relationship between granitoid types, their origins and their geodynamic environments. Lihtos, 46:605-626.
    Bierlein F P, Maher S. 2001. Orogenic disseminated gold in Phanerozoic fold belts-examples from Victoria, Australia and elsewhere. Ore Geology Reviews , 18: 113–148.
    Bierlein F P, Christie A B and Smith P K. 2004. A comparison of orogenic gold mineralisation in central Victoria (AUS), western South Island (NZ) and Nova Scotia (CAN): implications for variations in the endowment of Palaeozoic metamorphic terrains. Ore Geology Reviews, 25(1-2):125-168.
    Bierlein F P,Foster D A,Gray D R and Davidson G J. 2005. Timing of orogenic gold mineralisation in northeastern Tasmania: implications for the tectonic and metallogenetic evolution of Palaeozoic SE Australia. Mineralium Deposita,39(8):890-903.
    Bischoff J L. 1991. Densities of liquids and vapors in boiling NaCl-H2O solutions: A PVTX summary from 300℃ to 500℃. American Journal of Science, 291:309-338.
    Bodnar R J. 1993. Reviced equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim Cosmichim Acta, 57:683-684.
    Bonnemaison M, Marcoux E. 1990. Auriferous mineralization in some shear zone: A three-stage model of metallogenesis. Mineralium Deposita, 25(2):96-104.
    Boullier A M, Robert F. 1992. Palaeoseismic events recorded in Archean gold-quartz vein networks. Journal of Structural Geology, 14:161-179.
    Brown P E, Lamb W E. 1989. P-V-T properties of fluids in the system CO2±H2O±NaCl: new graphical presentations and implications for fluis inclusions studies. Geochim Cosmochim Acta, 53:1209-1221.
    Castro A, Moreno V I, De La Rosa J D. 1991. H-type (hybrid) granitoids: a proposed revision of the granite-type calssification and nomenclature. Earth-Science Reviews, 31(3-4):237-253.
    Chappell B W, White A J R. 1992. I- and S- type granites in the Lachlan Fold Belt. Transcations of the Royal Society of Edinburgh, Earth Sciences, 83:1-26.
    Chappell B W. 1996. Magma mixing and the production of the compositional variation within granite suits: evidence from the granites of southern Australia. Journal of Petrology, 37(3):449-470.
    Chappell B W, White A J R. 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48:489-499.
    Clayton R N, O’Neil J R, Mayeda T K. 1972. Oxygen isotope exchange between quartz and water. Journal of Geophysical Research, 77:3057-3067.
    Chen F, Siebel W, Satir M, Terzioglu N, Saka K. 2002. Geochronology of the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul zone. International Journal of Earth Sciences, 91:469-481.
    Collins P L F. 1979. Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for eatimation of salinity. Econoimic Geology, 74:1435-1444.
    Craw D, Begbie M, MacKenzie D. 2006. Structural controls on Tertiary orogenic gold mineralization during initiation of a mountain belt, New Zealand. Mineralium Deposita, 41: 645–659
    Depaolo D J, Perry F V, Baldridge W S. 1992. Crustal versus mantle sources of granitic magma: a two-parameter model based on Nd isotopic studies. Transcations of the Royal Soceity of Edinburgh: Earth Sciences, 83:439-446.
    Didier J, Barbarin B. 1991. Enclaves and granite petrology. Amsterdam: Elsevier.
    Gerhard V, Rolf S, Dieter G. 1999. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronlogy of the Ivrea Zone (southern Alps). Contribution to Mineralogy and Petrology, 134:380-404.
    Goldfarb R J, Groves D I, Gardoll S. 2001. Orogenic gold and geologic time: a global synthesis. Ore Geology Reviews , 18: 1–75
    Gradstein F M, Ogg J G, Smith A G, Bleeker W, Lourens L J. 2004. A new Geologic Time Scale, with special reference to Precambrian and Neogene. Episodes, 27(2):83-100.
    Groves D I, Goldfarb R J, Gebre-Mariam M, Hagemann S G, Robert F. 1998. Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Review, 13:7-27.
    Groves D I, Goldfarb R J, Robert F, Hart C J R. 2003. Gold deposits in metamorphic belts: overview of current understanding, outstanding problems, future research, and exploration significance. Economic Geology, 98:1-29.
    Groves D I, Condie K C, Goldfarb R J, Hronsky J M A, Vielreicher R M. 2005. 100th anniversary special paper: secular changes in global tectonic processes and their influence on the temporal distribution of gold-bearing mineral deposits. Economic Geology, 100:203-224.
    Elburg M A. 1996. Evidence of isotopic equilibration between microgranitoid enclaves and host granodiorite, Warburton Granodiorite, Lachlan Fold Belt, Australia. Lithos, 38:1-22.
    Faure Q. 1986. Principles of isotope geology (second edition). New York: John Wiley&Sons Press.
    Hart C J R, Goldfarb R J, Qiu Y M, Snee L, Miller L D, Miller M L. 2002. Gold deposits of the northern margin of the North China Craton: multiple late Plaeozoic-Mesozoic mineralizing events. Mineralium Deposita, 37:326-351.
    Heald P, Foley N K, Hayba D O. 1987. Comparative anatomy of volcanic-hosted epithermal deposits: acid-sulfate and adularia-sericite types. Economic Geology, 82(1):1-26.
    Hendenquist J W, Izawa E, Arribas A, et al. 1996. Epithermal gold deposits: styles, characteristics, and exploration. Resource Geology, special publication number 1:57-69.
    Hoefs J. 1997. Stable isotope Geochemistry (4th Edition). Berlin:Springer-Verlag.
    Irvine T N, Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks. Cannadian Journal of Earth Sciences, 8:523-548.
    Jahn B M, Wu F Y, Lo C H, Tsai C H. 1999. Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology, 157:119-146.
    Jia Y F, Kerrich R. 1999. Nitrogen isotope systematics of mesothermal lode gold deposits: metamorphic, granitic, meteoric water, or mantle origin? Geology, 27:1051-1054.
    Jiang Sihong, Nie Fengjun. 2004. Gold deposits in Beishan Mountain, Northwestern China. Resource Geology, 54(3):325-340.
    Kerrich R, Goldfarb R, Groves D, Garwin S, Jia Y. 2000. The characteristics, origins, and geodynamics setting of supergiant gold metallogenic provinces. Science in China (Series D), 43 (supplement):1-68.
    Lang J R, Baker T, Hart C J R, Mortensen J K. 2000. An exploration model for intrusion-related gold system. Society of Economic Geologist Newsletter, 40(1):7-15.
    Lang J R, Baker T. 2001. Intrusion-related gold system: the present level of understanding. Mineralium Deposita, 36:477-489.
    Langmuir C H. 1978. A general mixing equation with application to Icelandic basalt. Earth and Planetary Science Letters, 37:380-392.
    Le Bas M J, Le Maitre R W, Streckeisen A, Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27:745-750.
    Lesher C E. 1990. Decoupling of chemical and isotopic exchange during magma mixing. Nature, 344:235-237.
    Ludwig K R. 2001. Users manual for Isoplot/Ex reversion 2.49. Berkeley geochronology center special publication No.1.
    MaCoy D T, Newberry R J, Layer P W, DiMarchi J J, Bakke A, Masterman J S, Minehane D J. 1997. Plutonic related gold deposits of interior Alaska. In: Goldfarb R J, Miller L D(eds) Ore deposits of Alaska. Society of Economic geologist Monograph, 9:151-190.
    Mao J W, Goldfarb R J, Zhang Z W, Xu W Y, Qiu Y M, Deng J. 2002a. Gold deposits in the Xiaoqinling-Xiong’ershan region, Qinling Mountains, central China. Mineralium Deposita, 37:306-325.
    Mao J W, Qiu Y M, Goldfarb R J, Zhang Z C, Garwin S, Ren F S. 2002b. Geology, distribution, and classification of gold deposits in the west Qinling belt, central China. Mineralium Deposita, 37:352-377.
    Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37:215-224.
    Miller L D, Goldfarb R J, Nie F J, Hart C J R, Miller M L, Yang Y Q, Liu Y Q. 1998. North China Gold: A product of multiple orogens. SEG Newsletter, 33:1-12.
    Naden J, Shepherd T J. 1989. Role of methane and carbon dioxide in gold deposition. Nature, 342:793-795.
    Nie F J, Arne Bjorlykke. 1994. Lead and sulfur isotope studies of the Wulashan quartz-K feldspar and quartz vein gold deposit, southwestern Inner Mongolia, People’s Republic of China. Economic Geology, 89:1289-1305.
    Nie F J. 1997. An overview of the gold resources of China. International Geology Review, 39:55-81. Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology, 67:551-578.
    Pidgeon R T, Nemchin A A, Hitchen G J. 1998. Internal structures of zircons from Archaean granites from the Darling Range batholith: implications for zircon stability and the interpretation of zircon U-Pb ages. Contribution to Mineralogy and Petrologica, 132:288-299.
    Pearce J A, Harris N B W, Tindle A G. 1984. Trace elemental discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4):956-983.
    Phillips G N, Powell R. 1993. Link between gold provinces. Economic Geology, 88:1084-1098.
    Qin K Z, Sun S, Li J L, Fang T H, Wang S L, Liu W. 2002. Paleozoic epithermal Au and porphyry Cu Deposits in North Xinjiang, China: Epochs, Features, Tectonic Linkage and Exploration Significance. Resource Geology, 52(4):291-300.
    Qiu Y M, Groves D I, Mcnaughton N J, Wang L G, Zhou T H. 2002. Nature, age, and tectonic setting of granitoid-hosted, orogenic gold deposits of the Jiaodong Peniusula, eastern North China craton, China. 37:283-305.
    Ramsay J G. 1980. Shear zone geometry: a review. Journal of Structural Geology, 2:83-99.
    Richards J P. 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology, 98:1515-1533.
    Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22:247-263.
    Rollinson H R. 1993. Using geochemical data: evaluation, presentation, interpretation. New York: Longman Scientific&Technical Press.
    Rui Z, Goldfarb R, Qiu Y. 2002. Paleozoic-early Mesozoic gold deposits of the Xinjiang Automous Region, northwestern China. Mineralium Deposita, 37:393-418.
    Sibson R H, Robert F, Poulsen K H. 1988. High-angle reverse faults, fluid-pressure cycling, and mesothermal gold deposits. Geology, 16(6):551-555.
    Sillitoe R H, Thompson J F H. 1998. Intrusion-related vein gold deposits: types, tectono-magmatic settings and difficulties of distinction from orogenic gold deposits. Resources Geology, 48(4):237-250.
    Silva M M V G, Neiva A M R, Whitehouse M J. 2000. Geochemistry of enclaves and host granite from the Nelas area, central Portugal. Lithos, 50:153-170.
    Stacey J S, Kramers J D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planetary Science Letters, 26:207-221.
    Taylor S R, Mclennan S M. 1985. The continental crust: its composition and evolution. Oxford:Blackwell.
    Thompson J F H, Sillitoe R H, Baker T, Lang J R, Mortensen J K. 1999. Intrusion-related gold deposits associated with tungsten-tin provinces. Mineralium Deposita, 34:323-334.
    Wang H, Mo X. 1995. An outline of the tectonic evolution of China. Episodes, 8:6-16
    Whalen J B, Currie K L, Chappell B W. 1987. A-types granites: geochemical cahracteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95:407-419.
    Williams I S, Claesson S. 1987. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high-grade paragenesis from the Steve Napps, Scandinavian Caledonides, Ⅱ. Ion microprobe zircon U-Th-Pb. Contributions to Mineralogy and Petrology. 97:205-217.
    Wilson M. 2001. Igneous petrogenesis. Netherlands: Kluwer Academic Publishers.
    Wood D A, Joron J L, Treuil M, Norry M, Tarney J. 1979. Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor. Contributions to Mineralogy and Petrology, 70:319-339.
    Wu F Y, Jahn B M, Wilde S A. 2003. Highly fractionated I-type granites in NE China (Ⅰ): geochemistry and petrogenesis. Lithos, 66:241-273.
    Zartman R E, Doe B R. 1981. Plumbotectonics-the model. Tectonophysics, 75:135-162.
    Zheng Y, Zhang Q, Wang Y, Liu R, Wang S G, Zuo G, Wang S Z, Badamgarav Z. 1996. Great Jurassic thrust sheets in Beishan (North Mountains)-Gobi areas of China and Southern Mongolia. Journal of Structural Geology, 18(9):1111-1126.
    Zhou T H, Goldfarb R J, Phillips G N. 2002. Tectonics and distribution of gold deposits in China-an overview. Mineralium Deposita, 37:249-282.
    甘肃省地质局第一区域地质测量队. 1966a. 1/20 万红柳园幅区域地质测量报告(地质部分).
    甘肃省地质局第一区域地质测量队. 1966b. 1/20 万红柳园幅区域地质测量报告(矿产部分).
    甘肃省革命委员会地质局区测二队. 1973a. 1/20 万方山口幅区域地质测量报告(地质部分).
    甘肃省革命委员会地质局区测二队. 1973b. 1/20 万方山口幅区域地质测量报告(矿产部分).
    甘肃省有色地质勘察局四队. 1995. 甘肃省安西县新金厂金矿床地质普查报告(1989-1995 年).
    核工业西北地质勘探局 212 大队. 1992. 甘肃省安西县拾金坡金矿床七号矿体地质勘探报告.
    江思宏. 2004. 北山地区岩浆活动与金的成矿作用. 中国地质科学院博士学位论文.
    潘小菲. 2006. 甘肃-新疆北山地区典型金矿床成矿流体及其成矿机制探讨. 中国科学院研究生院博士学位论文.
    秦克章. 2000. 新疆北部中亚型造山与成矿作用. 中国科学院地质与地球物理所博士后研究工作报告.
    张静. 2004. 东秦岭-桐柏地区典型银金矿床的剖析和对比研究. 北京大学博士学位论文.
    中国地质调查局. 2003. 全国主要成矿远景区矿产资源调查评价重点选区研究(二).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700