用户名: 密码: 验证码:
滇西新生代富碱火成岩及其与金成矿关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要

In this dissertation, based on the data and fruits of previous studies, we take Beiya gold deposit and associated alkali-rich intrusions as main studying objects, aim to discuss the formation processes of the Cenozoic alkali-rich igneous rocks, the differentiation process of fluids from the alkali-rich magma during its uprising and evolution, and genesis of the Beiya gold deposit, and consequently discover the relationship between the Beiya gold deposit and associated alkali-rich intrusions. By studies of major and trace element (include REE) geochemistry, isotope (e.g. Pb, Sr, Nd, C, O, S and He-Ar) geochemistry and fluid inclusion geochemistry we have acquired the following principal cognitions:1. The Cenozoic alkali-rich intrusive rocks in western Yunnan are derived from enriched metasomatized mantle (EM- II), and the metasomatizing processes of mantle area were related to the subduction of the Palaeo-Tethyan oceanic crust. The metasomatism of hanging mantle wedge by aqueous fluids from subducted slab is accounted for the aqueousness of the alkali-rich intrusive rocks in western Yunnan which are equivalent to A-type granite. Thus the alkali-rich magmatism is considered to be a delayed arc magmatism. The intermediate-felsic alkali-rich magma is evolved from alkaline basaltic magma by assimilation of ca.20% of crustal materials that mainly from metamorphosed basement. The alkali-rich magma has relatively high-oxygen-fugacity (logfO2>FMQ+2, FMQ represents fayalite-magnetite-quartz buffer) as convergent margin magmas and has differentiated large amounts of fluids during its uprising and evolution process, and thus is of Cu-Au high mineralization potential.2. The mineralization age of Beiya gold deposit is dated as 33 ± 1.5Ma, which is consistent with the age of associated alkali-rich intrusions (32~34Ma).3. The primary fluid or early stage ore-forming fluid related to Beiya gold deposit has a Nd and Sr isotopic composition (i.e. Isr 0.722390, Nd(t) -2.8) identical to that of the fluid differentiated from alkali-rich magma within the metamorphosed basement, a Pb isotopic composition (i.e. ~206Pb/~204Pb= 18.590, . ~207pb/~204pb= 15.606 , ~208pb/~204pb =38.770 identical tothe average of alkali-richintrusions within the district or in the periphery of Beiya gold deposit, a mimic chondrite-normalized REE pattern of associated alkali-rich intrusions, and a C\ O isotopic composition (i.e. ~13C -5‰, 18O 11‰) peculiar to magmatic hydrothermal fluids, as well as a crust-mantle mixing He-Ar isotopic composition (i.e. ~3He/~4He= 1.80-1.94 Ra, ~3He/~36Ar =1.19 X 10~-3 -3.93X 10~-3) that also shows remarkable
    
    He-Ar differentiation (~40Ar*/~4He=0.34-0.75). In addition, it is characterized by high-temperature-pressure, high-salty and CO2-rich. The above signatures indicate that primary fluid is principally differentiated from alkali-rich magma within the metamorphosed basement. The mineralizing fluids were gradually evolved from the primary fluid by separation of CO2-rich and thO-NaCl phases with the decrease of temperature and pressure and preferential partition of ore-forming metals into the CO2-rich phases, and released the ore-forming metals by processes of gas loss or mixing with meteoric water.4. About 80% of ore-forming metals are from the alkali-rich magma and the other fractions might be mainly scavenged by the magmatic fluid from metamorphosed basement.Conclusion: the Beiya gold deposit has a close genetic relationship with associated alkali-rich intrusions.
引文
1. 毕献武,胡瑞忠,Connell D H.蚀变流体来源:矿化蚀变带中原生与次生长石的稀土元素证 据.科学通报,2000,45(13) :1429-1432.
    2. 毕献武,胡瑞忠,Connell D H.富碱侵入岩与金成矿关系:云南省姚安金矿床成矿流体形 成演化的微晕元素和同位素证据.地球化学,2001,30(3) :264-272.
    3. 毕献武,胡瑞忠,彭建堂,吴开兴.黄铁矿微量元素地球化学特征及其对成矿流体性质的 指示.矿物岩石地球化学通报,2004,23(1) :1-3.
    4. 毕献武,胡瑞忠,彭建堂,吴开兴,苏文超,战新志.姚安和马厂箐富碱侵入岩体的地球 化学特征.岩石学报,大才疏2005,21(1) :113-124.
    5. 毕献武.滇西“三江”地区富碱侵入岩及其与铜、金成矿关系研究[博士论文].贵阳:中 国科学院地球化学研究所,1999a.
    6. 毕献武,胡瑞忠,叶造军等.A型花岗岩与铜成矿关系-以马厂箐为例.中国科学(D辑), 1999b,29(6) :489-495.
    7. Boyle R W.金的地球化学及金矿床.北京:地质出版社,1984,59-68.
    8. 陈文寄,哈里森T M,洛弗拉O M.哀牢山-红河剪切带的热年代学研究-多重扩散域 模式的应用实例.地震地质,1992,14(2) :121-128.
    9. 蔡新平,刘秉光、李成云等.滇西北衙金矿矿床特征及成因初探.黄金科技动态,1991, (7) :7-19.
    10. 蔡新平.扬子地台两缘新生代富碱斑岩中的深源包体及其意义.地质科学1992,2: 183-189.
    11. 蔡新平,季成云,应汉龙筲.滇西北衙金矿床的地质地球化学.中国金矿研究新进展:第一 卷(下篇).北京:地震出版社,1994 223-243.
    12. 从柏林,吴根耀,张旗等.中国滇西古特提斯构造带岩石大地构造演化.中国科学(B 辑),1993,23(11) :1201-1207.
    13. 从柏林,张儒嫒,吴根耀,等.中国滇西变质地质学研究.见石宝珩:中国地质科学新探索, 北京:石油工业出版社,1998,93-110.
    14. 崔银亮,陈贤胜,张映旭,和浪涛.滇西新生代与富碱斑岩有关的金矿床成矿特征和成 矿条件.大地构造与成矿学,2002,26(4) :406-408.
    15. 邓万明,黄萱,钟大赉.滇西新生代富碱斑岩的岩石特征与成因.地质科学1998a,33(4) : 412-425.
    16. 邓万明,黄萱,钟大赉.滇西金沙江北端的富碱斑岩及其与板内变形的关系.中国科学(D 辑),1998b 28(2) :111-117.
    17. 甫为民.鹤庆北衙富碱斑岩侵入体的岩石学特征及其构造环境.云南地质,1994, 13(1) :33-41.
    18. 葛良胜,郭晓东,邹依林,杨嘉禾,李玉静.云南姚安与富碱岩浆活动有关的金矿床地质 及成因.地质与资源,2002a,11(1) :29-37.
    19. 葛良胜,郭晓东,邹依林,李振华,张晓辉.云南北衙金矿床地质特征及成因研究.地质 找矿论丛,2002b,17(1) :32-46.
    20. 葛良胜,邹依林,李振华,郭晓东,邢俊兵,张晓辉.云南马厂箐(铜、钼)金矿床地质特 征及成因研究.地质与勘探,2002c,38(5) :11-17.
    21. 胡瑞忠,Tunner G.云南马厂箐铜矿氦同位素组成研究.科学通报,1997,42(14) : 1542-1545.
    
    22. 胡瑞忠,Tunner G.马厂等铜矿床黄铁矿流体包裹体He-Ar同位素体系.中国科学,D 辑,1997,27(6) :503-508.
    23. 胡祥昭.黄震.扬子地台西缘富碱花岗斑岩特征及成因探讨.大地构造与成矿学,1997, 21(2) :173-180.
    24. 何明勤,杨世瑜,刘家军,:云南祥云金厂箐金-铜矿床中的有机质及其与金成矿的关系. 昆明理工大学学报,2003,28(1) :4-7.
    25. 何明勤,杨世瑜,刘家军,李朝阳.云南祥云金厂箐金(铜)矿床的成矿流体特征及流体 来源.矿物岩石,2004,24(2) :35-40.
    26. 黄金武警十支队.云南省姚安县白马苴金矿区金矿普查报告,2000.
    27. 刘志浩.滇两北中下地壳岩石地球化学及成矿贡献-来自深源岩石包体的信息[硕士学位 报告].贵阳:中科院地球化学研究所,2003.
    28. 刘红英,夏斌,张玉泉.云南马头湾透辉石花岗斑岩锆石SHRIMP U-Pb年龄研究.地球 学报,2003,24(6) :552-554.
    29. 刘建云.北衙万洞山金矿床地质特征及找矿方向.黄金,2003,24(9) :10-12.
    30. 刘斌,沈昆.流体包裹体热力学.北京:地质出版社,1999,1-290.
    31. 刘秉光,陆德复,蔡新平等.滇川西部金矿床研究.北京:海洋出版社,1999,90-125.
    32. 刘增乾,李兴振,叶庆同等.三江地区构造岩浆带的划分与矿产分布规律.北京:地质 出版社,1993.
    33. 刘景虹,李如良,邵伟年.云南鹤庆北衙金矿地质特征及找矿机制探讨.西南矿产地质,1991, 5(2) :50-55.
    34. 刘英俊,曹励明,李兆麟等.元素地球化学.北京:科学出版社,1984,1-517.
    35. 刘显凡.富碱斑岩特征及其成岩成矿地球化学机制研究-以云南中甸-丽江-大理地区为 例[博士后出站报告].贵阳:中科院地球化学研究所,1999a.1-91.
    36. 刘显凡,战新志,高振敏等.云南六合深源包体与富碱斑岩成岩成矿的关系.中国科学 D辑,1999b,29(5) :413-420.
    37. 刘显凡,刘家铎,张成江,阳正熙,吴德超,李佑国.滇西富碱斑岩型矿床岩体和矿脉同位素 地球化学研究.矿物岩石地球化学通报,2004,23(1) :32-39.
    38. 卢焕章,李秉伦,沈昆等.包裹体地球化学.北京:地质出版社,1990,1-242.
    39. 卢焕章.成矿流体,北京:科学技术出版社,1997,1-210.
    40. 卢焕章,范宏瑞,倪培,欧光习,张文淮.流体包裹体.北京:科学出版社,2004,1-487.
    41. 罗君烈,杨友华,赵准.滇西特提斯的演化及主要金属成矿作用.北京:地质出版 社,1992,214.
    42. 吕伯西,王增,张能德等.三江地区花岗岩类及其成矿专属性.北京:地质出版社,1993, 1-328.
    43. 吕伯西,钱祥贵..滇西三江地区新生代碱性系列岩浆岩构造类型.云南地质,2000, 19(3) :232-243.
    44. 李元,秦德先,黎诚北衙金矿的氧化特征及找矿意义.昆明理工大学学报,1999, 24(1) :120-124.
    45. 李兴振,刘文均,王义昭西南三江地区特提斯构造演化与成矿(总论).北京:地质出版 社,1999,1-276.
    46. 李兴振,许效松,潘桂堂.泛华夏大陆群与东特提斯构造域演化.岩相古地理, 1995,1 5(4) :1-13.
    47. 李齐,陈文寄,万景林,李大明.哀牢山-红河剪切带构造抬升和运动形式转换时间的新 证据.中国科学(D辑),2000,30(6) :576-583.
    
    48. 梁永宁.大理北衙斑岩型金矿地质特征及成矿条件研究.昆明工学院学报, 1993,18(3) :21-29.
    49. 骆耀南,俞如龙.龙门山-锦屏山陆内造山带喜马拉雅期构造-岩浆作用主要特征及其动 力学模式.见:陈毓川.喜马拉雅期内生成矿作用研究.北京:地质出版社,2001,88-95.
    50. 莫宣学,路凤香,沈上越等.三江特提斯火山作用与成矿.北京:地质出版社,1993. 1-267.
    51. 马德云,韩润生.北衙金矿床构造地球化学特征及靶区优选.地质与勘探,2001,37(2) :64-68
    52. 马德云,高振敏,杨世瑜,韩润生.北衙金矿区构造应力场数值模拟.大地构造与成矿 学,2003,27(2) :160-162.
    53. 彭建堂,胡瑞忠.湘中锡矿山超大型锑矿床的碳、氧同位素体系.地质论评2001,47(1) : 34-41.
    54. 彭建堂,毕献武,胡瑞忠,吴开兴,桑海清.滇西马厂箐富碱斑岩的成岩成矿年代学研 究.矿物学报,2005,25(1) :69-74.
    55. 钱祥贵,李忠伟.滇中姚安金矿床地质地球化学特征.大地构造与成矿学,2000,24(增刊): 31-36.
    56. 任康绪.碱性岩研究进展述评.化工矿产地质,2003,25(3) :151-163.
    57. 芮宗瑶,黄崇轲, 齐国明等.中国斑岩铜(钼)矿.北京:地质出版社.1984,1~322.
    58. 覃振蔚..混合等时线及其在同位素年代学中的意义.中国科学B辑,1987,(1) :95-103.
    59. 涂光炽.关于富碱侵入岩.矿产与地质,1989. 3(3) :1-4.
    60. 涂光炽,张玉泉、赵振华.华南两个富碱斑岩的初步研究.见涂光炽.花岗岩地质和成矿 关系.南京:江苏科学技术出版社,1984,21-37
    61. 谢应雯,张玉泉,胡国相..哀牢山-金沙江富碱侵入岩带地球化学与成矿专属性初步研究. 昆明工学院院报,.1984,4:1-17.
    62. 谢应雯,张玉泉,钟孙霖等.云南洱海东部新生代岩浆岩岩石化学,岩石学报,1995, 11(4) :423-433.
    63. 谢应雯,张玉泉,钟孙霖等.云南洱海东部新生代高钾碱性岩浆岩痕量元素特征.岩石 学报,1999,15(1) :75-82.
    64. 宋焕斌,等.滇西北衙金矿床的二次成矿作用.昆明工学院学报,1994,19(4) :15-20.
    65. 苏文超.扬子地块西南缘卡林型金矿床成矿流体地球化学研究.[博士论文].贵阳:中国 科学院地球化学研究所,2002.
    66. 王会远.北衙金矿地质特征及成矿地质条件的初步分析.西南矿产地质,1993,(2) ;17-24.
    67. 王顺英.北衙金矿成矿地质条件浅析.云南地质,2003,22(3) :274-280.
    68. 王建,李建平,王江海滇西大理-剑川地区钟玄质岩浆作用:后碰撞走滑拉伸环境岛弧 型岩浆作用的地球化学研究.岩石学报,2003,19(1) :61-70.
    69. 吴根耀.滇西北地区第三纪的逆冲推覆构造.大地构造与成矿学,1994,18(4) :331-338.
    70. 云南省地勘局第三大队.云南省宁蒗-丽江-鹤庆矿化集中区金、铅、锌、银矿产资源调 查评价立项报告,1996.
    71. 杨建昆,唐志国.云南省新生代浅成侵入斑岩型金矿成矿特征及找矿远景预测--以马厂 箐金矿为例.北京地质,1996,3:27-31.
    72. 杨世瑜,王瑞雪.北衙碱性斑岩型金矿床矿床遥感地质综合信息.昆明理工大学学报,2002, 27(4) :1-5.
    73. 晏祥云.北衙铅锌矿床金银矿化特征及其找矿方向讨论.西南矿产地质,1991,5(3) :42-48.
    74. 叶庆同,胡云中、杨岳清等.三江地区区域地球化学背景和金银铅锌成矿作用.北京:地质 出版社,1992,1-279.
    
    75. 应汉龙,应汉龙,蔡新平.云南北衙矿区富碱斑岩正长石和白云母的40Ar-39Ar年龄.地质 科学,2004,39(1) :107-110.
    76. 赵振华.富碱侵入岩-窥探地幔成分的窗口.见:欧阳自远,主编.中国矿物岩石地球化学 研究进展.兰州:兰州大学出版社,王爷1994,113-114.
    77. 赵振华微量元素地球化学.北京:科学出版社,1997,1-238.
    78. 赵振华,熊小林,王强,包志伟,张玉泉,谢应雯,任双奎.我国富碱火成岩及有关的大型-超大型金铜矿床成矿作用.中国科学D辑,2002,32(增刊):1-10.
    79. 张玉泉,谢应雯.哀牢山-金沙江富碱侵入岩年代学和Nd,Sr同位素特征.中国科学D辑, 1 997,27(4) :289-293.
    80. 张玉泉,谢应雯,涂光炽.哀牢山-金沙江富碱侵入岩及其与裂谷构造关系初步研究.岩 石学报,1987,4(1) :17-25
    81. 钟大赉,Tapponnier P,吴海威等.左行走滑断裂-碰撞后陆内变形的重要形式.科学通 报,1989,(7) :526-529.
    82. 朱炳泉,张玉泉,谢应雯.滇西洱海东第三纪超K质火成岩系的Nd-Sr-Pb同位素特征与西 南大陆地慢演化.地球化学,1992,(3) :201-212.
    83. 曾普胜,杨伟光,喻学惠.滇西富碱斑岩带及其与金矿化的关系.地球学报,1999,20(增 刊):367-372.
    84. 曾普胜,李红..滇西北中甸地区的铜金找矿远景.黄金地质,2000,(3) :13-18.
    85. 曾普胜,莫宣学,喻学惠.滇西富碱斑岩带的Nd,Sr,Pb同值素特征及其挤压走滑背景.岩 石矿物学杂志2002,21(3) :):231-241.
    86. 郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社,2000,1-316.
    87. 郑永飞.稳定同位素体系理论模式及其矿床地球化学应用.矿床地质,2001,于职守 20(1) :57-70.
    88. 张继荣,刘字淳和晓南.北衙金矿富碱斑岩-滑覆构造控矿体系及成矿规律.云南地 质,2004,23(1) :67-72.
    89. Alle'gre C J, Staudacher T and Sarda P. Rare gas systematics: formation of the atmosphere, evolution and structure of the Earth's mantle, Earth Planet Sci Lett, 1986, 81: 127-150.
    90. Aubert D, Stille P and Probst A. REE fractionatiqn during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochim. Cosmochim. Acta, 2001, 65:387-406.
    91. Ballentine C J and Burnard P G. Production, release and transport of noble gases in the continental crust. Rev Mineral Geochem,2002,47: 481-538.
    92. Bank D A, Yardley E W D, Campbell A K and Jarvis K E. REE composition of an aqueous magmatic fluid: A fluid inclusion study from the Capitan pluton, New Mexico. Chem Geol, 1994, 113:259-272.
    93. Barker D S. Igneous rocks. Prentice Hall, Englewood Gtiffs, 1983.
    94. Batchelor R A and Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem Geol, 1985,48:43-55.
    95. Bau M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem Geol, 1991, 93: 219-230.
    96. Bischoff J L and Pitzer K S. Liquid-vapor relations for the system NaCl-H2O: summary of the P-T-x surface from 300 ℃ to 500 ℃. Amer J Sci, 1989,289:217-248.
    
    97. Bi X W, Cornell DH, and Hu R Z. REE composition of primary and altered feldspar from the mineralized alteration zone of alkaline intrusive rocks, western Yunnan Province, China. Ore Geol Rev, 2002, 19:69-78.
    98. Bi X W, Hu R Z and Cornell D H. The alkaline porphyry associated Yao'an gold deposit, Yunnan, China: rare earth element and stable isotope evidence for magmatic-hydrothermal ore formation. Miner Deposita, 2004,39: 21-30.
    99. B levin P L. The petrographic and compositional character of variably K-enriched magmatic suites associated with Ordovician porphyry Cu-Au mineralisation in the Lachlan Fold Belt, Australia. Miner Deposita, 2002, 37(l):87-99.
    100. BoE hike J K. and Kistler RW. Rb-Sr, K-Ar, and stable isotope evidence for the ages and sources of fluid components of gold-bearing quartz veins in the northern Sierra Nevada Foothills metamorphic belt. California. Econ Geol, 1986, 81:296-322.
    101. Bodnar R J and Vityk M O. Interpretation of microthermometric data for H2O-NaCl fluid inclusions: In De Vivo B and Frezotti M L(Eds). Fluid Inclusions in Minerals, Methods and Applications. Virginia Tech, 1994, pp.117-130.
    102. Burnard P G. Graham D W and Farley K A. Mechanisms of magmatic gas loss along the Southeast Indian Ridge and the Amsterdam -St. Paul Plateau. Earth Planet Sci Lett, 2002,203:. 131-148.
    103. Burnard, P G, Hu R, Turner G. and Bi X W. Mantle, crustal and atmospheric noble gases in Ailaoshan gold deposits, Yunnan Province, China. Geochimica et Cosmochimica Acta, 1999, 63: 1595-1604.
    104. Cantrell K J and Bryne R H. Rare earth element complexation by carbonate and oxalate ions, Geochim Cosmochim Acta, 1987,51:597-605.
    105. Chapman R E. Developments in Petroleum Science, 16 petroleum geology. Elsevin Science Publishers B.V, 1983.
    106. Chung S L, Lee T Y, Lo CH, Wang P L, Cheng C Y, Yem N T, Hoa T T, Wu G Y. Intraplate extension prior to continental extrusion along the Ailao Shan-Red River shear zone. Geology, 1997,25:311-314.
    107. Chung S L, Lo C H, Lee T Y, Zhang Y Q, Xie Y W, Li X H, Wang L W, and Wang P L. Diachronous uplift of the Tibetan plateau starting 40 Myr ago. Nature, 1998,394,769-773.
    108. Carroll M R and Stolper E M. Argon solubility and diffusion in silica glass: Implications for the solution behavior of molecular gases. Geochim Cosmochim Acta,1991, 55: 211-225.
    109. Carroll M R and Stolper E M. Noble gas solubilities in silicate melts and glasses: new experimental results for argon and the relationship between solubility and ionic porosity, Geochim Cosmochim Acta, 1993, 57: 5039-5052.
    110. Collins W J, Beams S D, White A J R, and Chappell B W .Nature and origin of A-type granites with particular reference to south-eastern Australia. Contrib. Mineral Petrol, 1982. 80: 189-200.
    111. Coleman M and Hodges K. Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east-west extension. Nature, 1995, 374: 49 - 52.
    112. Defant M J and Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 1990,347: 662-665.
    113. Drummond M S, Defant M J, and Kepezhinkas P K. The petrogenesis of slab derived trondhjemite-tonalite -dacite/adakite magmas. Transact. R. Soc. Edinb. Earth Sci., 1996,
     87,205-216.
    
    114. Dunai T J and Baur, H. Helium, neon and argon systematics of the European subcontinental mantle: implications for its geochemical evolution. Geochim Cosmochim Acta,1995, 59:2767-2784.
    115. Dubessy J, Derome D and Sausse J Numerical modeling of fluid mixings in the H2O-NaCl system to the north Caramal U prospect (Australia). Chem Geol, 2003,194: 25-39.
    116. Engelder T and Lacazatte A. Natural hydroaulic fracturing: In Barton N and Stephansson O (Eds). Rock Joints: Rotterdam A A, Balkema, 1990,35-43.
    117. Farmer G L and DePaolo D J. Nd and Sr isotope study of hydrothermally altered granite at San Manuel, Arizona: implications for element migration paths during the formation of porphyry copper ore deposits. Econ Geol, 1987, 82: 1142-1151.
    118. Gautheron C and Moreira M. Helium signature of the subcontinental lithospheric mantle. Earth Planet Sci Lett, 2002, 199: 39-47.
    119. Gill J, Orogenic Andesites and Plate Tectonics. Springer Verlag, New York, 1981.
    120. Grant J A. The isocon diagram-a simple solution to Gresens' equation for metasomatic alteration. Econ Geol, 1986, 81: 1976-1982.
    121. Gresens R L. Composition-volume relationships of metasomatism. Chem Geol, 1967, 2: 47-55.
    122. Henley R W, Truesdell A H., and Barton Jr. P B. Fluid-mineral equibria in hydrothermal systems. Soc Econ Geol, Rev Econ Geol, 1984,1: 267.
    123. Haack U. Datierung mit Rb/Sr-Mischungslinien? Ber Dt Miner Ges Eur J Miner, 1990,2(1): 86.
    124. Haack U and Lauterjung J. Rb/Sr dating of hydrothermal overprint in Bad Grund by mixing lines. In Formation of Hydrothermal Vein Deposit—a case study on the Pb-Zn, Barite and Fluorite Deposit of the Harz Mountains(eds. Mo'ller P. and LUders). Monogr Ser Miner Dep, 1993,30: 103-114.
    125. Harrison M T, Wenji C, Leloup PH, Ryerson FJ, Tapponnier P. An early Miocene transition in deformation regime within the Red River fault zone, Yunnan, and its significance for Indo-Asian tectonics. J Geophys Res 1992, 97/B5: 7159-7182.
    126. Hawkesworth C J, Hergt JM, Ellam RM, McDermott F. Element fluxes associated with subduction related magmatism. Philos. Trans R Soc London, Ser. A, 1991, 335: 393-405.
    127. Heinrich C A, Gu'nther D, Aude'tat A, Ulrich T, and Frischknecht R. Metal fractionation between magmatic brine and vapour, and the link between porphyry-style and epithermal Cu-Au deposits.Geology, 1999, 27,755-758.
    128. Hedenquist J W and Lowenstern J B. The role of magmas in the formation of hydrothermal ore deposits. Nature, 1994, 370: 519-527
    129. Hunt J M.Petroleum geochemistry and geology, Freeman W H and Company, 1979.
    130. Hiyagon H, and Ozima M. Patition of noble gases between olivine and basalt melt. Geochim. Cosmochim. Acta, 1986,50:2045-2057. .
    131. Hu R Z, Burnard P G, Turner G, and Bi X W. Helium and argon systematics in fluid inclusions of Machangqingxopper deposit in west Yunnan province, China. Chem Geol, 1998, 146:55-63
    132. Hu R Z, Burnard PG, Bi X W, Zhou M F, Pen J T, Su W C, Wu K X Helium and argon isotope geochemistry of alkaline intrusion-associated gold and copper deposits along the Red River-Jinshajiang fault belt, SW China", Chem Geol, 2004,203,305-317.
    
    133. Jambon A, Weber H. W., and Braun O. Solubility of He, Ne, Ar, Kr and Xe in a basalt melt in the range 1250-600℃.Geochemical implications. Geochim Cosmochi. Acta, 1986, 50 : 401-408.
    134. Keays R R and Scott, R. B.Precious metals in ocean-ridge basalts; implications for basalts as source rocks for gold mineralization. Econ. Geol. 1976, 71, 705-720.
    135. Kelley K D and Ludington S. Cripple Creek and other alkaline-related gold deposits in the southern Rocky Mountains, USA: influence of regional tectonics. Miner Deposita, 2002, 37: 38-60.
    136. Keith S B. Paleoconvergence rates determined from K2O/SiO2 ratios in magmatic rocks and their application to Cretaceous and Tertiary tectonic patterns in southwestern North America. Geol Soc Am Bull, 1982,93: 524-532.
    137. Kilinc A, Carmichael I S E, Rivers M L and Sack R O. Carmichael, I. S. E., Rivers, M. L. & Sack, R. O. The ferric-ferrous ratio of natural silicate liquids equilibrated in air. Contrib Mineral Petrol, 1983,83: 136-140. ,
    138. Kushiro I, Syono Y and Akimoto S. Melting of a peridotite nodule at high pressure and high water pressures. J Geophys Res, 1968, 73:6023-6029.
    139. Kuehn C A and Rouse A W. Carlin gold deposits, Nevada: Origin in a deep zone of mixing between normally pressured and overpressured fluid. Econ Geol, 1995,90: 17-36.
    140. Leloup P Hand Kienast J-R. High-temperature metamorphism in a major strike-slip shear zone: the Ailao Shan-Red River, People's Republic of China. Earth Planet Sci Lett, 1993, 119: 213-234.
    141. Leloup P H, Lacassin R, Tapponnier P, SchaE rer U, Dalai Z, Xiaohan L, Liansheng Z, Shaocheng J, Trinh P T. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics, 1995, 251: 3-84.
    142. Le Maitre RW (ed). A classi.cation of igneous rocks and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell, Oxford, 1989.
    143. Lipman P W. Rare-earth-element compositions of Cenozoic volcanic rocks in the southwestern Rocky Mountains and adjacent areas. US Geol Surv Bull 1688, 1987, pp.23.
    144. Loucks R. R and Mavrogenes J A. Gold solubility in supercritical hydrothermar brines measured in synthetic fluid inclusions. Science, 1999,284,2159-2163.
    145. Mamyrin B A, and Tolstikhin, I. Helium Isotopes in Nature Elsevier, Amsterdam. 1984.
    146. Martin H. Adakitic magmas: modern analogues of Archean granitoids. Lithos, 1999, 46,411-429.
    147. Mclnnes B I A, McBride J S, Evans N J, Lambert D D and Andrew A S. Osmium isotope constraints on ore metal recycling in subduction zones. Science, 1999,286, 512-516.
    148. McDonough W F and Sun S S The composition of the Earth. Chem. Geol., 1995, 120, 223-253.
    149. Menzies M. Mantle ultramafic xenoliths in alkaline magmas: evidence for mantle heterogeneity modified by magmatic activity. In: Hawkesworth C.J., Norry M.J. (Eds), Continental basalts and mantle xenoliths, 1983, 92-110, Shiva, Cheshire.
    150. Morrison G W. Characteristics and tectonic setting of the shoshonite rock association. Lithos, 1.980, 13:97-108.
    
    151. Moss R, Scott S D and Binns R A.Gold content of eastern Manus Basin volcanic rocks; implications for enrichment in associated hydrothermal precipitates. Econ Geol, 2001, 96: 91-107.
    152. Miller D and Groves D 1. Potassoic Igneous Rocks and Associated Gold-Copper Mineralization.3~rd edn, Springer, Berlin, 2000.
    153. Muller D and Groves, D i. Direct and indirect associations between potassic igneous rocks, shoshonites and gold-copper deposits. Ore Geol Rev, 1993, 8: 383-406.
    154. Muller D. Gold-copper mineralization in alkaline rocks. Miner Deposita, 2002, 37: 1-3.
    155. MUller D, Franz L, Herzig P M and Hunt S. Potassic igneous rocks from the vicinity of epithermal gold mineralization, Lihir Island, Papua New Guinea. Lithos, 2001, 57, 163-186.
    156. Mungall J E. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits.Geology, 2002, 30: 915-918.
    157. Mutschler F E, Griffin M E, Stevens D S, and Shannon S S. Precious metal deposits related to alkaline rocks in the North American Cordillera- an interpretive review. Trans Geol Soc S Afr, 1985,88:355-377.
    158. Nuccio P M and Paonita A. Investigation of the noble gas solubility in H2O-CO2 bearing silicate liquids at moderate pressure II: The extended ionic porosity (EIP) model. Earth Planet Sci Lett, 2000, 183: 499-512..
    159. Ohmoto H. Systemmatics of sulfur and carbon isotope in hydrothermal ore deposits. Econ Geol, 1972,67:551-578.
    160. Ohmoto H, and Rye R O. Isotopes of sulfur and carbon. In: (ed.) Barnes, H L. Geochemisty of hydrothermal ore deposits, 2nd edn. Wiley, New York, 1979, pp.509-567.
    161. O'Neil J R, Clayton R N, and Mayeda T K. Oxygen isotope fractionation in divalent metal carbonates. J Chen Phys, 1969, 51: 5547-5558.
    162. Paonita A, Gigli G., Gozzi D., Nuccio P. M., and Trigila R. Investigation of He solubility in H2O-CO2 bearing silicate liquids at moderate pressure: An experimental method. Earth Planet Sci Lett, 2000, 181:595-604.
    163. Patriat p and Achache J.India-Eurasia collision chronology has implications for shortening and driving mechanism of plates. Nature, 1984,311: 615-621.
    164. Pearce J. A. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe, R.S. Ed., Andesites. Wiley, 1982, pp. 525-548.
    165. Pearce J A Harris N B W and Tindle AG Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petro, 1984,25: 956-983.
    166. Peccerillo A and Taylor, S.R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastomonon area, northern Turkey. Contributions to Mineralogy and Petrology 58, 1976, 63-81.
    167. Phillips G N and Evans K A. Role of CO2 in the formation of gold deposits. Nature, 2004, 429: 860-863.
    168. Platt J P and England P C. Covective removal of lithosphere beneath mountain belts: thermal and mechanical consequences. Am J Sci, 1993, 294:307-336.
    169. Qi L and Gregoire D C. Determination of trace elements in twenty six Chinese geochemistry reference materials by inductively coupled plasma-mass spectrometry. Geostandards Newslett, 2000,24:51-63.
    170. Richards J P. Petrology and geochemistry of alkaline intrusives at the Porgera gold deposit, Papua New Guinea. J. Geochem. Explor, 1990, 35: 141-199.
    
    171. Roedder E Fluid Inclusions. Rev Miner 12, 1984.
    172. Rusk B G, Reed M H., Dilles J H., Klemm L M. and Heinrich C A.Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte, MT. Chem Geol, 2004, 210: 173-199.
    173. Santons R V and Clayton RN. Variations of oxygen and carbon isotopes in carbonatites: a study of Brazilian alkaline complexes. Geochimica et Cosmochimica Acta, 1995, 59: 1339-1352.
    174. Scharer U, Tapponnier P., Lacassin R, Leloup P H, Zhong Dalai and Ji Shaocheng. Intraplate tectonics in Asia: a precise age for large-scale Miocene movement along the Ailao Shan-Red River shear zone, China. Earth Planet Sci Lett, 1990, 97: 65-77.
    175. Scharer U, Zhang L S and Tapponnier P. Duration of strike-slip movements in large shear zones: the Red River belt, China. Earth Planet Sci Lett, 1994, 126: 379-397.
    176. Schneider J, Haack U and Stedingk K. Rb-Sr dating of epithermal vein mineralization stages in the eastern Harz Mountains (Germany) by Paleomixing lines. Geochim et Cosmochim Acta, 2003,67: 1803-1819.
    177. Schmidt C and Bodnar R J. Synthetic fluid inclusions: XVI. PVTX properties in the system H2O-NaCI-CO2 at elevated temperatures, pressures, and salinities. Geochimica et Cosmochimica Acta, 2000,64:3853-3869.
    178. Shepherd T J, Rankin A H and Alderton D H M. A practical guide to fluid inclusion studies. Blackie: Chapman and Hall, 1985, 1-235.
    179. Shibata T, Takahashi E, and Matsuda J. Noble gas solubility in binary CaO-SiO2 system. Geophys Res Lett, 1996, 23: 3139-3142.
    180. Shibata T, Takahashi E, and Matsuda J. Solubility of neon, argon, krypton and xenon in binary and ternary silicate systems: A new view on noble gas solubility. Geochim Cosmochim Acta, 1998,62:1241-1253
    181. Sillitoe R H. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Aust J Earth Sci, 1997,44: 373-388.
    182. Sillitoe R H. Some metallogenic features of gold and copper deposits related to alkaline rocks and consequences for exploration. Miner Deposita, 2002,37:4-13.
    183. Simmons S F, Sawkins, F J, and Schlutter D J. Mantle-derived helium in two Peruvian hydrothermal ore deposits. Nature, 1987, 329:429-432.
    184.Stolper E and Newsman S. The role of water in the petrogenesis of Mariana trough magmas. Earth Planet Sci Lett, 1994,121:293-325.
    185. Stuart, F M, Turner, G., Duckworth, R C, and Fallick, A E. Helium isotopes as tracers of trapped hydrothermal fluids in ocean-floor sulfldes. Geology, 1994,22: 823- 826.
    186.Stuart, F M, Burnard, P G., Taylor R P, and Turner G. Resolving mantle and crustal contributions to ancient hydrothermal fluids: He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralisation, South Korea. Geochim. Cosmochim. Acta, 1995, 59, 4663- 4673.
    187. Sun S S and McDonough W F. Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Saunders AD, Norry MJ (Eds.) Magmatism in the Ocean Basins, 1989,42. Geol. Soc. (Lond.) Special Publications: 313-345.
    188. Sun W, Arculus R J., Kamenetsky V S and Binns R A. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature, 2004, 431: 975-977.
    
    189. Sverjensky D A. Isotopic alteration of carbonate host rocks as a function of water to rock ratio-an example from the upper Mississippi valley zinc-lead district. Econ. Geology 1981, 76: 154-172.
    190. Sverjensky D A. Europium redox equilibria in aqueous solution. Earth Planet Sci Lett, 1984, 67: 70-78.
    191. Tapponnier P, Peltzer G, Le Dain AY, Armijo R, and Cobbold P. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology, 1982,10: 611-616.
    192. Tapponnier P, Peltzer G, and Armijo P. On the mechanics of the collision between India and Asia. In: Coward MP, Ries AC (eds) Collision tectonics. J Geol Soc London Spec Publ, London, 1986, pp 115-157.
    193. Togashi S and Terashima S. The behavior of gold in unaltered arc tholeiitic rocks from Izu-Oshima, Fuji, and Osoreyama volcanic areas, Japan. Geochim Cosmochim Acta, 1997, 61: 543-554.
    194. Torgersen T, Kennedy B M and Hiyagon H. Argon accumulation and the crustal degassing flux of 40Ar in the Great Artesian Basin, Australia. Earth Planet Sci Lett, 1988, 92: 43- 59.
    195. Tosdal R M, Wooden J L and Bouse R M. Pb isotopes, ore deposits, and metallogenic terranes: In Lambert DD and Ruiz J Application of radigenic isotopes to ore deposit research and exploration. Reviews in Economic Geology, 1999, 12. Chapter 1: 1-25.
    196. Truesdell A H. Oxygen isotope activities and concentrations in aqueous salt solutions at elevated temperatures -consequence for isotope geochemistry. Earth Planet Sci Lett, 1974, 23: 387-396.
    197. Turner S P, Foden J D and Morrison R S. Derivation of some A-type magma by fractionation of basaltic magma: an example from the Padthaway Ridge, south Australia. Lithos, 1992, 28: 151-179.
    198.Turner S, Hawkesworth C, Liu J, Rogers N, Kelley S, Calsteren P-v. Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature, 1993,364: 50 - 54.
    199. Turner G, Burnard P B, Ford J L, Gilmour J D, Lyon I C and Stuart F M.Tracing fluid sources and interaction. Philos Trans R Soc London, Ser A, 1993,344: 127-140.
    200. Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, VanCalsteren P, Deng W.et al. Postcollision, shoshonitic volcanism on the Tibetan plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts. J Petrol, 1996, 37:45-71.
    201. Ulrich T, Guether D and Heinrich C A. Gold concentrations of magmatic brines and themetal budget of porphyry copper deposits. Nature, 1999,399:676-679.
    202. Voicu G, Bardoux M., Stevenson R., Jebrak M. Nd and Sr isotope study of hydrothermal scheelite and host rocks at Omai, Guiana Shield: implications for ore fluid source and flow path during the formation of orogenic gold deposits. Miner Deposita, 2000, 35: 302 - 314.
    203. Wang X F, Metcalfe I, Jian P, He L Q, Wang C S. The Jinshajiang-Ailaoshan Suture Zone, China: tectonostratigraphy, age and evolution. J Asian Earth Sci, 2000,18:675-690.
    204. Wang J H, Yin A., Harrison, T.M, Grove M, Zhang Y Q and Xie Y W. A tectonic model for Cenozoic igneous activities in the eastern Indo- Asian collision zone. Earth Planet Sci Lett,
     2001,188:123-133.
    
    205. Whalen J B, Currie, K L and Chappell B W. A-type granites: Geochemical Characteristics, discrimination and petrogenesis Contrib Mineral Petrol, 1987,95:407-419.
    206. White W M. Sources of oceanic basalts: radiogenic isotopic evidence. Geology, 1985, 13: 115-118
    207. White W M and Dupre B. Sediment subduction and magma genesis in the Lesser Antilles: isotopic and trace element constraints. J Geophys Res, 1986,91: 5927-5941.
    208. Wood S A. The aqueous geochemistry of the rare-earth elements and yttrium: 2. Theoritical predictions of speciation in hydrothermal solutions to 350℃ at saturation water vapor pressure. Chem Geol, 1990, 88: 99-) 25.
    209. Woolley A R. Alkaline rocks and carbonatites of the world. The Geological Society London, 2001.
    210. Woodhead J D Greewood P, Harmon R S and Staffers P. Oxygen isotope evidence for recycled crust in the source of EM-type ocean island basalts. Nature, 1993,362:,809-813.
    211. Xu Y-G, Huang X-L, Menzies M A and Wang R-C. Highly magnesian olivines and green-core clinopyroxenes in ultrapotassic lavas from western Yunnan, China: evidence for a complex hybrid origin. Eur. J. Minral, 2003, 15: 965-975.
    212. Xu Y G, Menzies M A, Thirlwall M F and Xie G H. Exotic lithosphere beneath the Western Yangtze Craton: Petrogenetic links to Tibet using highly magnesian ultrapotassic rocks. Geology, 2001, 39, 863-866.
    213. Yamamoto J and Burnard P G. Solubility controlled noble gas fractionation during magmatic degassing: Implications for noble gas compositions of primary melts of OIB and MORB. Geochimi et Cosmochimi Acta, 2005, 69: 727-734.
    214. Yang K and Scott D S. Possible contribution of a metal-rich magmatic fluid to a sea-floor , hydrothermal system. Nature, 1996, 383:420-423.
    215. Zartman R E, and Doe B R. Plumbotectonics-the model.Tectonophysics, 1981,75: 135-162.
    216. Zentilli M. Brooks, R R, Helgason J, Ryan D E and Zhang H. The distribution of Au in volcanic rocks of eastern Iceland. Chem Geol, 1985,48: 17-28.
    217. Zhang Y G and Frantz J D. Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl_2-H_2O using synthetic fluid inclusions. Chem Geol, 1987,64:335-351.
    218. Zhang L S and Scharer U. Age and origin of magmatism along the Cenozoic Red River shear belt, China, Contrib. Mineral. Petrol., 1999, 134:67-85.
    219. Zhang Q, Liu J, Shao S and Liu Z. An estimate of the lead isotopic compositions of upper mantle and upper crust and implications for the source of lead in the Jinding Pb-Zn deposit in western Yunnan, China. Geochem J 36: 271-287.
    220. Zheng Y-F. Carbon-xoygen isotopeic coveariation in hydrothermal calcite during degassing of CO_2: A quantitative evaluation and application to Kushikino gold mining area in Japan. Miner. Deposita, 1990,25: 246-250.
    221. Zheng Y-F and Hoefs J. Carbon and oxygen isotopic covariations in hydrothermal calcites: Theoretical modeling on mixing processes and application to Pb-Zn deposits the Harz mountains, Germany. Mineral Deposita, 1993,28: 79-89.
    222. Zindler A and Hart S. Chemical geodynamics. Annu. Rev. Earth Planet. Sci., 1986, 14, 493-571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700