用户名: 密码: 验证码:
山东沂沭断裂带及邻区晚中生代构造—岩浆活动与金成矿作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山东省位于华北克拉通东南缘,是我国重要的黄金产地之一,以沂沭断裂带为界,可分为鲁西、鲁东地区。对于山东省中生代构造-岩浆活动与金成矿作用,前人的研究主要集中于胶东地区,其次为鲁西地区,而沂沭断裂带作为华北克拉通东部最主要的大型走滑构造与骨干断裂,分别控制了上述邻沂与胶东等两个较大的金矿矿集区。论文以鲁西沂南、沂沭断裂带内龙泉站以及鲁东五莲地区金矿床及白垩纪中酸性杂岩体以及基性脉岩为研究对象,以详细的野外地质调查以及矿床地质特征分析为基础,并通过详细的矿石学、岩相学、锆石U-Pb年代学、黄铁矿Rb-Sr年代学、岩石地球化学及Sr-Nd-Pb-S-H-O-He-Ar同位素地球化学研究,探讨了与白垩纪金成矿相关的岩浆作用的成因与地球动力学背景,并对区内鲁西沂南铜井、沂沭断裂带内龙泉站以及鲁东五莲七宝山等典型金矿床开展了成矿流体、成矿物质来源的多元联合示踪研究,分析了成矿流体及成矿物质来源,结合上述研究成果探讨了区内构造-岩浆活动与金成矿等地质事件之间的成因联系,取得的主要结论如下:
     1.沂沐断裂带内龙泉站金矿区内发育了大量规模不等的中基性脉岩,岩性主要包括辉长岩、辉绿岩、闪长玢岩等为主。脉岩锆石LA-ICP-MS U-Pb年龄值可分为四组:2453±44-2552±47Ma、1852±44-1900±44Ma、730±8Ma及131±2Ma,其中131±2Ma代表了脉岩的形成年龄,形成于早白垩世。脉岩SiO2(47.54%~51.77%)含量变化较大,且具有较低的MgO(Mg#=40-49).Na20+K20(2.17%-3.43%).A1203(11.23%-13.58%).Cr(89.5×10-6-127×10-6).Ni(69.4×10-6-90.4×10-6)及较高的Fe203(13.57%-16.56%).Ti02(1.58%-3.20%). Ca0(8.99%-9.59%).Na2O/K20(1.77-8.03)。岩石微量元素组成(含稀土元素)富集Rb、Ba、Th、U等大离子亲石元素(LILE)和轻稀土元素(LREE),另外,岩石还相对富集高场强元素(HFSE),不具有明显的Nb、Ta、Zr、Hf负异常,岩石属于拉斑玄武岩系列岩石。脉岩(87Sr/86Sr)i(0.71019-0.71676)变化较大,对应的εNd(t)值(-8.66--4.30)与T2DM(1272-1625Ma)变化相对较小,其Sr-Nd组成位于原始地幔与大陆上地壳之间,且Nd同位素模式年龄相对于晚于华北克拉通地壳强烈的增生期,Pb同位素((206Pb/204Pb)i=17.7006-18.2049.(207Pb/204Pb)i=15.4781-15.5627.(208Pb/204Pb)i=38.2248-40.1191)变化较大,介于扬子与华北克拉通基底之间。主微量元素以及同位素综合研究结果表明,沂沭断裂带内基性脉岩为早白垩世强烈伸展背景下软流圈地幔部分熔融产生的岩浆与上地壳混染与分离结晶作用的产物。成岩构造背景与早白垩世郯庐断裂带的左行走滑所引起的岩石圈引张有关,同时也指示华北克拉通东部由挤压向伸展构造体制转换的时限不晚于130Ma。
     2.鲁西沂南铜井闪长玢岩为高钾钙碱性准铝质岩石,具富钠、高Mg#、富集Rb、Ba、U、Sr等大离子亲石元素(LILEs)与轻稀土元素(LREEs),亏损Nb、Ta、Ti等高场强元素(HFSEs)等特征,且基本无负Eu异常。岩石富集放射性成因铅((206Pb/204Pb)i=16.917-17.956),高(87Sr/86Sr)i (0.707105-0.70788)、低εNd(t)(-15.13--10.23)。主微量元素、Sr-Nd-Pb同位素综合研究表明,沂南闪长玢岩主要起源于富集岩石圈地幔,并伴随有陆壳物质的参与。鲁东七宝山早期次火山岩属于钾玄岩系准铝质岩石,Si02含量变化范围较大,富碱、低Mg#,富集Rb、Ba、Th等大离子亲石元素(LILEs),强烈亏损Nb、Zr、Ti等高场强元素(HFSEs),无-弱负Eu异常,具有相对较高的(87Sr/86Sr)i (0.7090-0.70920),低εNd(t)(-15.17--16.41)。而晚期次火山岩则属于高钾钙碱性弱过铝质岩石,明显富硅,相对高Mg#、富钾,轻重稀土分馏程度以及稀土总量低于早期次火山岩,但重稀土相对于早期岩石偏高,且具有正Eu异常,其(87Sr/86Sr)i (0.70875-0.70879)则与早期次火山岩较为一致。主微量元素、Sr-Nd同位素综合研究表明,早期次火山岩主要来源富集地幔的部分熔融,而晚期次火山岩则主要来源于镁铁质下地壳,可能有少量的幔源组分加入。
     3.研究区内龙泉站蚀变岩型金矿床黄铁矿Rb-Sr等时线年龄为96±2Ma,确证了华北克拉通东南缘可能存在晚白垩世金成矿作用。沂沭断裂带西侧沂南金场矽卡岩型金矿床辉钼矿Re-Os年龄为128±1Ma,早、晚矽卡岩阶段黑云母Rb-Sr年龄分别为133±6Ma、128±2Ma,与矿区二长花岗斑岩(126~128Ma)、花岗斑岩(127Ma、133Ma两期)等LA-ICP-MS锆石U-Pb年龄在误差范围内一致,二者无时差或较小(<5Ma);铜井金矿床矿石中锆石U-Pb年代学获得与成矿关系密切的闪长玢岩的成岩年龄为129±4Ma左右,并结合区域内相邻矿床的年代学资料,推测成矿年龄为120Ma,与铜井闪长玢岩锆石U-Pb年龄(128~129Ma)基本一致,表明成岩成矿关系密切。七宝山隐爆角砾岩型金矿床单颗粒黄铁矿Rb-Sr年代(117Ma±),表明成矿时代为早白垩世产物,与区内晚期石英闪长玢岩黑云母K-Ar年龄(124.1Ma)时差较小,成岩成矿时代较为一致,为七宝山金矿成矿作用与晚期次火山岩有关提供了年代学制约。4.龙泉站含金石英脉中石英的6DH2O值为-77‰,对应的δ18OH2o值为+1.77‰~+4.07‰;七宝山金矿主成矿期热液胶结物中的石英δDG2O为-78.6‰--48.14‰,δ18OH2O值为+3.05‰~+5.77‰;沂南铜井形成金的石英-硫化物阶段石英的H-O同位素组成为δDH2O=-87‰,δ18OH2O=-0.4‰区内金矿主成矿期成矿流体主要来源于岩浆水。龙泉站金矿黄铁矿流体包裹体He-Ar同位素组成3He/4He(R/Ra)为0.14-0.78Ra,40Ar/36Ar比值为482-1811,40Ar*/4He比值为0.078~0.272;沂南金矿3He/4He(R/Ra)比值为0.11-1.02,40Ar/36Ar为364-458,40Ar*/4He比值为0.154~0.735;七宝山3He/4He(R/Ra)为0.187-0.194Ra,40Ar/36Ar比值为291-842,40Ar*/4He比值为0-0.04。根据根据壳-幔混合二元模型计算得到龙泉站金矿幔源He所占比例为1.6-9.6%,沂南金矿为1.3-12.6%,七宝山为2.3%。龙泉站金矿放射成因的Ar的比例范围为38.7%~83.7%,沂南铜井金矿为18.8%~35.5%,七宝山金矿为0~64.9%,上述三个矿床中对应的大气Ar的贡献率分别为16.3%~61.3%、64.5%~81.2%、35.1%~100%,上述结果显示龙泉站金矿大气Ar与放射性成因Ar的贡献率差别不大,而沂南与七宝山金矿的放射性成因Ar的参与量远小于大气Ar。综上所述,区内龙泉站金矿主要为壳源流体,沂南金矿成矿流体为壳幔混合成因流体,其幔源组分参与的比例与胶东地区金矿类似,而七宝山金矿则以大气降水为主。另外,七宝山与沂南金矿成矿流体中均有大气降水参与,从而表现出相对较低的40Ar/36Ar,与胶莱盆地内的蓬家夼、发云夼金矿成矿流体的He-Ar同位素组成较为类似。区内龙泉站、沂南铜井以及七宝山金矿床硫化物的δ34S分别为0.9%o-4.4‰、1.53%o-5.6%o和0.3‰~5.89‰,具有岩浆硫的特征。龙泉站金矿3硫化物的n(206Pb)/n(204Pb)=15.779-19.037,n(207Pb)/n(204Pb)=15.076-15.643,n(208Pb)/n(204Pb)=36.744-40.488,3件赋矿围岩(新太古代二长花岗岩)校正后为(206Pb/204Pb)i=15.40-17.754,(207Pb/204Pb)i=15.053-15.472,(208Pb/204Pb)i=35.734-37.801,龙泉站金矿床Pb同位素组成与校正后的围岩Pb同位素组成具有明显的差别,研究表明成矿物质主要来源于壳源;沂南铜井金矿床的10件硫化物的n(206Pb)/n(204Pb)=19.04-23.08,n(207Pb)/n(204Pb):15.69-16.30,n(208Pb)/n(204Pb)=38.40-41.46,与成矿关系密切的2件闪长玢岩的Pb同位素组成为n(206Pb)/n(204Pb)=17.855-17.956,n(207Pb)/n(204Pb)=15.505-15.528,n(208Pb)/n(204Pb)=37.826-37.883,沂南铜井金矿床硫化物的Pb同位素组成明显大于校正后闪长玢岩的Pb同位素组成,但二者Pb呈明显的线性分布趋势,表明矿石Pb主要由成矿母岩以及富集放射性成因Pb的地壳物质等两端元混合而成;七宝山金矿7件硫化物的n(206Pb)/n(204Pb)=16.624-17.725,n(207Pb)/n(204Pb)=15.238-15.512,n(208Pb)/n(204Pb)=36.414-37.721,矿区内早白垩世石英二长岩、安山玢岩与粗面岩的Pb同位素组成为n(206Pb)/n(204Pb)=16.485-17.056,n(207Pb)/n(204Pb)=15.149-15.388,n(208Pb)/n(204Pb)=36.445-37.484,七宝山金矿床Pb同位素组成与区内晚期火山-次火山岩Pb同位素组成基本相似,反映二者具有成因关系,也即成矿物质主要来源于岩浆活动。
     5.高精度成岩成矿年代学表明研究区内金矿主要存在两期成矿作用,分别为早白垩世与晚白垩世,与早白垩世金矿成矿有关的岩体成岩时代略早或同期,为早白垩世引张背景下富集地幔或地壳来源的浅成次火山侵入杂岩,属于高钾钙碱性系列岩石。金矿成矿流体与成矿物质与岩浆活动关系密切。尽管目前沂沭断裂带内晚白垩世矿内没有发现与金成矿作用关系密切的岩浆活动,但矿床地球化学特征指示金矿成矿流体与成矿物质均具有岩浆来源特征。根据矿床的矿化蚀变与岩浆活动的时空及成因关系,论文建立了沂沭断裂带及邻区早白垩世矽卡岩型金铜矿床+隐爆角砾岩型金铜矿床以及晚白垩世与岩浆热液有关的蚀变岩型金矿床的两阶段成矿模式。
The Shandong province hosts the largest gold producing region in the southeastern margin of North China Craton. It is separated by the Tan-Lu fault into two distinct domains, namely, the Luxi to the west and the Jiaodong to the east. In addition, the big gold districts in Jiaodong and Luxi are all controlled by the Tan-Lu fault. Those gold deposits in Jiaodong and Luxi regions have been studied to a varying degree by many previous researches and many models have been developed to focus on their genesis, and the nature and extent of gold metallogeny between Luxi and Jiaodong regions display marked contrast. However, the gold deposits occurred in the the Yi-Shu metallogenic belt have not been well understood so far. In this study, we focus on the Tongjing gold deposit(Luxi), Longquanzhan gold deposit(the Yishu metallogenic belt) and Qibaoshan gold deposit(Ludong) in the middle segement of Tan-Lu fault zone, southeastern North China Craton. Based the detail field investigation of the Tongjing, Longquanzhan and Qibaoshan gold deposits, we present the zircon U-Pb age, major and trace element geochemistry, and Sr-Nd-Pb isotope compositions for the mafic dykes from the Longquanzhan gold district, the pyrite Rb-Sr chronology, S-Pb-He-Ar isotope data of ores from Tongjing, Longquanzhan and Qibaoshan gold deposits. These result are used to (1) document the Early and Late Cretaceous magmatisms and gold metallogenic events,(2) study the petrogenesis, source and geodynamic setting of the Early Cretaceous intrusives, and (3) discussed the magmatic sources for the ore fluids and metal concerning the Cretaceous gold ore system and analyzed the genetic links between gold metallogenesis and magmatism. The main results and conclusions are summarized as follows:
     (1) The mafic dikes are widely distributed in the Longquanzhan gold district, and they are mainly gabbro, diabase and diorite-porphyrite. LA-ICP-MS zircon U-Pb dating on the gabbro dike s in the Yishu fault zone reveals that they formed at131±2Ma with four major groups of inherited ages at2453±44-2552±47Ma,1852±44-1900±44Ma and730±8Ma. These gabbro dikes exhibit a wide range of SiO2and are characterized by Fe2O3, TiO2, CaO, Na2O/K2O and low abundance of MgO(Mg#=40-49), Na2O+K2O, A12O3, Cr, Ni. They are enriched in large ion lithophile elements (Rb, Ba, Th, U) and light rare earth elements without significant Eu anomalies, and depleted in high field strength elements, they are all belong to the tholeiitic series rocks. All samples show a wide range of Sr compositions with high87Sr/86Sr (0.71019-0.71676),d(t)(-8.66--4.30) and large T2DM ages (1272-1625Ma). Their Pb isotope compositions show a wide range ((206Pb/204Pb)i=17.7006-18.2049,(207Pb/204Pb)i=15.4781-15.5627,(208Pb/204Pb)i=38.2248-40.1191). In combination with the mineralogy, geochemistry and Sr-Nd-Pb isotope compositions, we contend that the gabbro dikes could have originated from partial melting of the upwelling asthenospheric mantle, with a small amount of crustal contamination. Dynamical background is probably related to the second extensional sinistral strike-slip movement of Tan-Lu fault system, which triggered the upwelling asenospheric mantle. Meanwhile, the chronology of mafic dikes also provide the time constraints for the transition from compressional to extensional mechanism.
     (2) Whole-rock geochemical data show that the Tongjing diorite-porphyrite can be classified as high-potassium calc-alkaline metaluminous rock, which are characterized by high Na2O content and high abundance of Mg#, and they are also enriched in LILE and LREE, and depleted in heavy earth elements (HREE) and HFSE, without significant Eu anomalies. In addition, the studied intrusion exhibit more radiogenic lead ((206Pb/204Pb)i=16.917-17.956), and are characterized by (87Sr/86Sr)i ranging from0.707105to0.70788, low εNd(t) values from-15.17to-16.41. In combination with the mineralogy, geochemistry and Sr-Nd-Pb isotopic compositions of Tongjing diorite-porphyrite, we contend that the Tongjing diorite-porphyrite could have originated from the enriched mantle, accompanying with some crastual contamination. The Qibaoshan subvolcanic intrusions can be divided into two stages. The early stage subvocanic intrusion belong to the alkaline magma series in terms of K2O+Na2O contents, and to shoshonitic series based on their K2O content. They are further characterized by an wide range of SiO2content with relatively low Mg#, positive anomalies in Rb, Ba, and Th, and are depleted in high field strength elements (Nb, Zr, Ti), without significant Eu anomalies. They show uniformly high (87Sr/86Sr)i (0.70900-0.70920), low εNd(t) values (-15.17to-16.41). However, the late stage subvocanic intrusions can be classified as high-potassium calc-alkaline and weaky peraluminous rocks. They show relatively high contents of SiO2and K2O and high abundance of Mg#, with lower degree of fractionation between LREE and HREE compared to those of the early stage subvolcanic intrusion, with positive Eu anomalies. In combination with the mineralogy, geochemistry and Sr-Nd isotopic compositions of Qibaoshan subvolcanic intrusions, we contend that the early stage subvolcanic intrusion could have originated from the partial melting of the enriched mantle, and lower mafic crust for the late stage subvolcanic intrusions.
     (3) The Longquanzhan gold deposit, as an important part of gold mineralization belt of the Yi-Shu fault zone, is the only one altered-fracture type gold deposit identified up to present. The Rb-Sr isotopic dating of10pyrites separated from the Longquanzhan gold deposit yielded an isochron age of96±2Ma (MSWD=1.2). It is the youngest high-precise age of gold deposits so far identified in Shandong Province. It may represent the Late cretaceous gold mineralization in Shandong Province. The Re-Os isochron age of molybdenite from Yinan Jinchang gold deposit was128±1Ma, and single grain and low background Rb-Sr isochrone dating on biotite from prograde and retrograde skarn gives133±6Ma and128±2Ma, respectively. They are contemporary with the monzonite porphyry (LA-ICP-MS zircon U-Pb age of126-128Ma) and Granite porphyry(LA-ICP-MS zircon U-Pb age of127Ma,133Ma). The zircon SHRIMP U-Pb dating of diorite from the Tongjing gold district in Yinan Country has yield concordant ages of128±3Ma, with which we reach the conclusion that the Tongjing gold deposit was formed at around128Ma. The single grain pyrite Rb-Sr dating of the Qibaoshan gold deposit give an average isochron age of117Ma±, which are later about7Ma than the Quartz diorite porphyry (K-Ar age of124.1Ma). These ages of ore-forming and magmatism provide the time constraints for the genetic relationship between the gold metallogeny and magmatic evolution in the Yishu fault zone and adjacent area.
     (4) The calculated δD and δ18O using measurements of fluid in inclusion waters extracted from auriferous quartz of Longquanzhan gold deposit is-77%o and3.97%o to4.07%o. the fluid inclusions from the Au and Cu mineralization stage of Qibaoshan gold deposit have δDH2O of-78.6‰-48.14%o and δ18Omo of+3.05‰-+5.77%o, and calculated δDH2O and δ18O values of fluid inclusion from quartz range from the quartz-sulfide stage of Tongjing gold deposit is-87%o and-0.4%o. The fluids of quartz from the above gold deposits are nearly similar to magmatic water and consistent with a predominance of magmatic fluids in the ore system. In addition, the δD and818O values of the carbonation stage fluid, extracted from fluid inclusions in calcite, plot towards the meteoric water line. This indicates the latter fluids likely had a high meteoric component.
     The3He/4He ratios in inclusion fluids of the Longquanzhan gold deposit are0.14Ra to0.78Ra with an average of0.39Ra. The40Ar/36Ar ratios are482-1811, averaging957, obviously higher than that of air (295.5), and the40Ar*/4He ratios of0.078-0.272. The3He/4He ratios of Yinan gold deposit vary from0.11Ra to1.02Ra. The40Ar/36Ar ratios are in the range of364-458with40Ar*/He ratios of0.154-0.735. The3He/4He ratios of Qibaoshan gold deposit vary from0.187Ra to0.194Ra, and40Ar/36Ar of291-842with40Ar*/4He of0-0.04. The elevated3He/4He ratios indicate a mantle-derived component in the ore fluids, and the percentage of mantle-derived He can be calculated according to the crust-mantle mixing model. The percentage of mantle helium involved in the ore-forming fluids trapped within the pyrite grains from gold deposits of the six metallogenic belts were calculated with the equation mentioned above. The results show1.63%to9.66%(average4.72%) mantle helium involved in the Longquanzhan gold mineralization. They are similar to Yinan gold deposit (1.29-12.60%, average5.09%), and higher than those of Qibaoshan gold deposit (2.21-2.30%, average2.26%). However, they are obviously lower than those of Zhaoyuan-Laizhou-Pingdu metallogenic belt and Mouping-Rushan metallogenic belt. The radiogenic Ar isotope compositions is present in ore-forming fluids and the caculated proportion of Longquanzhan gold deposit is38.7%-83.7%, Tongjing gold deposit of18.8%-35.5%and Qibaoshan gold deposit of0-64.9%. These results indicate that the ore-forming fluid was a mixture of mantle fluid, crustal magmatic fluid and MSAW. The occurrence of a mantle component in ore-forming fluid indicates the gold mineralization, including Tongjing, Longquanzhan and Qibaoshan was the result of crust and mantle interaction. However, the proportion of the mantle He of the Longquanzhan and Yinan gold deposit is a little higher than the Qibaoshan gold deposit, and more air-saturated water participate in the Yinan and Qibaoshan gold deposit. δ34S values of the Tongjing, Longquanzhan and Qibaoshan gold deposits range from0.9%o to4.4%o,1.53%o to5.6%o and0.3%o to5.89%o, respectively, similar to magmatic sulphur.3sulfide samples from the Longquanzhan gold deposit have206Pb/204Pb=15.779-19.037,207Pb/204Pb=15.076-15.643,208Pb/204Pb=36.744-40.488. three wallrock samples have206Pb/204Pb,207Pb/204Pb and208Pb/204Pb calculated using the time (96Ma) of hydrothermal deposition of pyrite, were15.40-17.754,15.053-15.472and35.734-37.801, Ores from the Longquanzhan gold deposit have distinct Pb isotopic compositions to age-corrected data of wallrock and probably indicate that the ore-forming metals were sourced from a crustally-derived magma. This view is also consistent with interpretation of the He-Ar isotope data.10sulfide from the Tongjing gold deposit have206Pb/204Pb=19.04-23.08,207Pb/204Pb=15.69-16.30and208Pb/204Pb=38.40-41.46, they are rich in U-radiogenic Pb and Th-radiogenic Pb. The calculated206Pb/204Pb,207Pb/204Pb and208Pb/204Pb using the time (130Ma) of hydrothermal deposition of molybdenite of2diorite porphyry samples are17.855-17.956,15.505-15.528and37.826-37.883, which are significantly lower than the Pb compositions of sulfide in Tongjing gold deposit, but they share the same linear relationship in the207Pb/204Pb and208Pb/204Pb versus206Pb/204Pb diagram. These isotopic compositions confirm a genetic relationship between the gold mineralization and magmatism and indicate the Pb isotopic compositions of sulfide are probably derived from the lower crust, mantle and sediment strata source.7sulfide samples from Qibaoshan gold deposit have206Pb/204Pb=16.624-17.725,207Pb/204Pb=15.238-15.512,208Pb/204Pb=36.414-37.721, Ores from Qibaoshan gold deposit have similar Pb isotopic compositions to the Pb isotopic data of volcano-subvolcanic rocks(206Pb/204Pb=16.485-17.056,207Pb/204Pb=15.149-15.388,208Pb/204Pb=36.445-37.484), combing with H-O, He-Ar isotopic data, we conclude that these provide multiple constraints for the genetic relationship between the gold mineralization and magmatism.
     (5) we integrate high-quality radiometric ages of gold mineralization in the study area which are reported in recent years. These results show that two gold metallogeny episodes can be identified, the Early Cretaceous gold metallogeny are related with those of enriched mantle-derived high-K calc-alkaline series, Most important, the ore fluid and metals also derived from the Early Cretaceous and Late Cretaceous (?) magmatism, in combination with these results described above, this paper presents a genetic model of Early Cretaceous skarn gold deposit+cryptoexplosion breccia pipe Au-Cu polymetallic deposit and Late Cretaceous altered rock type gold deposit.
引文
[1]涂光炽,赵振华.燕山期成矿作用的多样性.地质论评,1983(01):57-65
    [2]陈衍景,Franco PIRAJNO,赖勇,等.胶东矿集区大规模成矿时间和构造环境.岩石学报,2004,20(4):907-922
    [3]Zhai M G, Yang J H, Liu W J. Large clusters of gold deposits and large-scale metallogenesis in the Jiaodong Peninsula, Eastern China. Science in China(Series D),2001,44(8):758-768
    [4]周新华,杨进辉,张连昌.胶东超大型金矿的形成与中生代华北大陆岩石圈深部过程.中国科学D辑,2002,32(z1):11-20
    [5]Li J W, Bi S J, Selby D, et al. Giant Mesozoic gold provinces related to the destruction of the North China craton. Earth and Planetary Science Letters,2012,349-350:26-37
    [6]杨金中,李光明.胶东中生代两期金矿化作用的对比研究及其意义.地质与勘探,2001,37(1):33-37
    [7]刘连登,陈国华,张辉煌,等.世界级胶东金矿集中区两类成矿地球动力学环境.矿床地质,2002(S1):36-39
    [8]杨立强,邓军,葛良胜,等.胶东金矿成矿时代和矿床成因研究述评.自然科学进展,2006,16(7):797-802
    [9]丁正江,孙丰月,刘建辉,等.胶东邢家山钼钨矿床辉钼矿Re-Os同位素测年及其地质意义.岩石学报,2012,28(9):2721-2732
    [10]翟明国,刘文军,杨进辉.胶东大型黄金矿集区及大规模成矿作用.中国科学D辑,2001,31(7):545-552
    [11]范宏瑞,胡芳芳,杨进辉,等.胶东中生代构造体制转折过程中流体演化和金的大规模成矿.岩石学报,2005,21(5):1317-1328
    [12]Mao J W, Wang Y T, Li H M, et al. The relationship of mantle-derived fluids to gold metallogenesis in the Jiaodong Peninsula:Evidence from D-O-C-S isotope systematics. Ore Geology Reviews,2008,33:361-381
    [13]Sun W D, Ding X, HuY H, et al. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth and Planetary Science Letters,2007,262:533-542
    [14]谭东娟,林景仟,许文良,等.铜石杂岩体40Ar/39Ar年龄,兼论归来庄金矿成矿时代.山东地质,1993(02):68-72
    [15]胡芳芳,王永,范宏瑞等.鲁西沂南金场夕卡岩型金铜矿床矿化时代与成矿流体研究.岩石学报,2010,26(5):1503-1511
    [16]Liu Y, Santosh M, Li S R, et al. Stable isotope geochemistry and Re-Os ages of the Yinan gold deposit, Shandong Province, northeastern China.2014, DOI:10.1080/ 00206814.2014.886167
    [17]沈远超,曾庆栋,刘铁兵,等.郯庐断裂与金矿成矿.世界地质,2003,22(1):41-44
    [18]林景仟,谭东娟,于学峰.鲁西归来庄金矿成因.山东科学技术出版社,1997,1-160
    [19]于学峰,方宝明,韩作振.鲁西归来庄金矿田成矿系列及成矿作用研究.地质学报,2009(01):55-64
    [20]许文良,杨承海,杨德彬等.华北克拉通东部中生代高Mg闪长岩——对岩石圈减薄机制的制约.地学前缘,2006(02):120-129
    [21]Wilson T J. A new class of faults and their bearing on continental drift. Nature,1965,207: 343-347
    [22]Woodcock N H, Daly M C. The Role of Strike-Slip Fault Systems at Plate Boundaries [and Discussion]. Phil. Trans. R. Soc. Lond,1986,317(1539):13-29
    [23]Horner J T, Enriquez E. Epithermal precious metal mineralization in a strike-slip corridor; the San Dimas District, Durango, Mexico. Economic Geology,1999,94(8):1375-1380
    [24]Willis G F, Richard M T. Formation of Gold Veins and Breccias during Dextral Strike-Slip Faulting in the Mesquite Mining District. Southeasten California. Economic Geology,1992,87:2002-2022
    [25]Hagemann S G, Groves D I, Ridley J R, et al. The Archean Lode Gold Deposits at Wiluna, Western Australia:High-Level Brittle-Style Mineralizationin a Strike-Slip Regime. Economic Geology,1992,87(4):1022-1053
    [26]Goldfarb R J, Anderson E D, Hart C J R. Tectonic Setting of the Pebble and Other Copper-Gold-Molybdenum Porphyry Deposits within the Evolving Middle Cretaceous Continental Margin of Northwestern North America. Economic Geology,2013,108(3): 405-419
    [27]Otto B R, Piekenbrock J, Odden J. Structural Evolution of the Rock Creek Gold Deposit, Seward Peninsula, Alaska. Economic Geology,2009,104(7):945-960
    [28]Kuscu I, Tosdal R M, Gencalioglu-Kuscu G, et al. Late Cretaceous to Middle Eocene Magmatism and Metallogeny of a Portion of the Southeastern Anatolian Orogenic Belt, East-Central Turkey.2013,108(4):641-666
    [29]Richards J P. Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation. Economic Geology,2003,98(8):1515-1533
    [30]侯增谦,潘桂棠,王安建,等.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用.矿床地质,2006,25(5):521-543
    [31]Zhang H F, Sun M, Zhou X H, et al. Mesozoic lithosphere destruction beneath the North China Craton:evidence from major, trace element, and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contributions to Mineralogy and Petrology,2002,144:241-253
    [32]郭敬辉,陈福坤,张晓曼,等.苏鲁超高压带北部中生代岩浆侵入活动与同碰撞—碰撞后构造过程:锆石U-Pb年代学.岩石学报,2005(04):1281-1301
    [33]Yang J H, Chung S L, Wilde S A, et al. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China geochronological, geochemical and Nd-Sr isotopic evidence. Chemical Geology,2005,214(1-2):99-125
    [34]张田,张岳桥.胶东半岛中生代侵入岩浆活动序列及其构造制约.高校地质学报,2007,13(2):323-336
    [35]王清晨,林伟.大别山碰撞造山带的地球动力学.地学前缘,2002,9(4):257-265
    [36]Hacker B R, Ratschbacher L, Webbet L, et al. Exhumation of ultrahigh-pressure continental crust in east central China:Late Triassic-Early Jurassic tectonic unroofing,2000,105(B6): 13339-13364
    [37]Lan T G, Fan H R, Santosh M, et al. Early Jurassic high-K calc-alkaline and shoshonitic rocks from the Tongshi intrusive complex, eastern North China Craton:Implication for crust-mantle interaction and post-collisional magmatism. Lithos,2012,140-141:183-199
    [38]邵济安,牟保磊,张履桥.华北东部中生代构造格局转换过程中的深部作用与浅部响应.地质论评,2000(01):32-40
    [39]董树文,张岳桥,陈宣华,等.晚侏罗世东亚多向汇聚构造体系的形成与变形特征.地球学报,2008(03):306-317
    [40]朱光,胡召齐,陈印,等.华北克拉通东部早白垩世伸展盆地的发育过程及其对克拉通破坏的指示.地质通报,2008,27(10):1594-1604
    [41]朱光,张力,谢成龙,等.郯庐断裂带构造演化的同位素年代学制约.地质科学,2009,44(4):1327-1342
    [42]Wang Y. The onset of the Tan-Lu fault movement in eastern China:constraints from zircon (SHRIMP) and 40Ar/39Ar dating. Terra Nova,2006,18(6):423-431
    [43]张田,张岳桥.胶北隆起晚中生代构造-岩浆演化历史.地质学报,2008(09):1210-1228
    [44]林博磊,李碧乐.胶东玲珑花岗岩的地球化学、U-Pb年代学、Lu-Hf同位素及地质意义.成都理工大学学报(自然科学版),2013,40(2):147-160
    [45]苗来成,罗镇宽,关康,等.玲珑花岗岩中锆石的离子质谱U-Pb年龄及其岩石学意义.岩石学报,1998,(02):71-79
    [46]张旗,潘国强,李承东,等.花岗岩混合问题:与玄武岩对比的启示-关于花岗岩研究的思考之一.岩石学报,2007(05):1141-1152
    [47]张岳桥,董树文.郯庐断裂带中生代构造演化史:进展与新认识.地质通报,2008,27(9):1371-1390
    [48]陈根文,夏换,陈绍清.华北地区晚中生代重大构造转折的地质证据.中国地质,2008,35(6):1162-1177
    [49]王勇生,朱光,宋传中,等.大别山东端郯庐断裂带由走滑向伸展运动转换的40Ar-39Ar年代学记录.地质科学,2006(02):242-255
    [50]Huang F, Li S G, Dong F, et al. High-Mg adakitic rocks in the Dabie orogen, central China: Implications for foundering mechanism of lower continental crust. Chemical Geology,2008, 255(1-2):1-13
    [51]Liu S, Hu R Z, Gao S, et al. Zircon U-Pb geochronology and major, trace elemental and Sr-Nd-Pb isotopic geochemistry of mafic dykes in western Shandong Province, east China: Constrains on their petrogenesis and geodynamic significance.2008,255(3-4):329-345
    [52]Ling W L, Duan R C, Xie X J, et al. Contrasting geochemistry of the Cretaceous volcanic suites in Shandong province and its implications for the Mesozoic lower crust delamination in the eastern North China craton. Lithos,2009,113:640-658
    [53]邱检生,刘亮,李友连.山东汤头盆地钾质及钠质火山岩的年代学与地球化学:对华北克拉通岩石圈减薄的启示.岩石学报,2012,28(4):1044-1056
    [54]翟慎德.胶莱盆地莱阳凹陷构造特征及演化.石油实验地质,2003,25(2):137-142
    [55]任凤楼,张岳桥,邱连贵,等.胶莱盆地白垩纪构造应力场与转换机制.大地构造与成矿学,2007(02):157-167
    [56]张岳桥,董树文,赵越,等.华北侏罗纪大地构造:综评与新认识.地质学报,2007(11):1462-1480
    [57]李友连,邱检生,刘亮.山东郯城神泉钠质火山岩的年代学与地球化学-对源区地幔性状与岩石成因的启示.岩石矿物学杂志,2012,31(6):783-798
    [58]匡永生,庞崇进,洪路兵,等.胶莱盆地晚白垩世玄武岩的年代学和地球化学特征及其对华北岩石圈减薄-增生的制约.大地构造与成矿学,2012,36(4):559-571
    [59]闫峻,陈江峰,谢智,等.鲁东晚白垩世玄武岩中的幔源捕虏体:对中国东部岩石圈减薄时间制约的新证据.科学通报,2003,48(14):1570-1574
    [60]陈衍景,Franco PIRAJNO,赖勇,等.胶东矿集区大规模成矿时间和构造环境.岩石学报,2004,20(4):907-922
    [61]范宏瑞,胡芳芳,杨进辉,等.胶东中生代构造体制转折过程中流体演化和金的大规模成矿.岩石学报,2005,21(5):1317-1328
    [62]姜晓辉,范宏瑞,胡芳芳,等.胶西北留村金矿成矿流体特征与矿床成因.矿床地质,2011,30(3):511-521
    [63]王义文,朱奉三,宫润潭.胶东金矿集中区金矿成矿年代学研究.黄金地质,2002(04):48-55
    [64]徐贵忠,王艺芬,周瑞,等.胶东和鲁西地区中生代成矿作用重大差异性的内在因素.现代地质,2002,16(1):9-18
    [65]胡华斌.鲁西平邑地区浅成低温热液金矿床成矿流体及成矿作用.中国地质大学(北京),2005
    [66]李洪奎,耿科,李逸凡,等.沂南县铜井金矿床锆石SHRIMP U-Pb年龄及其地质意义.矿床地质,2011,30(3):497-503
    [67]李科,顾雪祥,董树义.山东沂南金铜铁矿床同位素地球化学研究.矿床地质,2009,28(1):93-103
    [68]李洪奎,杨永波,田京祥,等.山东沂沭断裂带中段金矿床地质特征.地质与勘探,2004,40(4):27-31
    [69]李洪奎,杨锋杰,牛树银,等.山东龙泉站金矿区稳定同位素特征及其地质意义.地质学报,2007,81(5):635-639
    [70]李洪奎,杨峰杰,杨永波,等.沂沭断裂带中段两种类型金矿流体包裹体特征及其地质意义.矿床地质,2007,26(6):659-665
    [71]李洪奎,杨水波,王岳林.沂水南小尧金矿同位素年代学特征及其地质意义.地质调查与研究,2009,32(1):1-7
    [72]Hu H B, Sun A Q, Niu S Y, et al. Helium and argon isotopic compositions of the Longquanzhan gold deposit in the Yishu fault zone and their geological implications. Chinese Journal of Geochemistry,2007,26(01):46-51
    [73]李洪奎.沂沭断裂带构造演化与金矿成矿作用研究.山东科技大学,2010
    [74]许志琴,张巧大,赵民.郯庐断裂中段古裂谷的基本特征,1982
    [75]Wang D Z, Ren Q J, Qiu J S, et al. Characteristics of Volcanic Rocks in the Shoshonite Province, Eastern China, and Their Metallogenesis. Acta Geologica Sinica,1996,9(3): 246-259
    [76]金隆裕.沂沭裂谷及其邻区下白垩世火山熔岩地球化学特征.山东地质,1994,10(1):40-51
    [77]牛漫兰,谢成龙,宋传中,等.郯庐断裂带早白垩世火山岩的K-Ar年龄及其构造意义.地质科学,2007,42(2):382-387
    [78]邱检生,王德滋,周金城,等.山东中生代橄榄安粗岩系火山岩的地质、地球化学特征及岩石成因.地球科学,1996(05):92-98
    [79]牛漫兰,朱光,宋传中.郯庐断裂带中生代火山活动与深部过程.合肥工业大学学报(自然科学版),2001,24(2):147-153
    [80]周新华,张宏福,英基丰,等.大陆深俯冲后效作用的地球化学记录—华北中生代岩石圈地幔源区特征变异的讨论.岩石学报,2005(04):1255-1263
    [81]Ying J F, Zhou X H, Zhang H F. The geochemical variations of mid-Cretaceous lavas across western Shandong Province, China and their tectonic implications. International Journal of Earth Sciences,2006,95:68-79
    [82]Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton. Nature,2004,432(16):892-897
    [83]Xu Y G, Ma J L, Huang X L, et al. Early Cretaceous gabbroic complex from Yinan, Shandong Province:petrogenesis and mantle domains beneath the North China Craton. International Journal of Earth Sciences,2004,93:1025-1041
    [84]杨承海,许文良,杨德彬,等.鲁西上峪辉长-闪长岩的成因:年代学与岩石地球化学证据.中国科学:D辑,2008,38(1):44-55
    [85]宋明春,徐军祥,王沛成.山东省大地构造格局和地质构造演化.北京:地质出版社,2009,1-274
    [86]沈其韩,张宗清,徐惠芬.山东沂水太古宙麻粒岩区年代学研究成果简介.地球学报,1994(Z1):17-19
    [87]苏尚国,顾德林.山东省沂水地区麻粒岩相变质作用演化及大地构造意义.岩石学报,1997,13(3):331-345
    [88]沈其韩,宋彪,徐惠芬,等.山东沂水太古宙蔡峪和大山岩体SHRIMP锆石年代学.地质论评,2004,50(3):275-284
    [89]赵子然,宋会侠,沈其韩,等.山东沂水杂岩中变基性岩的岩石地球化学特征及锆石SHRIMP U-Pb定年.地质论评,2009(02):286-299
    [90]宋明春,金振民,王来明,等.鲁东官山榴辉岩与围岩接触关系的新发现及其对年代 学的启示.地质学报,2003(02):238-244
    [91]Zhao G C. Palaeoproterozoic assembly of the North China Craton. Geological Magazine, 2001,138:87-91
    [92]Kroner A, Wilde S A, Zhao G C, et al. Zircon geochronology of mafic dykes in the Hengshan Complex of northern China:evidence for late Palaeoproterozoic rifting and subsequent high-pressure event in the North China Craton. Precambrian Res,2006, 146(1-2):45-67
    [93]Faure M, Trap P, Lin W, et al. Polyorogenic evolution of the Paleoproterozoic Trans-North China Belt, new insights from the Luliangshan-Hengshan-Wutaishan and Fuping massifs. Episodes,2007,30:1-12
    [94]Trap P, Faure M, Lin W, et al. Late Paleoproterozoic (1900-1800Ma) nappe stacking and polyphase deformation in the Hengshan-Utaishan area:implications for the understanding of the Trans-North-China Belt, North China Craton. Precambrian Res,2007,156:85-106
    [95]Yang J H, Wu F Y, Shao J A, et al. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters,2006,246(3-4):336-352
    [96]李锦轶,高立明,孙桂华,等.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束.岩石学报,2007(03):565-582
    [97]Zhang X H, Zhang H F, Tang Y J, et al. Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China:Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt. Chemical Geology,2008,249(3-4): 262-281
    [98]陈竞志,姜能.胶东晚三叠世碱性岩浆作用的岩石成因—来自锆石U-Pb年龄、Hf-O同位素的证据.岩石学报,2011(12):3557-3574
    [99]王勇生,朱光,陈文,等.郯庐断裂带热年代学信息及其与大别造山带折返的关系.地球化学,2005,34(3):193-214
    [100]朱光,王道轩,刘国生,等.郯庐断裂带的演化及其对西太平洋板块运动的响应.地质科学,2004,39(1):36-49
    [101]邱连贵,任风楼,曹忠祥,等.胶东地区晚中生代岩浆活动及对大地构造的制约.大地构造与成矿学,2008(01):117-123
    [102]陈根文,夏换,陈绍清.华北地区晚中生代重大构造转折的地质证据.中国地质,2008,35(6):1162-1177
    [103]姜耀辉,蒋少涌,赵葵东,等.辽东半岛煌斑岩SHRIMP锆石U-Pb年龄及其对中国东部岩石圈减薄开始时间的制约.科学通报,2005(19):115-122
    [104]Zheng Y D, Wang S Z, Wang Y F. An enormous thrust nappe and extensional metamorphic core complex newly discovered in Sino-Mongolian boundary area. Science in China(B),1991,34(9):1146-1152
    [105]刘俊来,关会梅,纪沫,等.华北晚中生代变质核杂岩构造及其对岩石圈减薄机制的约束.自然科学进展,2006(01):21-26
    [106]纪沫,刘俊来,胡玲,等.辽南变质核杂岩饮马湾山和赵房岩体锆石SHRIMP U-Pb年 龄及其地质意义.岩石学报,2009(01):173-181
    [107]关会梅,刘俊来,纪沫,等.辽宁南部万福变质核杂岩的发现及其区域构造意义.地学前缘,2008(03):199-208
    [108]Maruyama S, Isozaki Y, Kimura G, et al. Paleogeographic maps of the Japanese Islands Plate tectonic synthesis from 750 Ma to the present. The Arc Island,1997,6(1):121-142
    [109]钟军伟,黄小龙.鲁西早白垩世基性侵入岩的锆石Hf同位素组成变化及其成因.大地构造与成矿学,2012,36(4):572-580
    [110]邱检生,徐夕生,罗清华.鲁西富钾火山岩和煌斑岩的40Ar-39Ar定年及源区示踪.科学通报,2001,46(18):1500-1508
    [111]邱检生,刘亮,李友连,等.沂沭断裂带中南段钾质火山岩的元素地球化学与Sr-Nd-Hf同位素组成及其对岩石成因的制约.地质学报,2013,87(9):1193-1210
    [112]谭俊.胶东郭城断裂带脉岩岩浆演化过程:对岩石圈演化及金成矿的制约.中国地质大学,2009
    [113]牛漫兰,朱光,刘国生,等.郯庐断裂带中-南段新生代火山活动与深部过程.地质科学,2005,40(3):390-403
    [114]王世进,万渝生,宋志勇,等.鲁西泰山岩群地层划分及形成时代—锆石SHRIMPU-Pb测年的证据.山东国土资源,2012(12):15-23
    [115]刘明渭,张庆玉,宋万千.山东省白垩纪岩石地层序列与火山岩系地层划分.地层学杂志,2003(03):247-253
    [116]宋明春,金振民,王来明,等.鲁东官山榴辉岩与围岩接触关系的新发现及其对年代学的启示.地质学报,2003(02):238-244
    [117]林润生,于志臣.山东胶北隆起区荆山群.山东地质,1988,4(1):1-21
    [118]周喜文,魏春景,耿元生,等.胶北荆山群泥质低压麻粒岩电子探针独居石Th-Pb定年及其对多阶段变质演化的制约.科学通报,2005(04):369-374
    [119]Xu J W, Zhu G, Tong W X. Formation and evolution of the Tancheng-Lujiang wrench fault system:a major shear system to the northwest of the Pacific Ocean,1987:273-310
    [120]Okay A I, Sengor A M C. Evidence for intracontinental thrust-related exhumation of the ultra-high-pressure rocks in China. Geology,1992,20(5):411-414
    [121]万天丰,朱鸿.郯庐断裂带的最大左行走滑断距及其形成时期.高校地质学报,1996,01:14-27
    [122]王小风,董树文,李中坚,等.郯庐走滑断裂系的形成演化及其地质意义.北京:地质出版社,1998,176-196
    [123]Zhu G, Liu G S, Niu M L, et al. Syn-collisional transform faulting of the Tan-Lu fault zone, East China. International Journal of Earth Sciences,2009,98(1):135-155
    [124]朱光,宋传中,王道轩,等.郯庐断裂带走滑时代的40Ar-39Ar年代学研究及其构造意义.中国科学(D辑:地球科学),2001(03):250-256
    [125]朱光,刘国生,Dunlap W J,等.郯庐断裂带同造山走滑运动的40Ar/39Ar年代学证据.科学通报,2004(02):190-198
    [126]朱光,谢成龙,王勇生,等.郯庐高压走滑韧性剪切带特征及其40Ar/39Ar定年.岩石学 报,2005(06):1687-1702
    [127]张青,朱光,刘国生,等.郯庐断裂带张八岭隆起北段的左旋走滑挤压变形及其40Ar/39Ar定年. 地学前缘,2008(03):234-249
    [128]Hu R Z, Gao S, Liu S, et al. U-Pb zircon age, geochemical and Sr-Nd-Pb-Hf isotopic constraints on age and origin of alkaline intrusions and associated mafic dikes from Sulu orogenic belt, Eastern China. Lithos,2008,106:365-379
    [129]董树文,张岳桥,龙长兴,等.中国侏罗纪构造变革与燕山运动新诠释.地质学报,2007(11):1449-1461
    [130]Engebretson D C, Cox A, Gordon R G. Relative motions between oceanic and continental plates in the Pacific basin. The Geological Society of America, Special Paper,1985,206: 1-59
    [131]朱光,王道轩,刘国生,等.郯庐断裂带的伸展活动及其动力学背景.地质科学,2001,36(3):269-278
    [132]朱光,宋传中,牛漫兰,等.郯庐断裂带的岩石圈结构及其成因分析.高校地质学报,2002,8(3):248-256
    [133]Gilder S A, Leloup P H, Courtillotet V, et al. Tectonic evolution of the Tancheng-Lujiang (Tan-Lu) fault via middle Triassic to Early Cenozoic paleomagnetic data. Journal of Geophysical Research,1999,104(B7),15365-15390
    [134]Yin A, Nie S Y. An indendation model for the North and South China collision and the development of the Tan-Lu and Honam fault system, eastern Asia.Tectonics,1993,12(4): 801-813
    [135]Li Z X. Collision between the North and South China blocks A crustal-detachment model for suturing in the region east of the Tanlu fault. Geology,1994,22:739-742
    [136]Chang E Z. Collisional orogene between north and south China and its eastern extension in the Korean Peninsula. Journal of Southeast Asian Earth Sciences,1996,3-5(13):267-277
    [137]沈其韩,徐惠芬.山东沂水雪山岩体和林家官庄岩体的同位素年代学.地质科学,1997,32(3):291-298
    [138]赵子然,宋会侠,沈其韩,等.山东沂水地区英灵山花岗岩及其捕虏体的地质、岩石地球化学特征和锆石SHRIMP U-Pb定年.地质通报,2008,27(9):1551-1558
    [139]孔令芝,刘其臣.山东沂南牛家小河金矿矿床特征及找矿前景.北京,2003,371-374
    [140]Li S G, Chen Y, Cong B L, et al. Collision of the North China and Yangtze Blocks and formation of coesite-bearing eclogites:timing and processes. Chemical Geology,1993,109: 80-89
    [141]关康,罗镇宽,苗来成,等.胶东招掖郭家岭型花岗岩锆石SHRIMP年代学研究.地质科学,1998(03):64-74
    [142]杨承海,许文良,杨德彬,等.鲁西中生代高Mg闪长岩的成因:年代学与岩石地球化学证据.地球科学,2006(01):81-92
    [143]王永,范宏瑞,胡芳芳,等.鲁西沂南铜井闪长质岩体锆石U-Pb年龄、元素及同位素地球化学特征.岩石矿物学杂志,2011,30(4):553-566
    [144]史蕊,陈建平,王刚.华北克拉通沉积变质型铁矿床的特征与预测评价模型.岩石学报,2013(07):2606-2616
    [145]赖小东,杨晓勇.鲁西杨庄条带状铁建造特征及锆石年代学研究.岩石学报,2012(11):3612-3622
    [146]王继广,李静,李庆平,等.鲁西地区绿岩带型金矿及其矿源层探讨.地质学报,2013(07):994-1002
    [147]张拴宏,周显强.鲁西绿岩带金矿床绢云母氩同位素年龄及其地质意义.有色金属矿产与勘查,1999(03):37-39
    [148]万天丰.山东省构造演化与应力场研究.山东地质,1992(02):70-101
    [149]孔庆友,张天祯,于学峰,等.山东矿床.山东:山东科学技术出版社,2006,362-367
    [150]王永,范宏瑞,胡芳芳,等.山东五莲七宝山Cu-Au矿床成矿流体特征及成矿作用.岩石学报,2008,24(9):2029-2036
    [151]邱检生,王德滋,任启江,等.山东五莲七宝山火山—次火山杂岩的演化及形成条件.矿物岩石,1993(04):1-10
    [152]周炳煌.山东七宝山隐爆角砾岩简特征与成矿.地质与勘探,1990(05):26-30
    [153]王郁.山东七宝山金矿床地质特征及成因探讨.地质论评,1991,37(4):329-337
    [154]Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology,2008, 257:34-43
    [155]Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology,2010,51:537-571
    [156]Su Y P, Zheng J P, Griffin W L, et al. Geochemistry and geochronology of Carboniferous volcanic rocks in the eastern Junggar terrane, NW China:Implication for a tectonic transition. Gondwana Research,2012,22(3-4):1009-1029
    [157]Ma Q, Zheng J P, Griffin W L, et al. Triassic "adakitic" rocks in an extensional setting (North China):melts from the cratonic lower crust. Lithos,2012,149(15):159-173
    [158]Griffin W L, Belousova E A, Shee S R, et al. Archean crustal evolution in the northern Yilarn Craton:U-Pb and Hf isotope evidence from detrital zircons. Precambrian Research, 2004,131:231-282
    [159]Ma X, Bai J. Precambrian crustal evolution of China. Springer Berlin:Geological Publication House,1998,1-331
    [160]Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton:key issues revisited. Precambrian Research,2005,136:177-202
    [161]Li S Z, Zhao G C. SHRIMP U-Pb zircon geochronology of the Liaoji granitoids: Constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji belt in the Eastern Block of the North China Craton. Precambrian Research,2007,158:1-16
    [162]周建波,郑永飞,赵子福.山东五莲中生代岩浆岩的锆石U-Pb年龄.高校地质学报,2003,9(2):185-194
    [163]许文良,王清海,杨德彬,等.蚌埠荆山“混合花岗岩”SHRIMP锆石U-Pb定年及其地质意义.中国科学(D辑:地球科学),2004(05):423-428
    [164]曹洋.郯庐断裂带山东段晚中生代火山岩地球化学特征及其地质意义.合肥工业大学,2009
    [165]刘洪,邱检生,王德滋,等.鲁东胶莱盆地青山组火山岩的40Ar-39Ar定年-以五莲分岭山火山机构为例.高校地质学报,2001,7(3):351-355
    [166]凌文黎,谢先军,柳小明,等.鲁东中生代标准剖面青山群火山岩锆石U-Pb年龄及其构造意义.中国科学.D辑:地球科学,2006(05):401-411
    [167]闫峻,陈江峰,谢智,等.鲁东晚白垩世玄武岩及其中幔源包体的岩石学和地球化学研究.岩石学报,2005(01):101-114
    [168]裴福萍,许文良,王清海,等.鲁西费县中生代玄武岩及幔源捕掳晶的矿物化学:对岩石圈地幔性质的制约.高校地质学报,2004,10(1):88-97
    [169]杨承海,许文良,杨德彬,等.鲁西济南辉长岩的形成时代:锆石LA-ICP-MS U-Pb定年证据.地球学报,2005,26(4):321-325
    [170]徐义刚,巫祥阳,罗震宇,等.山东中侏罗世-早白垩世侵入岩的锆石Hf同位素组成及其意义.岩石学报,2007,23(2):307-316
    [171]邓军,翟裕生.构造演化与成矿系统动力学.地学前缘,1999,6(2):315-323
    [172]Scarrow J H, Leat P T, Wareham C D, et al. Geochemistry of mafic dykes in the Antarctic Peninsula continental-margin batholith:a record of arc evolution. Contributions To Mineralogy And Petrology,1998,131(2-3):289-305
    [173]Xu X W, Zhang B L, Qin K Z, et al. Origin of lamprophyres by the mixing of basic and alkaline melts in magma chamber in Beiya area, Western Yunnan, China. Lithos,2007, 99(3-4):339-362
    [174]Poland M P, Fink J H, Tauxe L. Patterns of magma flow in segmented silicic dikes at Summer Coon volcano, Colorado:AMS and thin section analysis. Earth And Planetary Science Letters,2004,219(1-2):155-169
    [175]邱检生,王德滋,曾家湖.鲁西中生代富钾火山岩及煌斑岩微量元素和Nd-Sr同位素地球化学.高校地质学报,1997(04):384-395
    [176]张旗,王焰,钱青,等.中国东部燕山期埃达克岩的特征及其构造-成矿意义.岩石学报,2001(02):236-244
    [177]Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, In:Saunders, A. D. & Norry, M. J. (eds) Magmatism in the Ocean Basins. Geological Society, London, Special Publications,1989, 42:313-345
    [178]Yang C H, Xu W L, Yang D B, et al. Petrogenesis of Mesozoic High-Mg Diorites in Western Shandong:Evidence from Chronology and Petro-geochemistry. Journal of China Uniuersity of Geosciences,2005,16(4):297-308
    [179]李全忠,谢智,陈江峰等.济南和邹平辉长岩的Pb-Sr-Nd同位素特征和岩浆源区中下地壳物质贡献.高校地质学报,2007(02):297-310
    [180]邱检生,王德滋.山东五莲七宝山辉石二长岩的地球化学及岩浆源区性质.地质论评,1999,45(7):612-617
    [181]Jahn B M, Wu F Y, Lo C H, et al. Crust-mantle interaction induced by deep subduction of the continental crust:geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology,1999,157(1-2):119-146
    [182]Chen J F, Jahn B M. Crustal evolution of southeastern China:Nd and Sr isotopic evidence. Tectonophisics,1998,284:101-133
    [183]Jahn B M, Auvray B, Shen Q H. Archean crustal evolution in China:the Taishan complex, and evidence for Juvenile crustal addition from long-term depleted mantle. Precambrain Res, 1988,38:381-403
    [184]李曙光,聂永红,Hart RS,等.俯冲陆壳与上地幔的相互作用-Ⅱ.大别山同碰撞镁铁-超镁铁岩的Sr,Nd同位素地球化学.中国科学(D辑:地球科学),1998(01):18-22
    [185]黄洁,郑永飞,吴元保,等.苏鲁造山带五莲地区岩浆岩元素和同位素地球化学研究.岩石学报,2005,21(3):545-568
    [186]Guo F, Fan W M, Wang Y J, et al. Origin of early Cretaceous calc-alkaline lamprophyres from the Sulu orogen in eastern China:implications for enrichment processes beneath continental collisional belt. Lithos,2004,78:291-305
    [187]Peng Z C, Zartman R E, Futa K, et al. Pb-, Sr-and Nd-isotopic systematics and chemical characteristics of Cenozoic basalts, Eastern China. Chemical Geology,1986,59:3-33
    [188]Basu A R, Wang J W, Huang W K, et al. Major element, REE,and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China:implications for their origin from suboceanic-type mantle reservoirs. Earth And Planetary Science Letters,1991, 105(1-3):149-169
    [189]Tatsumoto M, Basu A R, Huang W, et al. Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of Eastern China:enriched components EMⅠ and EMⅡ in subcontinental lithosphere. Earth and Planetary Science Letters,1992,113(1-2):107-128
    [190]Chung S L. Trace element and isotope characteristics of Cenozoic basalts around the Tanlu Fault with implications for the east plate boundary between North and South China. Journal of Geology,1999,107:301-312
    [191]张理刚.东亚岩石圈块体地质-上地幔、基底和花岗岩同位素地球化学及其动力学.北京:科学出版社,1995,1-252
    [192]李曙光,杨蔚.大别造山带深部地缝合线与地表地缝合线的解耦及大陆碰撞岩石圈楔入模型:中生代幔源岩浆岩Sr-Nd-Pb同位素证据.科学通报,2002,47(24):1898-1905
    [193]陈克荣,潘永伟.山东五莲七宝山早白垩世破火山口与火山-侵入杂岩特征与成因.南京大学学报:自然科学版,1993,29(1):92-103
    [194]陈常富.山东五莲七宝山式金矿-一个与火山机构岩浆演化有关的金铜矿床.地质科技情报,1992,11(1):57-62
    [195]杨进辉,朱美妃,刘伟,等.胶东地区郭家岭花岗闪长岩的地球化学特征及成因.岩 石学报,2003,19(4):692-700
    [196]Kelemen P B. Genesis of high Mg# andesites and the continental crust. Contributions to Mineralogy and Petrology,1995,120(1):1-19
    [197]Kilian C R, Stern R. Role of subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology,1996,123:263-281
    [198]Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge:experimental constraints at 3.8GPa. Chemical Geology, 1999,160:335-356
    [199]DePaolo D J. Trace element and isotopic effects of combined wallrock assimilation and fractionation crystallization. Earth And Planetary Science Letters,1981,53:189-202
    [200]Xu W L, Hergt J M, Gao S, et al. Interaction of adakitic melt-peridotite:Implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton. Earth and Planetary Science Letters,2008,265:123-137
    [201]Rudnick R L, Fountain D. Nature and composition of the continental crust:a lower crustal perspective. Reviews of Geophysics,1995,33:267-309
    [202]Hofmann A W, Jochum K P, Seufert M, et al. Nb and Pb in oceanic basalts:new constraints on mantle evolution. Earth and Planetary Science Letters,1986,79:33-45
    [203]王德滋,赵广涛,邱检生.中国东部晚中生代A型花岗岩的构造制约.高校地质学报,1995(02):13-21
    [204]Zou H B, Zindler A, Xu X S, et al. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China:mantle sources, regional variations and tectonic significance. Chemistry Geology,2000,171:33-47
    [205]Hart S R. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature,1984, 309:753-757
    [206]Fan W M, Guo F, Wang Y J, et al. Postorogenic bimodal volcanism along the Sulu orogenic belt in eastern China. Physics and Chemistry of the Earth,2001,26:733-746
    [207]Yang J H, Wu F Y, Chung S L, et al. Petrogenesis of Early Cretaceous intrusions in the Sulu ultrahigh-pressure orogenic belt, east China and their relationship to lithospheric thinning. Chemical Geology,2005,222:200-231
    [208]孟繁聪,薛怀民,李天福,等.苏鲁造山带晚中生代地幔的富集特征-来自辉长岩的地球化学证据.岩石学报,2005,21(6):1583-1592
    [209]Guo F, Fan W M, Li C W. Geochemistry of late Mesozoic adakites from the Sulu belt, eastern China:Magma genesis and implications for crustal recycling beneath continental collisional orogens. Geological magazine,2006,143:1-13
    [210]Saunders A D, Norry M J, Tarney J. Origin of MORB and chemically depleted mantle reservoirs:trace element constraints. J Petrol, Special Lithosphere Issue,1988,1:415-445
    [211]Weaver B L. The origin of ocean island basalt end-ember compositions:trace element and isotopic constraints. Earth and Planetary Science Letters,1991,104(2):381-397
    [212]Menzies M A, Fan W M, Zhang M. Palaeozoic and Cenozoic lithoprobes and the loss of 4120 km of Archean lithosphere, Sino-Korean craton, China. In:Prichard, H. M. (ed.) Magmatic Processes and PlateTectonics. Geological Society, London,Special Publications, 1993,76:71-81
    [213]Griffin W L, Zhang A, Reilly S Y O, et al. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In:Flower, M. F. J., Chung, S. L., Lo, C. H. & Lee, T. Y. (eds) Mantle Dynamics and Plate Interaction in East Asia. American Geophysical Union, Geodynamics Series,1998,27:107-126
    [214]Xu Y G, Chung S L, Jahn B M, et al. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos, 2001,58:145-168
    [215]Zhang H F, Sun M, Lu F X, et al. Geochemical significance of a garnet lherzolite from the Dahongshan kimberlite, Yangtze Craton, southern China. Geochemical Journal,2001,35: 315-331
    [216]Zheng J P, Griffin W L, Reilly S Y O, et al. U-Pb and Hf-isotope analysis of zircons in mafic xenoliths from Fuxian kimberlites:evolution of the lower crust beneath the North China Craton. Contributions to Mineralogy and Petrology,2004,148:79-103
    [217]Wu F Y, Walker R J, Yang Y H, et al. The chemical-temporal evolution of lithospheric mantle underlying the North China Craton. Geochimica et Cosmochimica Acta,2006,70: 5013-5034
    [218]Hirose K, Kushiro I. Partial melting of dry peridotites at high pressures:determination of compositions using aggregates of diamond. Earth and Planetary Science Letters,1993,114: 477-489
    [219]Falloon T J, Green D H, Hatton C J, et al. Anhydrous partial melting of a fertile and depleted peridotite from 2 to 30 kbar and application to basalt petrogenesis. Journal of Petrology,1988,29:1257-1282
    [220]Rudnick R L, Gao S. The composition of the continental crust. In:Rudnick, R. L. (ed.) The Crust. Oxford:Elsevier-Pergamon,2003,1-64
    [221]张华锋,翟明国,何中甫,等.胶东昆嵛山杂岩中高锶花岗岩地球化学成因及其意义.岩石学报,2004,20(3):369-380
    [222]马亮,蒋少涌,戴宝章,等.胶东焦家金矿区玲珑花岗岩锆石LA-ICP-MS U-Pb年代学和元素地球化学研究.矿物学报,2009(S1):325
    [223]邱检生,刘亮,李友连.山东汤头盆地钾质及钠质火山岩的年代学与地球化学:对华北克拉通岩石圈减薄的启示.岩石学报,2012,28(4):1044-1056
    [224]李海勇,徐兆文,陆现彩,等.鲁西邹平盆地中生代火山岩的演化:对地幔源区的约束.岩石学报,2008,24(11):2537-2547
    [225]牛漫兰,傅朋远,吴齐,等.蒙阴盆地早白垩世火山岩地球化学特征及其岩石成因.岩石学报,2012,28(12):4125-4138
    [226]Falloon T J, Green D H, Hatton C J, et al. Anhydrous partial melting of a fertile and depleted peridotite from 2 to 30 kbar and application to basalt petrogenesis. Journal of Petrology,1988,29:1257-1282
    [227]张长青,李向辉,余金杰,等.四川大梁子铅锌矿床单颗粒闪锌矿铷-锶测年及地质意义.地质论评,2008(04):532-538
    [228]王银喜,顾连兴,张遵忠,等.东天山晚石炭世大石头群流纹岩Sr-Nd-Pb同位素地球化学研究.岩石学报,2007(07):1749-1755
    [229]Wang Y X, Yang J D, Chen J, et al. The Sr and Nd isotopic variations of the Chinese Loess Plateau during the past 7 Ma Implications for the East Asian winter monsoon and source areas of loess. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,249:351-361
    [230]刘刚,王先彬,李立武.张家口大麻坪碱性玄武岩内地幔岩包体气体成分的初步研究.科学通报,1996(19):1775-1777
    [231]叶先仁,吴茂炳,孙明良.岩矿样品中稀有气体同位素组成的质谱分析.岩矿测试,2001(03):174-178
    [232]Jiang S Y, Slack J F, Palmer M R. Sm-Nd dating of the giant Sullivan Pb-Zn-Ag deposit, British Columbia. Geology,2000,28:751-754
    [233]Luders V, Ziemann M. Possibilities and limits of infrared light microthermometry applied to studies of pyrite-hosted fluid inclusions. Chemical Geology,1999,154:169-178
    [234]Li Q L, Chen F K, Yang J H, et al. Single grain pyrite Rb-Sr dating of the Linglong gold deposit, eastern China. Ore Geology Reviews,2008,34:263-270
    [235]Yang J H, Zhou X H. Rb-Sr, Sm-Nd, and Pb isotope systematics of pyrite-Implications for the age and genesis of lode gold deposits. Geology,2001,21(8):711-714
    [236]Ludwig K R. Users Manual for Isoplot/Ex:A Geochronological Toolkit for Microsoft Excel[M]:Berkeley Geochronology Center Special Publication, USA,2001,1-53
    [237]Guo P, Santosh M, Li S R, et al. Crustal evolution in the central part of Eastern NCC: Zircon U-Pb ages from multiple magmatic pulses in the Luxi area and implications for gold mineralization. Ore Geology Reviews,2014,60:126-145
    [238]邱德同,孔令刚.山东省七宝山角砾岩筒型金铜矿床的地质地球化学特征.地质与勘探,1986(05):7-12
    [239]刘连登,陈国华,刘青廷,等.烟台金矿本质特征描述及其意义.矿床地质,1998,17:295-298
    [240]陈常富,郭志远,胡京宇,等.山东沂南金厂金铜矿床构造、岩浆演化与成矿模式.地质找矿论丛,1995,11(01):9-15
    [241]洪景鹏,宫田隆夫.马站盆地成因与晚白垩世郯庐断裂带的活动性.地质力学学报,1998,4(1):33-36
    [242]孙思,李永刚,张小允,等.山东七宝山隐爆角砾岩型金铜矿床含矿蚀变斑岩石英颗粒中高温高盐度沸腾包裹体的发现及其意义.岩石学报,2010,26(11):3319-3326
    [243]顾雪祥,刘丽,董树义,等.山东沂南金铜铁矿床中的液态不混溶作用与成矿:流体包裹体和氢氧同位素证据.矿床地质,2010,29(1):43-57
    [244]邱检生,王德滋.山东五莲七宝山金矿床成矿物理化学条件及矿床成因.矿产与地质,1994,8(1):12-18
    [245]Taylor H P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alternation and ore deposition. Economic Geology,1974,69:843-883
    [246]张理刚.稳定同位素在地质科学中的应用-金属活化热液成矿作用及找矿.西安:陕西科学技术出版社,1985
    [247]林文蔚,殷秀兰.胶东金矿成矿流体同位素的地质特征.岩石矿物学杂志,1998,17(03):58-68
    [248]卢焕章,袁万春,张国平,等.玲珑-焦家地区主要金矿床稳定同位素及同位素年代学.桂林工学院学报,1999,19(1):1-8
    [249]张连昌,沈远超,李厚民,等.胶东地区金矿床流体包裹体的He、Ar同位素组成及成矿流体来源示踪.岩石学报,2002,18(4):559-565
    [250]侯明兰,蒋少涌,沈昆,等.胶东蓬莱金矿区流体包裹体和氢氧同位素地球化学研究.岩石学报,2007,23(9):2241-2256
    [251]李红梅,魏俊浩,王启,等.山东土堆-沙旺金矿床同位素组成特征及矿床成因讨论.地球学报,2010,31(6):791-802
    [252]张旭,李胜荣,卢晶,等.山东招远金翅岭金矿床H, O, He, Ar同位素组成及其对成矿流体示踪的研究.矿物岩石,2012(01):40-47
    [253]Turner G, Burnard P, Ford J L, et al. Tracing Fluid Sources and Interactions [and Discussion]. Phil Trans R Soc Lond A,1993,344:127-140
    [254]胡瑞忠,毕献武,Turner G,等.马厂箐铜矿床黄铁矿流体包裹体He-Ar同位素体系.中国科学(D辑:地球科学),1997(06):503-508
    [255]Stuart F M, Burnard P G, Taylor R P. Resolving mantle and crustal contributions to ancient hydrothermal fluids:He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralisation, South Korea. Geochim Cosmochim Acta,1995,59:4663-4673
    [256]胡瑞忠,钟宏,叶造军,等.金顶超大型铅锌矿床氦、氩同位素地球化学.中国科学(D辑:地球科学),1998(03):208-213
    [257]胡瑞忠,毕献武,Turner.G,等.哀牢山金矿带金成矿流体He和Ar同位素地球化学.中国科学(D辑:地球科学),1999,29(4):321-330
    [258]Simmons S F, Sawkins F J, Schlutter D J. Mantle-derived helium in two Peruvian hydrothermal ore deposits. Nature,1987,329:429-432
    [259]Tolstikhin IN. A review:some recent advances in isotope geochemistry of light rare gases. In:Alexander, E.C., Ozima, M. (Eds.), Terrestrial Rare Gases. Japan Scientific Society Press, Tokyo,1978:27-62
    [260]Kendrick M A, Burgess R, Pattrick R A D, et al. Fluid inclusion noble gas and halogen evidence on the origin of Cu-porphyry mineralizing fluids. Geochimica et Cosmochimica Acta,2001,65:2651-2668
    [261]张运强,李胜荣,陈海燕,等.胶东金青顶金矿床成矿流体来源的黄铁矿微量元素及He-Ar同位素证据.中国地质,2012,39(1):195-204
    [262]Winckler G, Aeschbach-Hertig W, Kipfer R, et al. Constraints on origin and evolution of Red Sea brines from helium and argon isotopes. Earth And Planetary Science Letters,2001, 184:671-683
    [263]邢树文,孙景贵,李东旭,等.胶东晚中生代金矿成矿的硫同位素组成及热动力源.吉林大学学报(地球科学版),2003,33(2):141-146
    [264]黄德业.胶东金矿成矿系列硫同位素研究.矿床地质,1994,13(01):75-87
    [265]张连昌,沈远超,刘铁兵,等.山东蓬家夼金矿硫铅碳氧同位素地球化学.矿物学报,2002(03):255-260
    [266]蔡亚春,范宏瑞,胡芳芳,等.胶东胡八庄金矿成矿流体、稳定同位素及成矿时代研究.岩石学报,2011(05):1341-1351
    [267]侯明兰,蒋少涌,姜耀辉,等.胶东蓬莱金成矿区的S-Pb同位素地球化学和Rb-Sr同位素年代学研究.岩石学报,2006,22(10):2525-2533
    [268]Ohmoto H. Stable isotope geochemistry of ore deposits. Reviews in Mineralogy and Geochemistry,1986,16(1):491-559
    [269]H. Ohmoto, R. O. Rye. Isotopes of sulfur and carbon. In Barnes H L, ed. Geochemistry of hydrothermal ore deposits. New York:John Wiley & Sons,1979,509-567
    [270]张连营,程敏清.山东五莲七宝山金铜矿床地球化学特征及成因分析.地质找矿论丛,1996,11(1):18-24
    [271]李洪奎.沂沭断裂带构造演化与金矿成矿作用研究.山东科技大学,2010
    [272]孙丰月,石准立,冯本智.胶东金矿地质及地幔C-H-O流体分异成岩成矿.长春:吉林人民出版社,1995,1-170
    [273]宋玉财,胡文瑄,连国建,等.胶东大庄子金矿微量元素及Pb-S同位素地球化学研究.南京大学学报(自然科学版),2004,40(6):659-673
    [274]李金祥,邓军,吴文根,等.山东招远金矿集中区矿床及围岩中硫和铅同位素的研究.现代地质,2004,18(2):187-192
    [275]Fature G, Mensing T M. Isotopes:Principles and Applications (the third edition). New York:John Wiley & Sons,2005,256-283
    [276]Guo P, Santosh M., Li S R. Geodynamics of gold metallogeny in the Shandong Province, NE China:An integrated geological, geophysical and geochemical perspective. Gondwana Research,2013,24:1172-1202
    [277]谭俊,魏俊浩,杨春福,等.胶东郭城地区脉岩类岩石地球化学特征及成岩构造背景.地质学报,2006,80(8):1177-1188
    [278]Liu S, Hu R Z, Zhao J H, et al. K-Ar Geochronology of Mesozoic Mafic Dikes in Shandong Province, Eastern China Implications for Crustal Extension. Acta Geologica Sinica,2004,78(6):1207-1213
    [279]毛景文,李厚民,王义天,等.地幔流体参与胶东金矿成矿作用的氢氧碳硫同位素证据.地质学报,2005,79(6):839-857
    [280]于学峰,李洪奎,单伟.山东胶东矿集区燕山期构造热事件与金矿成矿耦合探讨.地质学报,2012,86(12):1946-1956
    [281]李洪奎,李逸凡,耿科,等.山东鲁东地区中生代构造-岩浆事件与金矿成矿作用.地球科学前沿,2013,3:141-154
    [282]翟明国,朱日祥,刘建明,等.华北东部中生代构造体制转折的关键时限.中国科学D辑,2003,33(10):913-920
    [283]朱光,刘国生,牛漫兰,等.郯庐断裂带晚第三纪以来的浅部挤压活动与深部过程.地震地质,2002,24(2):265-277
    [284]谭俊,魏俊浩,郭玲利,等.胶东郭城地区脉岩锆石LA-ICP-MS U-Pb定年及斑晶EPMA研究:对岩石圈演化的启示.中国科学(D辑:地球科学),2008(08):913-929
    [285]Wang L G, Qiu Y M, McNaughton N J, et al. Constraints on crustal evolution and gold metallogeny in the Northeastern Jiaodong Peninsula, China, from SHRIMP U-Pb zircon studies of granitoids. Ore Geology Reviews,1998,13:275-291
    [286]Li J W, Paulo V, Zhou M F. Geochronology of the Pengjiakuang and Rushan Gold Deposits, Eastern Jiaodong Gold Province, Northeastern China:Implications for Regional Mineralization and Geodynamic Setting. Economic Geology,2006,101:1023-1038
    [287]张连昌.胶东地区三类金矿成矿系统地质地球化学及动力学.中国科学院地质与地球物理研究所,2002
    [288]Zhang L C, Shen Y C, Liu T B, et al.40Ar/39Ar and Rb-Sr isochron dating of the gold deposits on northern margin of the Jiaolai Basin, Shandong, China. Science in China (Series D),2003,46(7):708-718
    [289]张振海,张景鑫,叶素芝.胶东金矿同位素年龄的厘定:北京:地震出版社,1994,56
    [290]胡芳芳,范宏瑞,杨进辉等.胶东乳山含金石英脉型金矿的成矿年龄:热液锆石SHRIMP法U-Pb测定.科学通报,2004(12):1191-1198
    [291]李厚民,毛景文,沈远超,等.胶西北东季金矿床钾长石和石英的Ar-Ar年龄及其意义.矿床地质,2003(01):72-77
    [292]李华芹,刘家齐,魏林.热液矿床流体包裹体年代学研究及其地质应用.北京:地质出版社,1993,83-90
    [293]骆万成,伍勤生.应用蚀变矿物测定胶东金矿的成矿年龄.矿产与地质,1987(01):78-82
    [294]李厚民.山东莱州金城金矿床构造-流体成矿特征,北京:中国科学院地质与地球物理研究所,2002,68-69
    [295]Zhang X O, Cawood P A, Wihle S A, et al. Geology and timing of mineralization at the Cangshang gold deposit, north-western Jiaodong Peninsula, China. Mineralium Deposita, 2003,38:141-153
    [296]Li J W, Vasconcelos P M, Zhang J, et al.40Ar/39Ar constraints on a temporal link between gold mineralization, magmatism, and continental margin transtension in the Jiaodong gold province, eastern China. Journal of Geology,2003,111:741-751
    [297]吕古贤,孔庆存.胶东玲珑-焦家式金矿地质[M]:北京:科学出版社,1993.25-53
    [298]杨进辉,周新华,陈立辉.胶东地区破碎带蚀变岩型金矿时代的测定及其地质意义.岩石学报,2000,16(3):454-458
    [299]张德全,徐洪林.山东邓格庄金矿与昆嵛山花岗岩的定位时代及其地质意义.地质论评,1995,41(5):415-425
    [300]杨金中,李光明.胶东中生代两期金矿化作用的对比研究及其意义.地质与勘探,2001(01):33-37
    [301]谢成龙,朱光,牛漫兰,等.郯庐断裂带巢湖-庐江段晚中生代火山岩地球化学特征与岩石圈减薄过程.岩石学报,2008,24(08):1823-1838
    [302]王先美,钟大赉,王雪松,等.沂沭断裂带早白垩世晚期伸展的低温年代学证据.地质科学,2007,42(4):625-638

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700