用户名: 密码: 验证码:
海洋环境钢筋混凝土受弯构件的耐久性与寿命预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今世界各国均面临着海工混凝土耐久性不良的严重问题,政府不得不付出大量的“人力物力财力”来维护或加固工程,造成的经济损失巨大,因此研究海洋环境锈蚀混凝土构件的耐久性评估和寿命预测方法,具有重要的社会意义和工程应用价值。本文以海洋区域环境下腐蚀混凝土和锈蚀混凝土构件为研究对象,通过对我国沿海地区的海工混凝土实地调查分析和耐久性试验研究,重点探讨海洋浪溅区、水下区、潮汐区和盐雾区等混凝土耐久性损伤失效过程及其规律,深入分析海工混凝土的损伤劣化过程与劣化机理,包括氯离子扩散规律,混凝土的相对动弹性模量变化、混凝土损伤劣化等规律,混凝土在海水腐蚀、干湿循环等作用下的耐久性评估,最终建立海洋环境下锈蚀钢筋混凝土构件的耐久性预测模型,研究成果可为海洋混凝土结构工程的安全性和耐久性评估提供较重要的依据,为最终实现海工混凝土结构的耐久性设计奠定基础。本文的主要研究内容与结果如下:
     第一章综述了海工混凝土耐久性与使用寿命预测方法的研究意义和国内外研究动态以及研究进展,指出了当前研究中存在的问题,在此基础上确定了本文的研究方案和研究内容。
     第二章首先针对氯离子对海工混凝土结构的危害,分析了海工混凝土或海工混凝土结构在我国南北方沿海地区的耐久性和服役寿命,然后探索了海工混凝土中钢筋锈蚀的基本条件、机理及其影响因素;最后探讨了海工混凝土在大气区、水下区、盐雾区、潮汐区与浪溅区的劣化机制;从而为建立与使用环境相适应的海工混凝土使用寿命预测模型奠定了基础。
     第三章初步优选了几种掺加矿物掺合料混凝土的配合比,试验研究了普通混凝土、高性能混凝土、矿物掺合料混凝土等的制备方法和基本性能。为了研究混凝土材料和钢筋混凝土构件在海洋水下区、潮汐区、浪溅区、大气区以及浪溅区等海洋区域环境中的耐久性异同,重点设计了海工混凝土耐久性的现场暴露试验和实验室模拟试验,包括:(1)混凝土材料在海洋环境中的暴露试验及室内常温海水浸泡的腐蚀试验;(2)钢筋混凝土构件海洋环境中的暴露试验及室内模拟海洋环境的加速试验。
     第四章模拟海洋水下区、潮汐区、盐雾区和盐雾碳化区,在实验室进行了混凝土材料与钢筋混凝土构件的腐蚀损伤对比试验,并结合现场海洋环境钢筋混凝土构件的非破损检测和对比分析,测定了混凝土的相对动弹性模量和质量损失率,同时观测了试件的外观剥落表征情况,研究了海工混凝土的损伤规律与劣化特性;最后探讨了混凝土材料和混凝土构件的损伤对比。
     第五章主要在现场暴露试验和实验室模拟试验的基础上,分别测定了混凝土试件不同深度的总氯离子浓度和自由氯离子浓度,深入研究了普通混凝土、高性能混凝土、掺矿物掺合料混凝土在海洋大气区、水下区、潮汐区和浪溅区等海洋区域环境中混凝土的Cl-扩散规律,然后针对不同海洋区域环境和不同混凝土种类,探讨了海工混凝土的氯离子扩散特性。
     第六章以锈蚀钢筋混凝土构件为研究对象,根据现场海洋区域环境自然暴露法和实验室加速腐蚀法,对锈蚀后钢筋混凝土构件的弯曲承载能力试验结果和破坏形态进行了详尽的分析与探讨;同时建立了基于海洋区域环境的钢筋锈蚀率的分析模型,讨论了矿物掺合料掺量及混凝土强度对钢筋锈蚀率的影响,给出了钢筋锈蚀率与钢筋表面氯离子含量的关系;最后综合考虑钢筋锈蚀率对混凝土构件中钢筋性能和钢筋与混凝土粘结性能的影响,在现行结构设计规范基础上提出了锈蚀钢筋混凝土构件的抗弯承载力评估模型,并与试验结果进行对比验证,结果表明本文提出的锈蚀钢筋混凝土构件的承载力计算评估模型与试验结果有很好的一致性,证明本文建立的评估模型具有较高的使用价值,可以将该模型应用于实际海洋混凝土结构工程中。
     第七章基于改进的Tuutti模型,分析了海工混凝土结构的破坏过程与使用寿命的定义,研究了基于氯离子侵入的锈蚀海工混凝土构件的2个阶段的使用寿命预测方法,两者相加即为最终的使用寿命。(1)第一阶段:考虑混凝土在海洋Cl-环境使用过程中氯离子扩散系数及其时间依赖性,氯离子结合能力、临界氯离子浓度、混凝土内部初始氯离子浓度和混凝土氯离子扩散性能的劣化效应系数的影响,本文引用了改进的寿命计算模型评估第一阶段寿命。(2)第二阶段:假定寿命为钢筋锈蚀率达到5%经历的时间,这期间因钢筋锈蚀而导致抗弯承载能力下降,致使锈蚀钢筋混凝土的抗弯承载力小于弯矩设计值而失效。当钢筋锈蚀率超过5%时,混凝土与钢筋的粘结力大幅度减少,混凝土结构的耐久性失效,即为海工混凝土第二阶段的耐久性寿命终结标志。最后根据混凝土结构可靠度设计统一标准,初步提出了基于可靠度理论的锈蚀海工混凝土寿命预测模型,并指出可靠度模型的有效性与问题。结果表明,无论是在海洋潮汐区、浪溅区还是水下区中,F20C70混凝土构件的寿命均大于其他混凝土,基本在100a以上。
     第八章归纳了本文的主要工作和结论,提出了进一步研究的建议。
The study of durability evaluation and life prediction method of RC components in marine environments has important social significance and application value. The research object is durability and service life prediction of RC components exposed to marine environments in the thesis. Based on on-the-spot investigation and durability experimental study, durability failure process and its regularity of concretes in marine splash zone, submerged zone, tidal zone and salt-spray zone are discussed. Degradation process and degradation mechanism of marine concretes exposed to seawater are analysis, including chloride ion diffusion law, relative dynamic modulus loss, mass loss. Main contents of each chapter are mentioned as follows:
     In Chaper 1, durability of concrete exposed to marine environments and service life predicting methods were summarinzed and the research progress are reviewed. Problems remaining to be investigated were also proposed, and on the basis of this study research scheme and content are determined.
     According to the widely existence of chloride ion in marine environments and its harm to marine concrete, analysis on the durability and service life of RC structures exposed to southern and northern coastal areas in china has been carried out in Chaper 2. Then the basic conditions, mechanism and influencing factors of rebar corrosion in marine concretes are explored. Finally the basic transmission mechanism and degradation mechanism of marine concrete are mainly discussed. Thus it can lay a foundation for establishing life prediction model of concretes exposed to different marine regional environment.
     In Chaper 3, first preliminarily selected several mineral admixtures mixing proportion of concrete, ordinary concrete, high-performance concrete, and the mineral admixtures concrete methods of preparation and basic properties are briefly introduced. In order to study the durability of the concrete materials and RC components in marine environment, field exposure test and laboratory tests of marine concrete durability and designed, including: (1) field exposure test and indoor temperature soak corrosion test of concrete materials; (2) field exposure test environment and indoor simulation accelerated tests of RC components.
     In Chaper 4, comparative experiments of concrete materials and RC components are conducted in laboratory by simulating marine environments, and combining with non-destructive detection and analysis, the relative dynamic modulus and mass loss rate are determined, and the spalling appearance of specimens are observed. Damage rules and characteristics of marine concrete are investigated. Lastly, the damage relationship of concrete materials and RC components are studied. In Chaper 5, based on field exposure tests and indoor simulation tests, the total and free chloride ion concentrations at different depth of concrete specimens were measured. Chloride ion diffusion law of concretes exposed to marine environments and the relationship are studied. Then according to different marine environments and different concrete types, the concrete chloride diffusion characteristics are probed into.
     In Chaper 6, adopting corroded RC components as research object, the test results of bending bearing capacity and the destruction mode of RC components are analyzed and discussed according to the natural exposure method in field marine environment and the accelerated corrosion in laboratory. Meanwhile, based on marine regional environment, an analytical model of rebar corrosion rate is established, and the influencing of mineral admixture on rebar corrosion rate is discussed, also the relationship between rate corrosion rate and steel surface chlorine ion concentration is given. Finally, considering the influence of rebar corrosion rate on performance of rebar and stick performance of rebar and concrete, the flexural capacity evaluation model of corroded RC components is put forward based on current structure design codes, and the model has clear concept, wide serviceability and more reasonable. Furthermore, the results show that there is a good agreement between measured value and calculated value, which indicates that the evaluation model has high value; it can be applied to reality RC engineerings.
     In Chaper 7, based on the residual life of rust RC structure, analyzes the research status of the damage process of RC are analyed, and the definition of service life are given, then put forward the service life prediction model of two stages. (1)The first stage: On the basis of Khatri’s model, an improved model for calculating service life of marine concrete is proposed. Influencing factors of chloride diffusivity, chloride binding capacity, critical chloride concentration, structural defects are taken into consideration. The result from the improved model is in good agreement with those of Clear’s experimental model. (2)The second stage: definite the bearing capacity drops to certain scope as the end mark of the durability life of corroded RC components. After derived, when rebar corrosion rate from 0 to 5%, t corcan be calculated.
     A summarization of this main work and conclusions was presented in chapter 8. Suggestions for further researches were put forward.
引文
[1] Frédéric D.Reliability of RC beams under chloride-ingress[J].Construction and Building Materials, 2007,21(8):1605-1616.
    [2] Emilio B, Philippe B, Alaa C, et al.Probabilistic lifetime assessment of RC structures under coupled corrosion–fatigue deterioration processes[J].Structural Safety, 2009,31(1):84-96.
    [3] Mehta P K.Concrete durability-fifty year’s progress [A].Proceeding 2nd International Conference on Concrete Durability[C] . American Concrete Institution, ACI SP126-1, 1991:1-33.
    [4] Gj?rv O E, Vennesland ?.Diffusion of chloride ions from seawater into concrete[J].Cement and Concrete Research, 1979, 9(2):229-238.
    [5]童保全,王硕威.浙东沿海水工钢筋混凝土构筑物锈蚀破坏调查[J].水运工程,1985,(11):19-25.
    [6]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999.
    [7]冯乃谦.高性能混凝土[M].北京:中国建筑工业出版社,1996.
    [8] Magae M.,Hennadst.nadcarlsen J.E..暴露于海洋环境的高性能混凝土中的氯化物渗透[A].索默H编,冯乃谦,丁建彤,等译.高性能混凝土的耐久性[M].北京:科学出版社,1998.
    [9]蔡光汀.钢筋混凝土腐蚀机理和防腐措施探讨[J].混凝土,1992,(1):18-24.
    [10] Nishi T.RILEM.Praque,1962.
    [11]阿列克谢耶夫著.黄可信,吴兴祖等译.钢筋混凝土结构中钢筋腐蚀与保护[M].北京:中国建筑工业出版社,1983.
    [12]邸小坛,周燕.混凝土碳化规律的研究.中国建研院结构所,1994.
    [13]许丽萍,黄士元.预测混凝土中碳化的数学模型[J].上海建材学院学报,1991,4(4):347-357.
    [14]朱安民.混凝土碳化与钢筋锈蚀的试验研究.山东省建筑科学研究院,1989.
    [15]赵宏延.一般大气条件下钢筋混凝土构件剩余寿命预测[D].北京:清华大学,1993.
    [16]王晓刚.一般大气条件下在用钢筋混凝土结构构件耐久性评估及剩余寿命预测[D].北京:清华大学,1995.
    [17]牛荻涛,陈亦奇,于澍.混凝土结构的碳化模式与碳化寿命分析[J].西安建筑科技大学学报,1995,27(4):365-369.
    [18]肖从真.混凝土中钢筋腐蚀的机理研究与数论模拟方法[D].北京:清华大学,1995.
    [19]邸小坛,周燕.大气条件下钢筋锈蚀规律的研究.中国建研院结构所,1994.
    [20]牛荻涛,李峰,王庆霖.一般室内环境混凝土锈蚀开裂前钢筋锈蚀量的估计[J].西安建筑科技大学学报,1996,28(2):124-128.
    [21] Powers T C. A Working Hypothersis for Further Studies of Frost Resistance of Concrete,Proceedings of American Concrete Institute, 1945, 41:245-272.
    [22] Powers T C. The Air Requirement of Frost-Resistance Concrete, Proceedings of Highway Research Board,1949,29:184~202.
    [23] Powers T C and Helmuth R A. Theory of Volume Change in Hardened Portland Cement Paste During Freezing, Proceedings of Highway Research Board,1953,32:285~297.
    [24] Powers T C.Freezing Effect in Concrete, ACI SP-47, 1975:1~11.
    [25]谢依金AE等著.胡春芝等译.水泥混凝土的结构与性能[M].北京:中国建筑工业出版社,1984.
    [26]卢木.混凝土耐久性研究现状和研究方向[J].工业建筑,1997,27(5):1-6,52.
    [27]日本清水株氏会社研究所.已有建筑物可靠性鉴定方法和检验手册.1982.
    [28] Chan H Y and Melchers R E.Time-dependent resistance deterioration in probabilistic structural systems[J].Civil Engineering, 1995,12:115-132.
    [29]陈朝辉,卢有杰,刘西拉.服役结构抗震维修决策.现有混凝土结构耐久性评估年度研究报告.清华大学土木系,1995,12.
    [30]蒋之峰,何肇弘选编.钢筋混凝土建筑物劣化诊断技术规程及说明[R].冶金部建筑研究总院建筑技术情报研究室,1987.
    [31] Shigeru Morinagu.Prediction of service lives of reinforced concrete buildings based on rate of corrosion of reinforcing steel.SHIMIZU Corporation,1986.
    [32]王娴明,赵宏延.一般大气条件下钢筋混凝土结构构件剩余寿命的预测[J].建筑结构学报,1996,17(3):58-62 .
    [33] Swamy R N, Hamada H, Laiw J C.A critical evaluation of chloride penetration into concrete in marine environment[A].International Syposium on the Corrosion and Corrosion Protection of Reinforcement[C].Shielfild Uviversity, ed. R N Swamy, 1994.
    [34]许丽萍,吴学礼,黄士元.含氯条件下混凝土使用寿命预测[J].上海建材学院学报,1994,(12).
    [35] Tao Zongwei, Corotis Ross B, Ellis J Hugh.Reliability-based structural design with markov decision processes[J].Journal of Structural Engineering, 1995,121(6) .
    [36] Somerville George.Service life prediction– an overview[J].Concrete International,1992(11).
    [37] Hall C.Barrier performance of concrete: a review of fluid transport theory[J].Materials and Structures, 1994,27:291-306.
    [38] McCarter W J, Ezirim H, Emerson M.Absorption of water and chloride into concrete[J].Materials and Structures, 1992,44:31-37.
    [39] Martys N S, Ferraris C F.Capillary transport in mortars and concrete[J].Cement and Concrete Research, 1997,27(5):747-760.
    [40] Arora P, Popov B N, Haran B, et al.Corrosion initiation time of steel reinforcement in a chloride environment—A one dimensional solution[J] . Corrosion Science, 1997, 39(4):739-759.
    [41] Chatterji S.Transportation of ions through cement based materials. Part 1 fundamentalequations and basic measurement techniques[J].Cement and Concrete Research, 1994, 24(5):907-912.
    [42] Chatterji S.Transportation of ions through cement based materials. Part 2. Adaptation of the fundamental equations and relevant comments [J].Cement and Concrete Research, 1994, 24(6):1010-1014.
    [43] Chatterji S.Transportation of ions through cement based materials. Part 3 experimental evidence for the basic equations and some important deductions [J].Cement and Concrete Research, 1994, 24(7):1229-1236.
    [44] Thomas M.Chloride thresholds in marine concrete[J].Cement and Concrete Research, 1996,26(4):513-519.
    [45] Crank J.The Mathematics of Diffusion[M].2nd edn, Oxford Univ. Press, London, 1975.
    [46] Mangat P S, Limbachiya M C.Effect of initial curing on chloride diffusion in concrete repair materials [J].Cement and Concrete Research, 1999,29(9):1475-1485.
    [47] Nilsson L O, Massat M, TANG L.The effect of non-linear chloride binding on the prediction of chloride penetration into concrete structures[A].In:MALHOTRA V M ed.Durability of Concrete[C].Detroit:American Concrete Institute,ACI SP–145,1994.469-486.
    [48] Stephen L A,Dwayne A J,MattllewA M, et al.Predicting the service life of concrete marine structures: an environmental methodology[J].ACI Structural Journal,1998,95(l):27-36.
    [49] Saetta A V, Scotta R V, Vitalinai R V.Analysis of chloride diffusion into partially saturated concrete [J].ACI Mater.J. 1993,90(47):441-451.
    [50] Clifton J R.Predicting the service life of concrete[J].ACI Materials Journal, 1993, 90(6): 611-617.
    [51] Larry W M.Systematic methodology for service life prediction of building materials and components[J].Materials and structures, 1989, 22:385-392.
    [52] Funahashi M.Predicting corrosion-free service life of a concrete structure in a chloride encironment [J].ACI Materials Journal, 1990,87(6):581-587.
    [53]王恒栋,赵国藩.钢筋混凝土构件的耐久性生存分析[J].港口工程,1995,(2):9-12.
    [54] Cheung M S, Kyle B R.Service life prediction of concrete structures by reliability analysis[J].Construction and building materials,1996,10(1):45-55.
    [55] Prezzi M, Geyskens P.Reliability approach to service life prediction of concrete exposed to marine environments[J].ACI Materials Journal, 1996,93(6):544-552.
    [56] Ahmad, Bhattacharjee, Wason . Experimental service life prediction of rebar-corroded reinforced concrete structure[J].ACI Materials Journal, 1997,94(4):311-316.
    [57] Amey S L, Johnson D A, Farzam H.Predicting the service life of concrete marine structures: an environmental methodology[J].ACI Materials Journal, 1998,95(2):205-214.
    [58] Weyers R E.Service life model for concrete structures in chloride laden environment[J].ACI Journal, 1998,95(4):445-453.
    [59]屈文俊,张誉.侵蚀性环境下混凝土结构耐久寿命预测方法探讨[J].工业建筑,1999,29(4):40-44.
    [60]卢木.基于耐久性评定的钢筋混凝土结构的剩余寿命预测.建筑科学,1999,15(2):23-28.
    [61]夏红霞,宋华珠,钟珞,等.砼抗钢筋锈蚀专家系统[J].武汉工业大学学报,1999,21(4):45-47,66.
    [62]马保国,彭观良,胡曙光.混凝土抗钢筋锈蚀专家系统的研究与应用[J].武汉工业大学学报,2000,22(3):1-3.
    [63]王胜年,潘德强,卫淑珊,等.海工混凝土的长期耐久性研究[J].水运工程,2001,331(8):20-22.
    [64] Anders L.Chloride ingress data from field and laboratory exposure– Influence of salinity and temperature[J].Cement and Concrete Composites, 2007, 29(2): 88-93.
    [65]林宝玉,蔡锐华.海洋工程混凝土和钢筋混凝土耐久性技术指标的确定[J].水运工程,1982,(2):50-54.
    [66]余红发,刘连新,曹敬党,等.东西部氯盐环境中混凝土的耐久性和服役寿命[J].沈阳建筑大学学报(自然科学版),2005,21(2):125-129.
    [67]王东晖.杭州湾大桥混凝土结构防腐方案构思[J].铁道标准设计,2003,(5):38-40.
    [68]庄英豪,单国良,宋人心.八所海港钢筋混凝土铁路矿桥钢筋锈蚀和混凝土破坏的调查.南京水利科学研究院,28-30.
    [69]张燕迟.东南沿海港口已建工程破坏状况调查与分析及有关参数的研究.南京水科院研究成果,1999,10.
    [70]张宝兰,卫淑珊.华南海港钢筋混凝土暴露十年试验[J].水运工程,1999,(3):6-13.
    [71]朱雅仙,朱锡昶,张燕迟.钢筋混凝土耐久性海洋暴露试验[J].海洋工程,2004,22(4):60-66.
    [72]潘德强.我国海港工程混凝土结构耐久性现状及对策[A].陈肇元,钱家茹,谷书娥.工程科技论坛·土木结构工程的安全性与耐久性论文集[C].北京:清华大学出版社,2001.
    [73]陈蔚凡.滨海盐渍地区抗强腐蚀性混凝土的研究与应用[A].阎培渝,姚燕.水泥基复合材料科学与技术[C].北京:中国建材工业出版社,1999,179-183.
    [74]刘启蛟,刘宏新,彭蕙蕙.青岛海湾大桥混凝土耐久性设计方案研究[J].山东交通科技,2008,(2):55-57.
    [75]林宝玉,蔡跃波,单国良.保证和提高我国港工混凝土耐久性措施的研究与实践[A].阎培渝,姚燕.水泥基复合材料科学与技术[C].北京:中国建材工业出版社,1999,16-23.
    [76] Pehta P K, Burrows R W.Building durable structures in the 21th century[J].Concrete International, 2001(3):57-63.
    [77]范宏.混凝土结构中的氯离子侵入与寿命预测[D].西安:西安建筑科技大学,2009.
    [78] Sandberg P.Chloride initiated reinforcement corrosion in marine concrete[R].Report TVBM-1015.PhD thesis,Division of Building Materials,Lund University,1998.
    [79]洪乃丰.混凝土中钢筋腐蚀与防护技术(2)—混凝土对钢筋的保护及钢筋腐蚀的电化学性质[J].工业建筑,1999,29(9):58-61.
    [80]中华人民共和国交通部.JTJ275-2000,海港工程混凝土结构防腐蚀技术规范[S].北京:人民交通出版社,2001.
    [81]钟亚伟,李固华.沿海混凝土耐久性研究综述[J].四川建筑科学研究,2007,33(1):90-95.
    [82]王昌义.粉煤灰混凝土耐久性综述[J].水运工程,1996,(11):1-4.
    [83]张雄,吴科如,韩继红.高性能混凝土矿渣复合掺合料特性与作用机理[J].混凝土与水泥制品,1997,(3):15-19.
    [84]王胜年,潘德强,卫淑珊,等.大掺量粉煤灰高性能混凝土的研究与应用[J].中国港湾建设,1999,(4):20-23.
    [85]罗睿.磨细矿渣高性能混凝土抗氯离子扩散机理研究[D].南京:河海大学,2000.
    [86]曹文涛.混凝土在飞机除冰液中的抗冻性[D].南京:南京航空航天大学,2009.
    [87]中华人民共和国建设部.GB/T 50081-2002,普通混凝土力学性能试验方法标准[S].北京:中国建筑工业出版社,2003.
    [88]中华人民共和国建设部.GB/T50080-2002,普通混凝土拌合物性能试验方法标准[S].北京:中国建筑工业出版社,2003.
    [89]中华人民共和国交通部.JTJ 270-98,水运工程混凝土试验规程[S].北京:人民交通出版社,1999.
    [90]卫军,吴兴昊.对岩土工程中混凝土结构的耐久性问题的探讨[J].岩石力学与工程学报,2002,21(1):140-142.
    [91]刘志勇.基于环境的海工混凝土耐久性试验与寿命预测方法研究[D].南京:东南大学,2006.
    [92] Meira G R, Andrade C, Padaratz I J, et al.Chloride penetration into concrete structures in the marine atmosphere zone– Relationship between deposition of chlorides on the wet candle and chlorides accumulated into concrete[J].Cement and Concrete Composites, 2007, 29(9):667-676.
    [93]余红发.盐湖地区高性能混凝土的耐久性、机理与使用寿命预测方法[D].南京:东南大学,2004.
    [94]陈浩宇,李俊毅,陈蔚凡.矿物掺合料对除冰盐环境下混凝土氯离子扩散中劣化效应系数的影响[J].中国港湾建设,2007,(6):36-38,61.
    [95] Wei Sun, Ru Mu, Xin Luo, et al.Effect of chloride salt, freeze-thaw cycling and externally applied load on the performance of the concrete[J] . Cement and concrete Research, 2002,32(12): 1859-1864.
    [96] W. Sun, Y. M. Zhang, H. D. Yan, et al.Damage and damage resistance of high strength concrete under the action of load and freeze-thaw cycles[J].Cement and concrete Research, 1999, 29(9): 1519-1523.
    [97]余红发,孙伟,张云升,等.在冻融或腐蚀环境下混凝土使用寿命预测方法Ⅰ—损伤演化方程与损伤失效模式[J].硅酸盐学报,2008,36(S1):128-135.
    [98] Jin Zuquan, Sun Wei, Zhang Yunsheng, et al.Interaction between sulfate and chloride solutionattack of concretes with and without fly ash[J].Cement and concrete Research, 2007,37(8): 1223-1232.
    [99]周鹏,余红发,杨礼明.混凝土在MgCl2与Na2SO4复合溶液中的抗腐蚀性[J].华中科技大学学报(城市科学版),2009,26(1):94-97.
    [100] Hong K,Hooton R D.Effects of cyclic chloride exposure on penetration of concrete cover [J].Cement and Concrete Research,1999, 29(9):1379-1386.
    [101] Cengiz D A.Accelerated carbonation and testing concrete made with fly ash[J].Construction and Building Materials,2003,17(3):147-152.
    [102]陈树东,孙伟,张云升,等.粉煤灰混凝土二维、三维碳化深度的预测[J].东南大学学报(自然科学版),2007,37(4):645-650.
    [103] Trocónis de Rincón O, Sánchez M, Millano V, et al.Effect of the marine environment on reinforced concrete durability in Iberoamerican countries: DURACON project/CYTED [J].Corrosion Science, 2007, 49(7): 2832-2843.
    [104] Mehta P K.Studies on chemical resistance of low water/cement ratio concretes [J].Cement and Concrete Research, 1985,15(6): 969-978.
    [105]慕儒.冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测[D].南京:东南大学,2000.
    [106]罗骐先,Bungey J H.用纵波超声换能器测量砼表面波速和动弹性模量[J].水利水运科学研究,1996,(3):264-270.
    [107]白康.水泥混凝土在机场道面除冰液作用下的抗冻性研究[D].南京:南京航空航天大学,2009.
    [108]张云清,余红发,王甲春.盐冻条件下混凝土结构表面的损伤规律研究[J].中国公路学报,2009,22(4):57-63.
    [109]朱宏军,程海丽.特种混凝土和新型混凝土[M].北京:化学工业出版社,2004.
    [110]王胜年,黄君哲,张举连,等.华南海港码头混凝土腐蚀情况的调查与结构耐久性分析[J].水运工程,2000,(6):8-12.
    [111]陈浩宇.混凝土在不同氯盐环境中使用寿命的对比研究[D].沈阳:沈阳建筑大学,2006.
    [112]中国土木工程学会标准.CCES01—2004,混凝土结构耐久性设计与施工指南[S].北京:中国建筑工业出版社,2005.
    [113]田培,姚燕,李建勇,等.高性能混凝土耐久性的综合研究[J].中国建材科技,2001,(6):16-21.
    [114]吴庆令,余红发,王甲春,等.现场海洋区域环境中混凝土的Cl-扩散特性[J].河海大学学报(自然科学版),2009,37(4) :410-414.
    [115]姚燕,王玲,田培,主编.高性能混凝土[M].北京:化学工业出版社,2006:12-45.
    [116] Kassir M K, Ghosn M . Chloride-induced corrosion of reinforced concrete bridge decks[J].Cement and Concrete Research, 2002, 32(1):139-143.
    [117]詹炳根,孙伟,沙建芳,等.碱硅酸反应作用下混凝土中氯离子扩散规律和结合能力[J].东南大学学报(自然科学版),2006,36(6):956-961.
    [118]冯乃谦,邢锋.混凝土与混凝土结构的耐久性[M].北京:机械工业出版社,2009.
    [119] Khatib J M,Mangat P S.Influence of high-temperature and low-humidity curing on chloride penetration in blended cement concrete[J].Cement and Concrete Research,2002,32(11):1743-1753.
    [120] Li Chun-qing.Initiation of chloride-induced reinforcement corrosion in concrete structural members-experimentation[J].ACI Structural Journal,2001,98(4):502-510.
    [121]张奕.氯离子在混凝土中的输运机理研究[D].杭州:浙江大学,2008.
    [122] Polder R B, Peelen W H A.Characterisation of chloride transport and reinforcement corrosion in concrete under cyclic wetting and drying by electrical resistivity[J].Cement and Concrete Composites, 2002, 24(5):427-435.
    [123]潘德强,洪定海.华南海港钢筋混凝土码头锈蚀破坏调查报告.
    [124] McGee R.Modelling of durability performance of Tasmanian bridges, 1999.
    [125] Thomas M D A and Bentz E C.Life-365:Computer program for predicting the service life and life-cycle costs of reinforced concrete exposed to chlorides.2001,12.
    [126] Martín-Pérez B, Zibara H, Hooton R D, et al.A study of the effect of chloride binding on service life predictions [J].Cement and Concrete Research, 2000, 30(8):1215-1223.
    [127] Mohammed T U,Hamada H.Relationship between free chloride and total chloride contents in concrete [J].Cement and Concrete Research, 2003, 33(9):1487-1490.
    [128] Qiang Yuan, Caijun Shi, Geert De Schutter, et al.Chloride binding of cement-based materials subjected to external chloride environment– A review[J].Construction and Building Materials, 2009, 23(1):1-13.
    [129] Dhir R K, EI-Mohr M A K, Dyer T D.Chloride binding in GGBS concrete [J].Cement and Concrete Research, 1996, 26(12):1767-1773.
    [130] Zibara H, Hooton R D, Thomas M D A, et al.Influence of the C/S and C/A ratios of hydration products on the chloride ion binding capacity of lime-SF and lime-MK mixtures[J].Cement and Concrete Research, 2008,38(3):422-426.
    [131] Anik D, Jacques M, Jean-Pierre O, et al.Chloride binding capacity of various hydrated cement paste systems[J].Advanced Cement Based Materials, 1997,6(1): 28-35.
    [132]余红发,翁智财,孙伟,等.矿渣掺量对混凝土氯离子结合能力的影响[J].硅酸盐学报,2007,35(6):801-806.
    [133]胡蝶,麻海燕,余红发,等.矿物掺合料对混凝土氯离子结合能力的影响[J].硅酸盐学报,2009,37(1):129-134.
    [134]金祖权,孙伟,张云升,等.双因素作用下混凝土对氯离子结合能力研究[J].混凝土与水泥制品,2004,(6):1-3.
    [135]王新友,李宗津.混凝土使用寿命预测的研究进展[J].建筑材料学报,1999,2(3):249-256.
    [136] Wee T H, Wong S F, Swaddiwudhipong S, et al.A prediction method for long-term chloride concentration profile in hardened cement matrix materials [J].ACI Materials Journal, 1997, 94(6):564-576.
    [137] Birnin-Yauri U A, Glasser F P.Friedels salt, Ca2Al(OH)6(Cl, OH)·H2O: its solid solution and their role in chloride binding[J].Cement and Concrete Research, 1998,28(12): 1713-1724.
    [138] Tritthart J.Chloride binding in cement II:the influence of the hydroxide concentration in the pore solution of hardened cementpaste on chloride binding[J].Cement and Concrete Research, 1989,19(5): 683-691.
    [139] Hussain S E, Rasheeduzzafar S E, Al-Musallam A, et al.Factors affecting threshold chloride for reinforcement corrosion in concrete [J].Cement and Concrete Research, 1995,25(7): 1543-1555.
    [140]赵羽习,金伟良.混凝土构件锈蚀胀裂时的钢筋锈蚀率[J].水利学报,2004,(11):97-101.
    [141]何世钦.氯离子环境下钢筋混凝土构件耐久性能试验研究[D].大连:大连理工大学,2004.
    [142] Paramasivam P, Lim C T E, Gong K C.Strengthening of RC beams with ferroceent laminates[J].Cement and Concrete Research, 1998,28(20): 53-65.
    [143]中华人民共和国建设部.GB50152-92,混凝土结构试验方法标准[S].北京:中国建筑工业出版社,1992.
    [144]金伟良,陈驹,吴金海,等.海洋环境侵蚀作用下混凝土构件抗弯性能试验研究[J].浙江大学学报(工学版),2004,38(5):603-609.
    [145]韩继云,蔡鲁生.钢筋混凝土构件中钢筋锈蚀实验研究[R].北京:中国建筑科学研究院,1991.
    [146]李自超.锈蚀钢筋混凝土构件性能退化及承载力研究[D].上海:同济大学,2006.
    [147]金伟良,赵羽习,鄢飞.钢筋混凝土构件的均匀锈胀力的机理研究[J].水利学报,2001,(7):57-62.
    [148]张伟平.混凝土结构的钢筋锈蚀率损伤预测及其耐久性评估[D].上海:同济大学,1999.
    [149] Andrade C, Alonso C, Molina F J.Cover cracking as a function of bar corrosion:part 1-Experimental test[J].Materials and Structures,1993,26(162):453-464.
    [150] Molina F J, Alonso C, Andrade C.Cover cracking as a function of bar corrosion:part 2-Numberical model[J].Materials and Structures,1993,26(163):535-548.
    [151] Alonso C, Andrade C, Rodriguez J, et al.Factors controlling cracking of concrete affected by reinforcement corrosion[J].Materials and Structures,1998,31:435-441.
    [152]屈文俊,张誉,张伟平.混凝土胀裂时钢筋锈蚀量的确定[J].工程力学,1997,(增刊):12-16.
    [153]鄢飞.大气环境下混凝土构件耐久性的若干问题研究[D].杭州:浙江大学,1999.
    [154] Liu Y P, Weyers R E.Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures[J].ACI Materials Journal,1998,95(6):675-681.
    [155]邸小坛,周燕.旧建筑物的鉴定、加固与维修[M].北京:地震出版社,1991.
    [156] Tng S C, Nowak AS.Effect of reinforcing steel area loss on flexural behavior of reinforced concrete beams[J].ACI Structural Journal,1991,88(3):309-314.
    [157] Cabrera J G, Ghoddoussi P.The effect of reinforcement corrosion on the strength of the steel/concrete“bond”[C] . Proceeding on International Conference“Bond inConcrete”.Latvia,1992,11-24.
    [158] Du Y G,Clark L A,Chan A H C.Residual capacity of corroded reinforcing bars[J].Magazine of Concrete Research,2005,57(3):135-147.
    [159]张平生,卢梅,李晓燕.锈损钢筋的力学性能[J].工业建筑,1995,25(9):41-44.
    [160]范颖芳,周晶.考虑蚀坑影响的锈蚀钢筋力学性能研究[J].建筑材料学报,2003,6(3):248-252.
    [161] Andrade C,Alonso C,Molina F J.Cover cracking as a function of rebar corrosion: PartⅡ- Numerical mode [J].Materials and Structures,1993, 26(9):532-548.
    [162]马良喆,陈慧娟,白?伲纸钚馐春罅ρ阅艿氖匝檠芯縖J].施工技术,2000,29(12):43-46.
    [163] Maslehuddin M,Allam I A,Al-Sulainmani G J,et al.Effect of rusting of reinforcing steel on its mechanical properties and bond with concrete [J].Materials Journal,1990,87(5):496-502.
    [164] Park R,Paulay T.高等钢筋混凝土[M].秦文钱,等译.重庆:重庆大学出版社,1985.
    [165]惠云玲.混凝土结构中钢筋锈蚀程度评估和预测试验研究[J].工业建筑,1997,(6):6-9.
    [166]牛荻涛,卢梅,王庆霖.锈蚀钢筋混凝土构件正截面受弯承载力计算方法研究[J].建筑结构,2002,32(10):14-17.
    [167]金伟良,夏普,王伟力.锈蚀钢筋混凝土桥梁力学性能研究综述(Ⅰ)[J].长沙理工大学学报(自然科学版),2007,4(2):1-12.
    [168]张喜德,韦树英,彭修宁.钢筋锈蚀对混凝土抗压强度影响的试验研究[J].工业建筑,2003,33(3):5-7.
    [169] Higgins C,Farrow Iii W C.Tests of reinforced concrete beams with corrosion damaged stirrups [J].ACI Structural Journal,2006,103(1):133-141.
    [170]张喜德,蓝文武,韦树英,等.钢筋混凝土受弯构件受压区钢筋锈蚀影响的试验研究[J].工业建筑,2005,35(7):46-49.
    [171] Capozucca R M,Nilde Cerri.Influence of reinforcement corrosion in the compressive zone on the behaviour of RC beams[J].Engineering Structures,2003,25(13):1575-1583.
    [172]潘仁泉,倪国荣,金伟良.基于氯离子侵入引起的锈蚀钢筋混凝土构件抗力的研究[J].房材与应用,2005,33(4):14-17.
    [173]赵羽习,金伟良.锈蚀钢筋与混凝土粘结性能的试验研究[J].浙江大学学报(工学版),2002,36(4):352-356.
    [174]赵羽习,金伟良.钢筋与混凝土粘结本构关系的试验研究[J].建筑结构学报,2002,23(1):32-37.
    [175]中华人民共和国建设部.GB 50010-2002,混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [176]孙彬,牛荻涛,王庆霖.锈蚀钢筋混凝土梁抗弯承载力计算方法[J].土木工程学报,2008,41(11):1-6.
    [177]张建仁,张克波,彭晖,等.锈蚀钢筋混凝土矩形梁正截面抗弯承载力计算方法[J].中国公路学报,2009,22(3):45-51.
    [178]牛荻涛,翟彬,王林科,等.锈蚀钢筋混凝土梁的承载力分析[J].建筑结构,1999,29(8):23-25.
    [179]袁迎曙,余索.锈蚀钢筋混凝土梁的结构性能退化[J].建筑结构学报,1997,18(4):51-57.
    [180]任宝双,钱稼茹,聂建国.在用钢筋混凝土简支桥面梁受弯承载力估算[J].工业建筑,2000,30(11):29-33.
    [181]赵羽习.钢筋混凝土结构黏结性能和耐久性的研究[D].杭州:浙江大学,2001.
    [182] Maage M, Helland S.Service life prediction of existing concrete structure exposed to marine environment [J].ACI Materials J, 1996,93(6):602-608.
    [183] Hookham C J.Service life prediction of concrete structure-case histories and research needs [J].Concrete International, 1992,14(11): 50-53.
    [184]关宇刚,孙伟,缪昌文.基于可靠度与损伤理论的混凝土寿命预测模型Ⅰ:模型阐述与建立[J].硅酸盐学报,2001,29(6):509-513.
    [185]关宇刚,孙伟,缪昌文.基于可靠度与损伤理论的混凝土寿命预测模型Ⅱ:模型验证和应用[J].硅酸盐学报,2001,29(6):514-519.
    [186]燕坤.多重因素作用下碳化混凝土的抗冻性[D].南京:南京航空航天大学,2007.
    [187] Tuutti K.Corrosion of steel in concrete[R].Stockholm : Swedish Cement and Concrete Institute, 1982, (4):469-478.
    [188]黄士元.按服务年限设计混凝土的方法[J].混凝土,1994,(6):24-32.
    [189] Somerville G.The design life of concrete structures[J].The Struct.Eng., 1986, 64A(2):60-71.
    [190]刘西拉,苗澍柯.混凝土结构中的钢筋腐蚀及其耐久性计算[J].土木工程学报,1990,23(4):69-78.
    [191]惠云玲.混凝土结构钢筋锈蚀耐久性损伤评估及寿命预测方法[J].工业建筑,1997,27(6):19-22.
    [192]马亚丽,张爱林.混凝土结构钢筋初锈时间的概率模型[J].水利学报,2007,(5):630-636.
    [193] Khatri R P, Sirivivatnanon V.Characteristic service life for concrete exposed to marine environments[J].Cement and Concrete Research, 2004,(34): 745-752.
    [194]余红发,孙伟,鄢良慧,等.混凝土使用寿命预测方法的研究I—理论模型[J].硅酸盐学报,2002,30(6): 686-690.
    [195]余红发,孙伟,麻海燕,等.混凝土使用寿命预测方法的研究Ⅲ—混凝土使用寿命的影响因素及混凝土寿命评价[J].硅酸盐学报,2002,30(6):696-701.
    [196] Pigeon M, Garnier F, Pleau R, et al.Influence of drying on the chloride ion permeability of HPC [J].Concrete International, 1993, 15(2): 65-69.
    [197] Enright M P, Frangopol D P.Probabilistic analysis of resistance degradation of reinforced concrete bridge beams under corrosion[J].Eng Struc, 1998, 20 (11) : 960-971.
    [198]中华人民共和国建设部.GB50068-2001,建筑结构可靠度设计统一标准[S].北京:中国建筑工业出版社,2001.
    [199]吴世伟编著.结构可靠度分析[M].北京:人民交通出版社,1990.
    [200]贺国芳,徐海宝.可靠性数据的收集与分析[M].北京:国防工业出版社,1995.
    [201]中华人民共和国住建部.GB/T 50476-2008,混凝土结构耐久性设计规范[S].北京:中国建筑工业出版社,2008.
    [202]刘闯,刘西拉.基于结构体系可靠性的现有结构安全性等级划分[J].四川建筑科学研究,1994,(2):29-34.
    [203]马亚丽,张爱林.基于规定可靠指标的混凝土结构氯离子侵蚀耐久寿命预测[J].土木工程学报,2006,39(2):36-41.
    [204]张爱林,赵国藩,王光远.现役结构模糊动态可靠度评估实用方法[J].应用基础与工程科学学报,1998,6(1)83 - 90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700