用户名: 密码: 验证码:
KNN基无铅压电陶瓷的改性与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结合BF(BM)的铁电性与LS的取代改性等综合特性,以传统的陶瓷烧结技术为制备手段,对KNN-LS-BF与KNN-LS-BM两个体系的成分、结构、相变、烧结工艺与压电、介电性能间的关系进行了系统研究。主要研究内容和创新之处如下:
     系统研究了(1-x)KNN-xBF陶瓷的成分与结构、显微组织、压电介电性能的关系,结果表明:陶瓷的准同型相界成分范围为:0.01≤x≤0.02。当x=0.008时,KNN-BF陶瓷具有最好的电性能:d33=125pC/N,kp=40%,Tc=405℃,To-t=185℃,εr=432,tanδ=2.93%。系统研究了烧结温度与保温时间对陶瓷的晶体结构与相转变、组织形貌、致密度及压电、介电性能的影响。结果表明,样品在1150℃保温2h烧结时表现较好的性能:ρ=4.50 g.cm-3,εr=513.86,d33=132 pC/N, kp=45%,Qm=333.73,tanδ=2.39%。
     对比研究了氧化铝和氧化锆板承烧的(1-x)(0.95KNN-0.05LS)-xBF陶瓷的掺杂量、相结构、相转变、显微组织与压电介电性能。结果表明:采用氧化锆板承烧的陶瓷的压电性能明显高于氧化铝板承烧的,而后者的Tc则高于前者;并指出,承烧板中的元素有无扩散到陶瓷中是引起两者结构与性能差别的主要机制。另外,还指出:Al元素的引入可以明显提高陶瓷的居里温度。系统研究了该体系陶瓷的成分、烧结温度与时间、相结构、相转变、显微组织及压电介电性能的关系。随着BF含量的增加,陶瓷的相结构从正交与四方相共混结构转变为四方结构,转变起始点在x=0.004时。当BF含量为0.4at.%、在1100℃烧结3h时,陶瓷有较好的性能:d33=272pC/N,kp=53%,Tc=345℃,εr=1103,tanδ=1.89%。
     系统研究了(0.996-y)KNN-0.004BF-yLS陶瓷的成分、烧结温度、相结构、相转变、显微组织及压电介电性能的关系。表明:陶瓷的准同型相界的成分范围为:0.02≤y≤0.04。随着LS含量的增加,d33和kp均先增加后减小;εr先显著升高后略有下降;tanδ降低后略有回升;To-t和Tc均向低温方向移动。随烧结温度的升高,压电性能先显著提高后降低,但Tc峰先向高温区移动后向低温区方向略有偏移,当烧结温度为1100℃时,陶瓷有最好的压电性能,d33=297pC/N,kp54%。未掺杂与BF掺杂的KNN-LS陶瓷的均有较高的退极化温度,但掺杂后陶瓷的退极化温度低于未掺杂陶瓷。BF掺杂KNN-LS陶瓷具有明显的热滞现象,热滞温区为310-380℃,对应陶瓷四方相与立方相共存的温区。
     系统研究了(1-x(0.95KNN-0.05LS)-xM陶瓷的成分、相结构、相转变、显微组织及压电介电性能的关系。在0≤x≤0.008范围内,室温下陶瓷具有正交相与四方相混合结构;当x=0.01时,陶瓷的结构开始具有趋于向四方相结构转变的结构特征。随BM含量的增加,陶瓷的d33和kp先增加后降低,介电损耗则先降低后略有回升,Tc先向高温区移动然后又回落,当x=0.004时,d333和kp同时达到最大值:213pC/N和0.408;tanδ达最低,为2.6%;Tc=370℃。
     系统研究了(0.996-y)KNN-0.004BM-yLS陶瓷的成分、烧结温度、相结构、相转变、显微组织及压电介电性能的关系。表明:陶瓷的准同型相界的成分范围为:0.03≤y≤0.05。随着LS含量的增加,陶瓷的d33和kp均先增加后减小,当x=0.05时,均达到最大值,分别为230pC/N和0.42;陶瓷的Tc向低温方向移动。
     对比研究了BF与BM在KNN-LS陶瓷中的作用。研究表明,两者对KNN、LS陶瓷的晶体结构、相变、组织结构与压电介电性能影响既有相似之处也存在明显的差别。与BM相比,BF对KNN-LS陶瓷的压电性能的促进作用更加明显。另外,也对LS与BF(BM)对KNN陶瓷的影响进行了比较研究,表明,LS在KNN陶瓷中的作用占主导地位。首次对KNN-LS-BF(BM)陶瓷的阻抗特性研究表明,BF掺杂KNN陶瓷使陶瓷呈现“硬”掺杂特性,而LS掺杂KNN和KNN-BM(BF)使陶瓷呈现“软”掺杂特性。
Based on the ferroelectricity and high Curie temperature of the perovskite-type BiFeO3 (BF) and BiMnO3 (BM), and the substitute modifying effect of LiSbO3, the relationship among the composition, structure, phase transition, sintering process, piezoelectric and dielectric properties of KNN-LS-BF(BM) ceramic systems, which were prepared by using the traditional ceramic sintering process, was studied systematically. Several important conclusions can be summarized as follows:
     The relation between composition and crystalline structure, microstructure, piezoelectric properties, dielectric properties of (1-x)KNN-xBF system ceramics was systemically investigated. It was found that the morphotropic phase boundary(MPB) with orthorhombic and tetragonal co-existence crystalline structure for the ceramics lies in the range of x=0.01-0.02. The best piezoelectric properties of d33= 125 pC/N, kp=40%, Tc=405℃, To-t=185℃,εr= 432, tanδ= 2.93% were obtained at x= 0.008 which is near the MPB composition. The effects of sintering temperature and holding time on the microstructure, phase transition, density and piezoelectric properties of BF doped KNN ceramics were investigated. The 0.8at.% BF-doped KNN ceramics sintered at 1150℃for 2h exhibit excellent properties of p= 4.50 g.cm-3, d33= 132 pC/N, kp= 45%, Qm= 333.73 and tanδ= 2.39%.
     Studied on comparing the doping content, phase structure, phase transition, microstructure, piezoelectric and dielectric properties of (1-x)(0.95KNN-0.05LS)-xBF ceramics sintered on zirconia and alumina setter plate. Results showed that the piezoelectric properties of the ceramics sintered on the zirconia setter plate were higher than that of the ceramics sintered on the alumina setter plate. It was pointed out that the mechanism of this difference should attribute to whether the elements in the setter plate diffuse into (1-x)(0.95KNN-0.05LS)-xBF ceramics or not. What's more, the results also showed that the addition of Al element was useful for the enhance of the Curie temperature (Tc) of (1-x)(0.95KNN-0.05LS)-xBF ceramics. The relation between composition and crystalline structure, microstructure, piezoelectric properties, dielectric properties of (1-x)(0.95KNN-0.05LS)-xBF system ceramics was also systemically investigated. With increasing the content of BF, the phase structure of the ceramic changed from the co-existence phase structure including the orthorhombic and tetragonal phase to a single tetragonal phase, and the transition point was at x= 0.004. When the content of BF is 0.4at.%, the ceramics sintered at 1100℃for 3h showed good electrical properties:d33= 272 pC/N, kp= 53%, Tc= 345℃,εr= 1103, tanδ=1.89%.
     The relation between composition and crystalline structure, microstructure, piezoelectric properties, dielectric properties of (0.996-y) KNN-0.004BF-yLS system ceramics was also systemically studied. It was found that the MPB for the ceramics lies in the range of 0.02≤y≤0.04. With increasing the content of LS, the d33, kp andεr of the ceramics firstly increased and then decreased, while the tanδfirstly decreased and then increased. At the same time, both of To-t and Tc of the ceramics shifted to the low temperature with the increasing of LS content. The effects of sintering temperature on the microstructure, phase transition, density and piezoelectric properties of (0.996-y) KNN-0.004BF-yLS ceramics were also investigated. With increasing the sintering temperature, the piezoelectric properties of the ceramics firstly increased and then decreased, while the Tc firstly increased and then decreased. The ceramics sintered at 1100℃had the best piezoelectric properties: d33=297pC/N, kp=54%. BiFeO3 doped and undoped KNN-LS ceramics had a higher depolarizing temperature. The depolarizing temperature of the doped and undoped KNN-LS ceramics was 370 and 390℃, respectively. BiFeO3 doped KNN-LS ceramic show a dielectric constant-temperature behavior with a thermal hysteresis upon heating/cooling from 310-380℃which was corresponding to the temperature range of the mixed phase between tetragonal and cubic phases.
     The relation between composition and crystalline structure, microstructure, piezoelectric properties, dielectric properties of (1-x)(0.95KNN-0.05LS)-xBM system ceramics was systemically investigated. It was found that the MPB for the ceramics lies in the range of 0≤x≤0.008. When x= 0.01, the structure of the ceramics started to change from the co-existence structure to the tetragonal phase structure. With increasing the content of BM, the d33 and kp of the ceramics firstly increased and then decreased, while the tanδfirstly decreased and then increased. At the same time, Tc of the ceramics firstly increased and then decreased. The best piezoelectric properties of d33=213pC/N, kp= 40.8%, Tc= 370℃, tanδ= 2.6% were obtained at x= 0.004.
     The relation between composition, phase structure, phase transition, microstructure, piezoelectric properties and dielectric properties of (0.996-y) KNN-0.004BM-yLS system ceramics was also systemically studied. It was found that the MPB for the ceramics lies in the range of 0.03≤y≤0.05. With increasing the content of LS, the d33 and kp of the ceramics firstly increased and then decreased, while Tc of the ceramics shifted to the low temperature. The ceramics at x= 0.05 had the best piezoelectric properties:d33=230 pC/N,kp=42%.
     The mechanisms of BF(BM) in the KNN-LS ceramics were studied by contrast. The results showed that on the one hand, the effect of BF on the crystalline structure, phase transition, microstructure, piezoelectric and dielectric properties was similar with that of BM, and was differ from that of BM on the other hand. Comparing with BM-doping, the improving effect of BF-doping on the piezoelectric properties of KNN-LS ceramics was greater. The mechanisms of LS and BF(BM) in the pure KNN ceramics were also studied by contrast. The results showed that the effect of LS on KNN-LS-BF(BM) ceramics occupied the leading position. Studying on the frequency dependence of the impedance and phase angle for the ceramics showed that BF doped KNN ceramics showed the "hard" characteristics, while the LS doped KNN and KNN-BF(BM) ceramics showed "soft" characteristics.
引文
[1]肖定全,万征.环境协调型压电铁电陶瓷.压电与声光,1999,21(5):363-366
    [2]张耕夫.关于我国压电陶瓷元器件机械化生产的思考.电子元件与材料,2001,20(2):26-27
    [3]张传忠.压电材料的发展及应用.压电与声光,1993,15(3):64-70
    [4]Chang K T, Chiang H C, Lee C W. Design and implementation of a piezoelectric clutch mechanism using piezoelectric buzzers. Sensors and Actuators A: Physical,2008,141(2):515-522
    [5]肖定全.关于无铅压电陶瓷及其应用的几个问题.电子元件与材料,2004,23(11):1-4
    [6]程院莲,鲍鸿,李军,等.压电陶瓷应用研究进展.中国测试技术,2005,31(2):12-14
    [7]刘宝棠,江俊勤,何宝鹏.压电陶瓷及其应用.大学物理,1995,14(8):35-38
    [8]Jaffe B, Roth R S, Marzullo. Piezoelectric properties of lead zirconate-lead titanate solid-solution cramics. J Appl Phys,1954,25:809-810
    [9]Jaffe B, Roth R S, Marzullo S. Piezoelectric properties of piezoelectric ceramics in the solid-solution series lead titanate lead zirconate-lead oxides:tin oxide and lead titanate-lead hafnate. J Res Nal Bur Standars,1955,55:239-254
    [10]Ringgaard E, Wurlitzer T. Lead-free piezoceramics based on alkali niobates. J Euro Ceram Soc,2005,25:2701-2706
    [11]Takenaka T, Nagata H, Hiruma Y. Current developments and prospective of lead-free piezoelectric ceramics. Jpn J Appl Phys,2008,47(5):3787-3801
    [12]肖定全,赁敦敏,朱建国,等.Bi0.5Na0.5TiO3基A位多重复合无铅压电陶瓷的研制.高技术通讯,2005,15(5):54-57
    [13]唐福生.K0.5Na0.5NbO3-LiNbO3无铅压电陶瓷的制备及性能研究:[硕士学位论文].陕西:西北工业大学,2007
    [14]陈琳.NKN基无铅压电陶瓷的制备与性能研究:[硕士学位论文].四川:四川大学,2007
    [15]Nader M H. Lead-free piezoelectric ceramics and transducers in potassium sodium niobate-solid solution system:[Degree dissertation of Doctor]. New Jersey: The State University of New Jersey,2007
    [16]Wanda W W. Application driven industrial development of piezoceramics. J Euro Cerm Soc,2005,25:1971-1976
    [17]郝俊杰,李龙土,王晓慧,等.无铅压电陶瓷材料研究现状.硅酸盐学报,2004,32(2):189-195
    [18]陈敏,肖定全,孙勇,等.钛酸铋钠基无铅压电陶瓷研究近期进展.功能材料,2007,38(8):1229-1233
    [19]赁敦敏,肖定全,朱建国,等.无铅压电陶瓷研究开发进展.压电与声光,2003,25(2):127-132
    [20]杨群保,荆学珍,李永祥,等.无铅压电陶瓷研究的新进展.电子元件与材料,2004,23(11):56-65
    [21]Takenaka T, Nagata H.Current status and prospects of lead-free piezoelectric ceramics. J Euro Ceram Soc,2005, (25):2693-2700
    [22]李月明.Bi0.5Na0.5TiO3基无铅压电陶瓷的制备、结构与电性能研究:[博士学位论文].湖北:武汉理工大学,2004
    [23]Neirman S M. The curie point temperature of Ba(Ti1-xZrx)O3 solid solutions. J Mater Sci,1988,23 (20):3973-3980
    [24]Ravez J, Simon A. Relaxor ferroelectricity in ceramics with composition. Mater Lett,1998,36 (1):81-84
    [25]周昌荣.无铅压电陶瓷BNT-BKT-BiMeO3(Me=Fe、Cr、Co)电性能及机理研究:[博士学位论文].湖南:中南大学,2008
    [26]Ravez J, Simon A. Non-stoichiometric perovskite derived from BaTiO3 with a ferroelectric relaxor behaviour. Phys Stat Sol,2000,178:793-797
    [27]孟丽林.Bax(Na0.5Bi0.5)1-xTiO3无铅压电陶瓷体系研究:[硕士学位论文].四川:四川大学,2002
    [28]Satenskii G. A, Isupov V A, Agranovskaya A I, et al. New ferroelectrics of complex composition. Sov Phys Sloid State,1961,2:2651-2654
    [29]Kreisel J, Glazer A M, Jones G, et al. X-ray diffraction and Raman spectroscopy investigation of A-site substitude perovskite compounds:the (Na1-xKx)0.5TiO3 (0≤x≤1)solid solution. J Phys Condens Matter,2000,12:3267-3270
    [30]Kreisel J, Glazer A M. Estimation of the compressibility of Nao.5Bio.5Ti03 and related perovskite type titanates. J Phys Condens Matter,2000,12:9689-9698
    [31]Zvirgzds J A, Kaposting P P, Zvirgzde J V. X-ray study of phase transitions in ferroelectrics Bi1/2Na1/2TiO3. Ferroelectrics,1982,40:75-77
    [32]Suchanicz J, Poprawski R, Maryjasik S. Some properties of Bi1/2Na1/2TiO3. Ferroelectrics,1997,192:329-333
    [33]Suchanicz J. Behaviour of Bi1/2Na1/2TiO3 ceramics in the AC electric field. Ferroelectrics,1998,209:561-568
    [34]魏敏先,黄新友,高春华,等.NBT-KBT-BT三元系无铅压电陶瓷的研究.压电与声光,2008,30(5):608-610
    [35]陈志武.BNT-BT和BNT-BKT基无铅压电陶瓷研究进展.材料导报,2006,20(1):16-18
    [36]Takenaka T, Huzurmi A, Hata T, et al. Mechanical propertics of (BiNa)0.5TiO3-based piezoelectric ceramics. Silic Ind,1993,7(8):136-142
    [37]Takenaka T, Sakatak, T. Piezoelectric properties of (BiNa)0.5TiO3-based piezoelectric ceramics. Ferroelectrics,1990,106:375-380
    [38]Takenaka T, Okuda T, Takegabara K. Lead-free piezoelectric ceramics bascd on (BiNa)1/2TiO3-NaNbO3. Ferroelectrics,1997,196:175-178
    [39]Takenaka T, Maruyama K, Sakata K. (NaBi)o.5Ti03-BaTi03 system for lead-free piezoelectric ceramics. Jpn J Appl Phys,1991,30(9):2236-2239
    [40]Wang XX, Tang X G, Chan H L W. Piezoelectric and dielectric properties of CeO2-added (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics. Solid State Commu,2003, 125(7-8):395-390
    [41]Wang X X, Tang X G, Chan H L W. Electromechanical and ferroelectric properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics. Appl Phys Lett,2004,85(1):91-93
    [42]黄新友,魏敏先,陈志刚,等.Ce02掺杂对NBT-KBT-BT无铅压电陶瓷性能的影响.人工晶体学报,2008,37(6):1489-1523
    [43]陈文,李月明,周静,等.(1-3x)NBT-2xKBT-xBT系无铅压电陶瓷性能研究.电子元件与材料,2004,23(11):24-27
    [44]赁敦敏,肖定全,朱建国,等.Bi0.5(Na1-x-yKxLiy)0.5TiO3陶瓷的介电性能与微观结构.电子元件与材料,2004,23(11):22-27
    [45]Chu B J, Chen D R, Li G R, et al. Electrical properties of Ba1/2Bi1/2TiO3-BaTiO3 ceramics. J Euro Ceram Soc,2002,22:2115-2121
    [46]Li H D, Feng C D, Yao W L. Some effects of different additives on dielectric and piezoelectric properties of (Bi1/2Na1/2)TiO3-BaTiO3 mor-photropic phase boundary composition. Mater Lett,2004,58(7-8):1194-1198
    [47]赵明磊,王春雷,钟维烈,等.钛酸铋钠系铁电体的相变研究.物理学报,2002,51(8):1856-1859
    [48]Aurivillus B. Ferroelecreic versus relaxor behaviour in Na0.5Bi4.5Ti4O15 solid solutions. Ark Kemi,1949,1:463-467
    [49]Frit B, Mercurio J P. The crystal chemistry and dielectric properties of the aurivillius family of complex bismuth oxide with perovsike-like layered structures. J Alloy Compd,1992,188:27-53
    [50]赁敦敏,肖定全,朱建国,等.铋层状结构无铅压电陶瓷的研究与进展—无铅压电陶瓷20年发明专利分析之三.功能材料,2003,34(5):479-481
    [51]Takeychi T, Toshihiko T. Piezoelectric properties of bismuth layer structured ferroelectric ceramics with a preferred orientation processed by the reactive templated grain growth method. Jpn J Appl Phys.1999,389B:5553-5556
    [52]赁敦敏,肖定全,朱建国,等.BNT基无铅压电陶瓷的研究与进展-无铅压电陶瓷20年发明专利分析之二.功能材料,2003,(34)4:368-371
    [53]肖定全,赁敦敏,朱建国,等.新型无铅压电陶瓷的研制.电子元件与材料,2004,23(11):13-15
    [54]Matthias B T. New ferroelectric crystals. Physical Review,1949, 75(11):1771
    [55]Kakimoto K, Masuda I, Ohsato H. Lead-free KNbO3 piezoceramics synthesized by pressure-less sintering. J Euro Ceram Soc,2005,25:2719-2722
    [56]Tashiro S, Nagamatsu H, Nagata K. Sintereabiltiy and piezoelectric properties of KNbO3 ceramics after substituting Pb2+ and Na+ for K+. Jpn J Appl Phys, 2002,41:7113-7118
    [57]Vousden P. A study of unit cell dimensions and symmetry of certain perroelectric compounds of niobium and tantalum at room temperature. Acta Crystallographic,1951,4:545
    [58]Geguzine G A, Reznitchenko L A. Atomic substitution effects in binary solid solution systems based upon NaNbO3. Ferroelectrics,1998,214:261-271
    [59]Reznitchenko L A, Dergu Nova N V. New binary system of solid solutions based on NaNbO3. Ferroelectrics,1998,214(3-4):241-254
    [60]赁敦敏,肖定全,朱建国,等.LiNbO3基无铅压电陶瓷的研究与进展.2004,35(1):18-20
    [61]Cross L E. Electric double hysteresis in (KxNa1-x)NbO3 single crystals. Nature,1958,181:178-179
    [62]Jaffe B, Cook W R, Jaffe H. Piezoelectric ceramics. New York:Academic New York,1971
    [63]Egerton L, Dillon D M. Piezoelectric and dielectric properties of ceramics in the system of potassium-sodium niobate[J]. J Am Ceram Soc,1959,42(9):438-442
    [64]刘利华.铌酸钾钠基无铅压电陶瓷材料的制备与性能研究:[硕士学位论文].江西:景德镇陶瓷学院,2007
    [65]Wanda W W. Euroean approach to development of new environmentally sustainable electroceramics. Ceram Inter,2004,30(7):1079-1083
    [66]杜红亮,李智敏,周万城,等.(Nao.5Ko.5)Nb03基无铅压电陶瓷的研究进展.无机材料学报,2006,6(21):1284-1291
    [67]Kakimoto K I, Masuda I, Ohsato H. Lead-free KNbO3 piezoceramics synthesized by pressure-less sintering. J Euro Ceram Soc,2005,25(12):2701-2706
    [68]郑凯,沈建兴,范战彪,等.铌酸钾钠基无铅压电陶瓷的研究进展.山东轻工业学院,2009,23(2):13-29
    [69]邓一兰,廖运文,王怀平,等.(K, Na)NbO3基无铅压电陶瓷及其应用研究进展.材料导报,2008,22(12):85-88
    [70]Du H L, Liu D J, Tang F S, et al. Microstructure, piezoelectric, and ferroelectric properties of Bi2O3-added (K0.5-Na0.5)NbO3 lead-free ceramics. J Am Ceram Soc,1990,90(9):2824-2829
    [71]Park S H, Ahn C W, Nahm S, et al. Microstructure and piezoelectric properties of ZnO-added (K0.5Na0.5)NbO3 ceramics. Jpn J Appl Phys,2004, 43(8B):L1072-L1074
    [72]Gao D J, Kwok K W, Lin D M. Microstructure, electrical properties of CeO2-doped (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. J Mater Sci,2009, 44:2466-2470
    [73]Zuo R Z, Xu Z K, Li L T. Dielectric and piezoelectric properties of Fe2O3-Doped (Na0.5K0.5)0.96Li0.04Nb0.86Ta0.1Sb0.04O3 lead-free ceramics. J Phys Chem Solids,2008,69(7):1728-1732
    [74]Lin D M, Guo M S, Lam K H, et al. Lead-free piezoelectric ceramic (K0.5Na0.5)NbO3 with MnO2 and KCuTaO doping for piezoelectric transformer application. Smart Mater Struct,2008,17:035002
    [75]Saito Y. Alkali metal-containing niobate-based piezoelectric material composition and a method for producing the same. United States Patent, Patent No.:US6,387,25 b1, May 14,2002
    [76]Matsubara M, Yamaguchi T, Kikuta K, et al. Sinterability and piezoelectric properties of (K, Na)NbO3 ceramics with novel sintering aid. Jpn J Appl Phys,2004, 43(10):7159-7163
    [77]Matsubara M, Yagaguchi T, Sakamoto W, et al. Processing and Piezoelectric Properties of Lead-Free (K,Na)(Nb,Ta)O3 Ceramics. J Am Ceram Soc,2005,88(5): 1190-1196
    [78]刘代军,杜红亮,唐福生,等.氧化铋掺杂对铌酸钾钠无铅压电陶瓷性能的影响.硅酸盐学报,2007,35(9):1141-1145
    [79]郑立梅,王矜奉,臧国忠,等.高性能铌酸钾钠无铅压电陶瓷研制.科学通报,2006,51(16):1955-1957
    [80]苏文斌,王矜奉,张家良,等.低损耗、高Qm的(Na0.5K0.54)NbO3掺杂Cu2Ta4O12无铅压电陶瓷.见:中国电子学会元件分会,编.中国电子学会第十五届电子元件学术年会论文集.北京:中国电子学会元件分会,2008.71-76
    [81]Shirane G, Newnham R, Pepinsky R. Dielectric properties and phase transitions of NaNbO3 and (Na,K)NbO3. Phys Rev,1954,96(3):581-588
    [82]裴志亮,杜红亮,车俊,等.PNW-PMS-PZT压电陶瓷准同型相界的压电性能研究.无机材料学报,2005,20(4):988-992
    [83]Chang Y F, Yang Z P, Chao X L, et al. Dielectric and piezoelectric properties of alkaline-earth titanate doped (K0.5Na0.5)NbO3 ceramics. Mater Lett,2007, 61:785-789
    [84]Chang Y F, Yang Z P, Wei L L, et al. Effects of AETiO3 additions on phase structure, microstructure and electrical properties of (K0.5Na0.5)NbO3 ceramics. Mater Sci Eng A,2006,437:301-305
    [85]Jiang M, Li X H, Liu J. Structural and electrical properties of Cu-doped (K0.5Na0.5)NbO3-MgTiO3 lead-free ceramics. J Alloys Compd,2009, 479(1-2):L18-L21
    [86]Chang R C, Chu S Y, Lin Y F, et al. The effects of sintering temperature on the properties of (K0.5Na0.5)NbO3-CaTiO3 based lead-free ceramics. Sens Actua A, 2007,138:355-360
    [87]Guo Y P, Kakimoto K I, Ohsato H. Dielectric and piezoelectric properties of lead-free (K0.5Na0.5)NbO3-SrTiO3 ceramics. Solid State Commun,2004,129:279-284
    [88]Chang R C, Chu S Y, Wong Y P, et al. Properties of (K0.5Na0.5)NbO3-SrTiO3 based lead-free ceramics and surface acoustic wave devices. Sens Actua A,2007, 136:267-272
    [89]Choi C H, Ahn C W, Nahm S, et al. (1-x)BaTiO3-x(K0.5Na0.5)NbO3 ceramics for multilayer ceramic capacitors. Appl Phys Lett,2007,90(13):132905-1-132905-3
    [90]Guo Y P, Kakimoto K I, Ohsato H. Structure and electrical properties of lead-free (K0.5Na0.5)NbO3-BaTiO3 ceramics. Jpn J Appl Phys,2004, 43(9B):6662-6666
    [91]Wang R P, Xie R J, Sekyia T, et al. Piezoelectric properties of spark-plasma-sintered (Na0.5K0.5)NbO3-PbTiO3 ceramics. Jpn J Appl Phys,2002, 41:7119-7122
    [92]Kosec M, Bobnar V, Hrovat M, et al. New lead-free relaxors based on the K0.5Na0.5NbO3-SrTiO3 solid solution. J Mater Res,2004,19(6):1849-1854
    [93]Bobnar V, Malic B, Holc J, et al. Electrostrictive effect in lead-free relaxor K0.5Na0.5NbO3-SrTiO3 ceramic system. J Appl Phys,2005,98:024113-1-024113-4
    [94]Bobnar V, Bernard J, Kosec M. Relaxorlike dielectric properties and history-dependent effects in the lead-free K0.5Na0.5NbO3-SrTiO3 ceramic system. Appl Phys Lett,2004,85 (6):994-996
    [95]Du H L, Zhou W C, Luo F, et al. Polymorphic phase transition dependence of piezoelectric properties in (K0.5Na0.5)NbO3-(Bi0.5K0.5)TiO3 lead-free ceramics. J Phys D:Appl Phys,2008,41:115413-1-115413-5
    [96]Du H L, Zhou W C, Zhu D M, et al. Sintering characteristic, microstructure, and dielectric relaxor behavior of (K0.5Na0.5)NbO3-(Bi0.5Na0.5)TiO3 lead-free ceramics. J Am Ceram Soc,2008,91(9):2903-2909
    [97]Zuo R Z, Fang X S, Ye C. Phase structures and electrical properties of new lead-free (K0.5Na0.5)NbO3-(Bi0.5Na0.5)TiO3 ceramics. Appl Phys Lett,2007, 90(9):092904-1-092904-3
    [98]Kim M R, Song H C, Choi J W, et al. Synthesis and piezoelectric properties of (1-x)(Na0.5K0.5)NbO3-x(Ba0.95Sr0.05)TiO3 ceramics. Journal of Electroceramics, 2009,23(2-4):502-505
    [99]Lin D, Kwork K W, Chan H L W. Microstructure, dielectric and piezoelectric properties of (K0.5Na0.5)NbO3-Ba(Ti0.95Zr0.05)O3 lead-free ceramics with CuO sintering aid. Appl. Phys. A,2007,88:359-363
    [100]Zuo R Z, Ye C, Fang X S. Dielectric and piezoelectric properties of lead free (K0.5Na0.5)NbO3-BiScO3 ceramics. Jpn J Appl Phys,2007,46(10A):6733-6736
    [101]Sun X Y, Chen J, Yu R B, et al. BiScO3 doped (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. J Am Ceram Soc,2009,92(1):130-132
    [102]Du H L, Zhou W C, Luo F, et al. High Tm lead-free relaxor ferroelectrics with broad temperature usage range:0.04BiSc03-0.96(K0.5Na0.5)NbO3. J Appl Phys, 2008,104(4):044104-1-044104-5
    [103]Du H L, Zhou W C, Luo F, et al. Design and electrical properties' investigation of (K0.5Na0.5)NbO3-BiMeO3 lead-free piezoelectric ceramics. J Appl Phys,2008,104(3):034104-1034104-3
    [104]Zuo R Z, Ye C, Fang X S. K0.5Na0.5NbO3-BiFeO3 lead-free piezoelectric ceramics. J Phys Chem Solids,2008,69:230-235
    [105]Zuo R Z, Lv D Y, Fu J, et al. Phase transition and electrical properties of lead free (K0.5Na0.5)NbO3-BiAlO3 ceramics. J Alloys Compd,2009,476(1-2): 836-839.
    [106]Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics. Nature,2004, 432(4):84-87
    [107]Cross Eric. Lead-free at last. Nature,2004,432(4):24-25
    [108]Guo Y P, Kakimoto K I, Ohsato H. (Ko.5Nao.5)Nb03-xLiTa03 lead-free piezoelectric ceramics. Mater Lett,2005,59:241-244
    [109]Dai Y J, Zhang X W, Zhou G Y. Phase transitional behavior in K0.5Na0.5NbO3-xLiTaO3 ceramics. Appl Phys Lett,2007,90(26):262903-1-262903-3
    [110]Lin D M, Kwok K W, Chan H L W. Phase transition and electrical properties of (K0.5Na0.5)(Nb1-xTax)O3 lead-free piezoelectrid ceramics. Appl Phys A,2008, 91:167-171
    [111]Tang F S, Du H L, Li Z M, et al. Prepatation and properties of (Ko.5Nao.5)Nb03-xLiNb03 ceramics. Trans Nonferrous Met Soc China,2006, 16:s466-s469
    [112]Du H L, Tang F S, Liu D J, et al. The microstructure and ferroelectric properties of (K0.5Na0.5)NbO3-xLiNbO3 lead-free piezoelectric ceramics. Mater Sci Eng B,2007,136:165-169
    [113]Song H C, Cho K H, Park H Y, et al. Microstructure and piezoelectric properties of (1-x)(K0.5Na0.5)NbO3-xLiNbO3 ceramics. J Am Ceram Soc,2007, 90(6):1812-1816
    [114]Higashide K, Kakimoto K I, Ohsato H. Temperature dependence on the piezoelectric property of (1-x)(K0.5Na0.5)NbO3-xLiNbO3 ceramics. J Euro Ceram Soc, 2007,27:4107-4110
    [115]Lei C, Ye Z G. Lead-free piezoelectric ceramics derived from the K0.5Na0.5NbO3-AgNbO3 solid solution system. Appl Phys Lett,2008, 93(4):042901-1-042901-3
    [116]Yang Z P, Chang Y F, Liu B, et al. Effects of composition on phase structure, microstructure and electrical properties of (K0.5Na0.5)NbO3-xLiSbO3 ceramics. Mater Sci Eng A,2006,432:292-298
    [117]Zhang S J, Xia R, Shrout T R, et al. Characterization of lead free (Ko.5Nao.5)Nb03-xLiSb03 piezoceramic. Solid State Commun,2007,141:675-679
    [118]Wu J G, Xiao D Q, Wang Y Y, et al. Compositional dependence of phase structure and electrical properties in (K0.42Na0.58)NbO3-xLiSbO3 lead-free ceramics. J Appl Phys,2007,102(11):114113-1-114113-3
    [119]Wu J G, Xiao D Q, Wang Y Y, et al. Microstructure and electrical properties of (Li, Ag, Ta, Sb)-modified (K0.42Na0.58)NbO3 lead-free ceramics with good temperature stability. J Phys D:Appl Phys,2008,41:125405-1-125405-6
    [120]Zang G Z, Wang J F, Chen H C, et al. Perovskite (Na0.5K0.5)1-x(LiSb) xNb1-xO3 lead-free piezoceramics. Appl Phys Lett,2006,88(21):212908-1-212908-3
    [121]张杨,王矜奉,杜鹃,等.铌钽酸盐无铅压电陶瓷的制备与性能.电子元件与材料,2004,23(11):11-12
    [122]吴浪,肖定全,孙勇,等.铌酸钾钠基无铅压电陶瓷的相变特性和掺杂改性研究进展.功能材料,2007,38(9):1400-1404
    [123]高峰,张慧君,刘向春,等.铌酸钠钾基无铅压电陶瓷的相结构与压电性能.压电与声光,2006,28(1):60-63
    [124]路朋献.PZT基压电陶瓷的掺杂改性和低温烧结研究:[硕士学位论文].北京:北京工业大学,2005
    [125]钟维烈.铁电物理学.北京:科学出版社,2000
    [126]殷之文.电介质物理学(第二版).北京:科学出版社,2003
    [127]Zhang Q M, Wang H, Kim N, et al. Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate-titanate ceramics. J Appl Phys,1994,75 (1):454-458
    [128]孙勇,肖定全,吴浪,等.铌酸钠钾基无铅压电陶瓷制备技术新进展.功能材料,2007,38(8):1225-1227
    [129]杜红亮,张孟,苏晓磊,等.压电陶瓷晶粒取向生长技术的研究进展.无机材料学报,2008,23(1):1-7
    [130]胡晓梅,龚跃球,刘斯维.铌酸钾钠基无铅压电陶瓷的制备和掺杂改性研究进展.材料导报,2009,23(2):39-42
    [131]Messing G L, Trolier-Mckinstry S, Sabolsky E M, et al. Templated grain growth of textured piezoelectric ceramics. Critical Review in Solid State and Materials Science,2004,29(2):45-96
    [132]范亚红.碱金属铌酸盐系无铅压电陶瓷的性能研究:[硕士学位论文].天津:天津大学,2006
    [133]肖斌.织构型K0.5Na0.5NbO3无铅压电陶瓷制备工艺及性能研究:[硕士学位论文].湖北:武汉理工大学,2007
    [134]Duran C, McKinstry S T, Gary L M. fabrication and electrical properties of textured Sr0.53Ba0.47Nb2O6 ceramics by templated grain growth. J Am Ceram Soc, 2000,83 (9):2203-2213
    [135]Tani T, Itahara H, Xia C T, et al. Topotactic synthesis of highly-textured thermoelectric cobaltites. J Mater Chem,2003,13 (8):1865-1867
    [136]Kimura T, Takahashi T, Tani T, et al. Crystallographic texture development in bismuth sodium titanate prepared by reactive-templated grain growth method. J Am Ceram Soc,2004,87(8):1424-1429
    [137]孙士文,潘晓明,李东林,等.PMN-PT弛豫铁电固溶体的定向凝固组织与结晶习性.无机材料学报,2004,19(3):541-545
    [138]李永祥,杨群保,曾江涛,等.多层晶粒生长法制备织构化CaBi4Ti4O15压电陶瓷.四川大学学报,2005,48(2):230-235
    [139]Zeng J T, Li Y X, Yang Q B, et al. Grain oriented CaBi4Ti4O15 piezoceramics prepared by the screen-printing multilayer grain growth technique. J Eur Ceram Soc,2005,25(12):2727-2730
    [140]Jaeger R E, Egerton L. Hot Pressing of Potassium-Sodium Niobates. J Am Ceram Soc,1962,45(5):209-213
    [141]Wu Y J, Uekawa N, Kakegawa K, et al. Compositional fluctuation and dielectric properties of Pb(Zro.3Tio.7)03 ceramics prepared by spark plasma sintering. Mater Lett,2002, (57):771-775
    [142]Enrique R R, Sebastian D, Minoru U, et al. Zirconia-Mullite Composites Consolidated by Spark Plasma Reaction Sintering from Zircon and Alumina. J Am Ceram Soc,2005,88(5):1150-1157
    [143]Wang R, Xie R, Sekiya T, et al. Fabrication and characterization of potassium-sodium niobate piezoelectric ceramics by spark-plasma sintering method. Mater Res Bull,2004,39:1709-1715
    [144]Li J F, Wang K. Ferroelectric and piezoelectric properties of pine prained Nao.5 Ko.5Nb03 lead-free piezoelectric ceramics prepared by spark plasma sintering. J Am Ceram Soc,2006,89(2):706-709
    [145]Kakimoto K I, Tomoko Y, Hitoshi O. Anisotropic Polarization and Piezoelectricity of KBa2Nb5O15 Ceramics Derived from Pressureless Sintering. Jpn J Appl Phys,2006,45(9B):7435-7439
    [146]Du H L, Li Z M, Tang F S, et al. Preparation and piezoelectric properties of (Ko.5Nao.5)Nb03 lead-free piezoelectric ceramics with pressure-less sintering. Mater Sci Eng,2006,131(1-3):83-87
    [147]Brooks D J, Brydson R, Douthwaite R E. Microwave-Induced-Plasma-Assisted Synthesis of Ternary Titanate and Niobate Phases. Adv Mater,2005, 17(20):2474-2477
    [148]明保全,王矜奉,臧国忠,等.铌酸钾钠基无铅压电陶瓷的X射线衍射与相变分析.物理学报,2008,57(9):5962-5967
    [149]Cheng J, Li N, Cross L E, Structural and dielectric properties of Ga-modified BiFeO3-PbTiO3 crystalline solutions. J Appl Phys,2003, 94(8):5153-5157
    [150]张琼,苗鸿雁,谈国强.BiFeO3薄膜研究进展.硅酸盐通报,2007,26(1):118-122
    [151]路朋献,王改民,马秋花,等BiFeO3对0.02PNW-0.07PMnN-0.91PZT低温烧结陶瓷微观结构和压电性能的影响.中国陶瓷,2006,42(6):18-20
    [152]Randall C A, Kim N, Kucera J P, et al. Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J Am Ceram Soc,1998,81 (3):677-688
    [153]殷庆瑞.功能陶瓷的显微结构、性能与制备技术.北京:冶金工业出版社,2005
    [154]Ryu J, Choi J J, Hahn B D, Park D S, Yoon W H, Kim KY. Sintering and Piezoelectric Properties of KNN Ceramics Doped with KZT. IEEE transactions on ultrasonics, ferroelectrics, and frequency control,2007,54(12):2510-2515
    [155]Zhang S J, Xia R, Shrout TR, et al. Piezoelectric Properties in Perovskite 0.948(K0.5Na0.5)NbO3-0.052LiSbO3 Lead-Free Ceramics. J Appl Phys,2006, 100:104108-1-104108-6
    [156]Park H Y, Seo I T, Choi M K, et al. Microstructure and piezoelectric properties of the CuO-added (Na0.5K0.5)(Nb0.97Sb0.03)O3 lead-free piezoelectric ceramics. J Appl Phys 2008,104(3):034103-1-034103-7
    [157]张利民,张波萍,李敬锋,等.Ag+掺杂Na0.5K0.5NbO3无铅压电陶瓷的无压烧结及性能研究[J].稀有金属材料与工程,2007,36(suppl):509-512
    [158]Guo Y P, Kenichi K, Hitoshi O, Phase transitional behavior and piezoelectric properties of (Na o.5Ko.5)Nb03-LiNb03 ceramics. Appl Phys Lett,2004, 85(18):4121-4123
    [159]Zuo R Z. Fu J, Lv D. Phase transformation and tunable piezoelectric properties of lead-free (Na0.52K0.48-xLix)(Nb1-x-ySbyTax)O3 system. J Am Ceram Soc, 2009,92(1):283-385
    [160]赵明磊,王春雷,艾树涛,等.Na0.5Bi0.5TiO3-BaTiO3陶瓷的介电和压电性能研究.无机材料学报,2002,17(1):61-65
    [161]Mgbemere H E, Herber R, Schneider G A. Effect of MnO2 on the dielectric and piezoelectric properties of alkaline niobate based lead free piezoelectric ceramics. J Euro Ceram Soc,2008,29(9):1729-1733
    [162]Watanabe Y, Sumida K, Yamada S, et al. Effect of Mn-Doping on the Piezoelectric Properties of (K0.5Na0.5)(Nb0.67Ta0.33)O3 Lead-Free Ceramics. Jpn J Appl Phys,2008,47(5):3556-3558
    [163]Lin D, Kwok K W, Tian H, et al. Phase transitions and electrical properties of (Na1-xKx)(Nb1-ySby)O3 lead-free piezoelectric ceramics with a MnO2 sintering aid. J Am Ceram Soc,2007,90:1458-1462
    [164]Chiba H, Kikuchi M, Muraoka Y, et al. Ferromagnetism and large negative magnetoresistance in Ba1-xCaxMnO3 (x>0.8) perovskite. Solid State Commun,1996, 99:499-502
    [165]Chiba H, Atou T, Syono Y. Magnetic and Electrical Properties of Bi1-xSrxMnO3:Hole-Doping Effect on Ferromagnetic Perovskite BiMnO3. J Solid State Chem,1997,132:139-143
    [166]王欣.钙钛矿锰氧化物的高压同步辐射X光衍射及其晶格效应的研究.博士学位论文.吉林:吉林大学,2001
    [167]He L, Li C. Effects of addition of MnO on piezoelectric properties of lead zirconate titanate. J Mater Sci,2000,35:2477-2480
    [168]Klimov V V, Selikova N I, Bronnikov A N. Effect of MnO2, Bi2O3, and ZnO additions on the electrical properties of lead zirconate titanate piezoceramics. Inorg Mater,2006,42(5):573-577

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700