用户名: 密码: 验证码:
地下综合管廊地震反应分析与抗震可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下综合管廊是将两种或两种以上的管线放置其中而形成的一种公共基础设施。它是城市生命线工程基础设施发展的方向,与此同时,对其进行地震作用下的响应及抗震可靠度研究具有重要的理论和现实意义,但这方面却基本未见文献提及,基于这种背景,提出了本文的研究课题。
     本文首先对影响地下综合管廊结构地震响应分析正确性的关键因素(如人工边界条件、有效应力法等)进行了研究,并用算例进行了说明,这些研究为地下综合管廊的地震响应分析奠定了基础。然后借助有限元软件ABAQUS,建立了三维有限元整体分析模型。在有限元模型中,考虑了人工边界条件、接触面、土体塑性以及土体有效应力等要素。对地下结构的地震动输入形式进行了研究,指出用位移输入可以得到更精确的结果。在以上研究的基础上,对地下综合管廊在地震作用下的响应进行了分析,并对主要影响因素,如人工边界条件、接触面、有效应力、行波效应以及非一致地震激励分别进行了分析比较。研究发现,地下综合管廊在剪切波作用下呈现整体弯曲变形,与土体在剪切波作用下的变形相同。边界条件及非一致激励对结构响应的影响最大,其中自由边界与无限单元的情况,相对误差最大可达153.03%,最小也达到了66%。而非一致激励比一致激励应变幅值有很大增加,最小达到了30%,最大则达到了8倍。因此,在地下综合管廊结构分析中应对边界条件及多点地震动输入特别注意。
     地下综合管廊属于浅层地下结构,埋深较浅,面波尤其是Rayleigh波将对其响应影响巨大。本文研究了土体中Rayleigh波的传播特性,根据Rayleigh波的特点,首次提出了近似Rayleigh地震波场的概念,并利用傅立叶变换求得近似Rayleigh地震波场,研究了地下综合管廊结构在Rayleigh波作用下的响应。研究表明:对于浅埋地下结构而言,Rayleigh波的影响不可忽略,且呈现出与剪切波作用不同的特点,结构顶面对应点的轴向应变幅值是对应底面点的2倍左右。
     借助本课题组进行的振动台试验,将数值结算结果与试验结果进行了对比,结果表明,二者符合较好。这一方面验证了本文计算建模方法的正确性,也为后续的研究奠定了基础。
     结构设计的最终目的,是试图实现基于可靠度的设计。本文将基于物理随机地震动模型进行了扩展,与谱表现方法相结合,合成了多点随机地震动。利用概率密度演化方法,计算了地下综合管廊结构在随机地震动作用下的随机地震反应。并分析了地下综合管廊结构的破坏机制,利用等价极值事件思想,计算了地下综合管廊结构的抗震可靠度,为实现地下综合管廊动力可靠性的精细化分析奠定了基础。
A utility tunnel is a public underground structure that holds wires, conduits, and pipes of power, gas, water supply and communication utility system and provides also enough space for maintance opertation. Contruction of utility tunnel represents the future orientation of development for underground infrastructure system in both megalopolis and small towns due to its many advantages as improving the reliability, reducing deferred maintenance and improving the environment. However, few researches have been carried out so far about the dynamic responses and reliability of utility tunnel under earthquake attack. This fact invokes the research of this paper.
     This paper first investigates some key factors that are crucial for proper earthquake response analysis of utility tunnel, such as artificial boundary conditions and the effective stress method. And some examples are investigated. This has laid a solid foundation for modeling of utility tunnel. Taking ABAQUS as a platform, a three dimentional finite-element-model (FEM) of soil-structure system is estabilished, in which the artificial boundary conditions, contact between soil and structure, the plasticity of soil and the effective soil stress method are considered. The type of input for underground structure analysis is then studied and it is found more accurate responses can be obtained when displacement time history of earthquake wave is adopted. Based on all the above results, the dynamic seismic response of utility tunnel has been calculated using the proposed model. The influences of factors as artificial boundary conditions, contact feature, effective stress method, wave passage effect and inconsistent seismic excition on the dynamic responses of unitily tunnel has been investigated. The results reveal that the utility tunnel show global bending deformation pattern under shear wave excitation and the amplitude of deformation is the same as soil. The artificial boundary conditions and the inconsistent excitation have much more significant influence on the structural responses than other factors. Therefore, special attention should be paid on these two factors for seismic responses analysis.
     Since the utility tunnel is a typical shallow-buried structure, the earthquake surface wave especially Rayleigh wave will have considerable effect on the structural response. To learn the effect of Rayleigh wave, the propagation characteristics of Rayleigh wave in soil is reviewed and approximate Rayleigh earthquake wave is simulated using Fourier transform technique. Taking the simulated Rayleigh wave as input, the seismic response of utility tunnel is calculated. The results demonstrate that the effect of Rayleigh wave on the seismic response of shallow-buried underground structures can not be ignored. And it shows that the deformation is mainly the bending and the amplitude of the strain at the top of the structure is about 2 times bigger than the corresponding bottom point.
     The numerical model suggested is then applied to an experimental model and the computational results are compared with shaking table test results. The numerical results and the test results match quite well. The feasibility and efficiency of the proposed FEM model is validated by the comparison, and it can be adopted for further investigations.
     Reliability-based design is the final goal of structural design. This paper extends the physical stochastic earthquake model, using the sprectral representation method, to get the stochastic inconsistent excitation. Then based on the probability density evolution method (PDEM), the probability desity surface is calculated. Furthermore, the failure criterion of utility tunnel is analyzed and the equivalent extreme value event is introduced and applied to calculate the seismic reliability.
引文
[1]艾晓秋,基于随机地震动模型的地下管线地震反应及抗震可靠度研究:[博士学位论文].上海:同济大学,2005.
    [2]曹炳政,罗奇峰,马硕等.神户大开地铁车站的地震反应分析,地震工程与工程振动,2002,Vol.22(4):102-107.
    [3]陈建兵,李杰.基于概率密度演化方法的随机结构可靠度分析,计算力学学报,2004,21(3):285-290.
    [4]陈建兵,李杰.非线性随机结构动力可靠度的密度演化方法,力学学报,2004,Vol.36(2):196-201.
    [5]陈建兵,李杰.随机结构静力反应概率密度演化方程的差分方法,力学季刊,2004,Vol.25(1):21-28.
    [6]陈建兵,李杰.随机结构动力可靠度分析的极值概率密度演化方法,地震工程与工程振动,2004,Vol.24(6):39-44.
    [7]陈建兵,李杰.随机结构反应概率密度演化分析的切球选点法,振动工程学报,2006a,Vol.19(1):1-8.
    [8]陈建兵,李杰.结构随机响应概率密度演化分析的数论选点法,力学学报,2006b,Vol.38(1):134-140.
    [9]陈健云,胡志强,林皋.大型地下结构三维地震响应特点研究,大连理工大学学报,2003,Vol.43(3):344-348.
    [10]陈惠发,A.F.萨里普.混凝土和土的本构方程,北京:中国建筑工业出版社,2004.
    [11]陈波,吕西林,李培振等.用ANASYS模拟结构—地基动力相互作用振动台试验的建模方法,地震工程与工程振动,2002,Vol.22(1):126-131.
    [12]陈少林,廖振鹏.两相介质动力学的研究进展,地震工程与工程振动,2002a,Vol.22,No.2:1-8.
    [13]陈少林,廖振鹏.关于两相介质动力学问题建模的注记,地震工程与工程振动,2002b,Vol.22(4):1-8.
    [14]程慧伊.共同沟的探讨与实践.上海市政工程.1995,(1):36-46.
    [15]董鹏,周健.土与结构相互作用下的地下建筑物动力可靠性分析,建筑结构学报,2004,Vol.25(2):124-129.
    [16]杜修力,胡晓,陈原群.强震地面运动随机过程模拟,地震学报,1995,Vol.17(1):103-109.
    [17]杜修力,赵密,王进廷.近场波动模拟的人工应力边界条件,力学学报,2006,Vol.38(1):49-56.
    [18]范留明,李宁,黄润秋.人造地震动合成中的位移误差分析,工程地质学报,2003,Vol.11(1):79-84.
    [19]冯启民,胡聿贤.空间相关地面运动的数学模型,地震工程与工程振动,1981,Vol.1 (2):1-8.
    [20]高峰,关宝树.沉管隧道三维地震反应分析,兰州铁道学院学报(自然科学版),2003,Vol.22(1):6-10.
    [21]高俊合,赵维炳.土与混凝土接触面特性的大型单剪试验研究及数值模拟,2000,土木工程学报,Vol.33(3):43-46.
    [22]龚晓南.土工计算机分析,北京:中国建筑工业出版社,2000.
    [23]韩国城,劭龙潭.混凝土防渗墙与砂之间静力剪切特性试验研究,岩土工程学报,1994,Vol.16(3):112-115.
    [24]胡聿贤,周锡元.弹性体系在平稳和平稳化地面运动下的反应,地震工程研究报告,第一集,北京:科学出版社,1962.33-35.
    [25]胡敏华,蔺宏.论市政共同沟的发展史及其意义.基建优化.2004,Vol.25(3):7-10.
    [26]蒋群峰,朱弋宏.浅谈城市市政共同沟.有色冶金设计与研究,2001,Vol.32(3):46-53.
    [27]蒋东旗,远场地震作用下桩基的横向地震响应研究:[博士学位论文].杭州:浙江大学,2002.
    [28]蒋东旗,王立忠,陈云敏.远场地震引起的单桩横向位移和内力,岩土工程学报,2003,Vol.25(2):174-178.
    [29]蒋东旗,郝玉龙,陈云敏.远场地震作用下桩间横向动力相互作用的研究,地震工程与工程振动,2004,Vol.24(4):170-176.
    [30]蒋长锦,蒋勇.快速傅立叶变换及其C程序,合肥:中国科学技术大学出版社,2004.
    [31]季倩倩.地铁车站结构振动台模型试验研究:[博士学位论文].上海:同济大学,2001.
    [32]李桂青,曹宏,李秋胜.我国结构动力可靠度理论的进展,工程抗震,1989,(3):30-33.
    [33]李桂青,曹宏等.结构动力可靠性理论及其应用,地震出版社,1993.
    [34]李杰,李国强.地震工程学,北京:地震工程出版社,1992.
    [35]李杰.随机结构系统—分析与建模,北京:科学出版社,1996.
    [36]李杰.生命线工程抗震,北京:科学出版社,2005.
    [37]李杰,陈建兵.随机结构反应的概率密度演化分析,同济大学学报,2003,31(12):1387-1391.
    [38]李杰,陈建兵.随机结构非线性动力反应的概率密度演化分析,力学学报,2003,Vol.35(6):716-722.
    [39]李杰,陈建兵.随机动力系统中的广义密度演化方程,自然科学进展,2006,Vol.16(6):712-719.
    [40]李杰,艾晓秋.基于物理的随机地震动模型研究,地震工程与工程振动,2005,Vol.26(5):21-26.
    [41]李杰.物理随机系统研究的若干基本观点(修订本),同济大学科学研究报告,2006.
    [42]李彬.地铁地下结构抗震理论分析与应用研究:[博士学位论文].北京:清华大学,2005.
    [43]李建波,陈健云,林皋.相互作用分析中地震动输入长周期校正研究,大连理工大学学报,2004,Vol.44(4):550-555.
    [44]廖松涛.工程场地地震动相干函数的数值分析:[博士学位论文].上海:同济大学,2001.
    [45]廖振鹏.工程波动理论导论(第二版),北京:科学出版社,2002.
    [46]刘晶波,李彬.Raylei曲波作用下地下结构的动力反应分析,工程力学,2006,Vol.23(10):132-135.
    [47]林皋.地下结构抗震分析综述(上),世界地震工程,1990a,No.2:1-10.
    [48]林皋.地下结构抗震分析综述(下),世界地震工程,1990b,No.3:1-10,42.
    [49]林皋.地下结构的地震反应,地震工科研究文集,地震出版社,1992,49-64.
    [50]林皋,梁青槐.地下结构的抗震设计,土木工程学报,1996,Vol.29(1):15-24.
    [51]吕和林.一种用于浅埋隧道抗震分析的拟静力数值方法,西南交通大学学报,1999,Vol.34(3):315-319.
    [52]刘学增,朱合华.上海典型土层与混凝土接触面特性的试验研究,2004,Vol.32(5):601-606,
    [53]马险峰.地下结构的震害研究:[博士学位论文].上海:同济大学,2000.
    [54]马宏伟,吴斌.弹性动力学及其数值方法,北京:中国建材出版社,2000.
    [55]倪永军,朱唏.考虑时间—空间变化的人工随机场模拟,地震学报,2002,Vol.24(4):407-412.
    [56]欧进萍,牛荻涛,杜修力.设计用随机地震动的模型及其参数确定,地震工程与工程振动,1991,Vol.11(3):45-54.
    [57]彭芳乐,孙德新,袁大军等.城市道路地下空间与共同沟.地下空间,2003,Vol.23(4):421-426.
    [58]钱家欢,殷宗泽.土工原理与计算—2版,北京:中国水利水电出版社,1996.
    [59]屈铁军,王君杰,王前信.空间变化的地震动功率谱的实用模型,地震学报,1996,Vol.18(1):55-62.
    [60]任晓丹.混凝土随机损伤本构关系的试验研究:[硕士学位论文].上海:同济大学,2006.
    [61]沈珠江.饱和砂土的动力渗流变形计算,水利学报,1980年第2期.
    [62]沈珠江.砂土动力液化变形的有效应力分析方法,水利水运科学研究,1982年第4期.
    [63]束昱.日本的共同沟.中国人民防空,2003,Vol.148:40-41.
    [64]邵炜,金峰.用于接触面模拟的非线性薄层单元,清华大学学报,1999,Vol.39(2):34-38.
    [65]松岛丰.曰本建筑学会构造系论文报告集,369号,1986.
    [66]孙均.地下结构有限元法解析,上海:同济大学出版社,1988.
    [67]唐海华.宁波市共同沟发展的系统研究:[硕士学位论文].上海:同济大学,2001.
    [68]唐海华,叶礼诚,刘涛.国内外市政共同沟建设的现状与趋势.建设施工,2001,(5):346-348.
    [69]田玉基,杨庆山.地震地面运动作用下结构反应的分析模型,工程力学,2005,Vol.22(5):170-174.
    [70]王瑞民,罗奇峰.阪神地震中地下结构和隧道的破坏现象的浅析,灾害学,1998,Vol.13(2):63-66.
    [71]魏小林,孟悦祥.上海浦尔新区张扬路地下共同沟,供用电,1997,Vol.14(4):6-7.
    [72]吴华勇.地下管线—土体相互作用试验研究:[硕士学位论文].上海:同济大学,2006.
    [73]吴世明.土动力学,北京:中国建筑工业出版社,2000.
    [74]吴世明.土介质中的波,北京:科学出版社,1997.
    [75]吴军帅,姜朴.接触面动力剪切试验与应用,第三届全国土动力学学术会议,上海,1990.5:223-226.
    [76]吴军帅,姜朴.土与混凝土接触面的动力剪切特性,岩土工程学报,1992,Vol.14(2):61-66.
    [77]谢定义.土动力学,西安:西安交通大学出版社,1988.
    [78]萧岩,黄谦,刘喜明等.市政综合管沟技术探讨,市政技术,2000,(4):34-40.
    [79]徐志英,施善云.土与地下结构动力相互作用的大型振动台试验与计算.岩上上程学报,1993,Vol.15(4):1-7.
    [80]杨林德,杨超,季倩倩等.地铁车站的振动台试验与地震响应的计算方法,2003,Vol.31(10):1135-1140.
    [81]殷宗泽,许国华.土与混凝土接触面剪切特性,第六届全国土力学及基础工程学术会议论文集,1991,上海:同济大学出版社.97-100.
    [82]殷宗泽,朱泓,许国华.土与结构材料接触面的变形及其数学模拟,岩土工程学报,1994,Vol.16(3):14-22.
    [83]于翔.地铁建设中应充分考虑抗地震作用—阪神地震破坏的启示,铁道建筑技术,2000(6):32-35.
    [84]余群.21世纪康居标准的现代化城镇—安亭新镇全面开工地F城市管道综合走廊—共同沟同时启动建设.住宅建设,2002.
    [85]赵密.粘弹性人工边界及其透射人工边界的比较研究:[硕士学位论文].北京:北京工业大学,2004.
    [86]张冬霁,卢廷浩.一种土与结构接触面模型的建立及其应用,岩土工程学报,1998,Vol.20(6):62-66.
    [87]张红辉.上海市嘉定区安亭新镇共同沟工程设计,给水排水,2003,Vol.29(3):7-10.
    [88]张鸿雁,张志政,王元编.流体力学,北京:科学出版社,2004.
    [89]周健,吴世明,曾国熙.土石坝三维二相动力分析,岩土工程学报,1991,Vol.15(3):64-69.
    [90]周健.尾矿坝在地震作用下的三维两相有效应力动力分析,工程抗震,1995,(1):39-43
    [91]周健,王前信.地下管道随机反应及动力可靠性分析,土木工程学报,1993,No.8:54-60.
    [92]庄海洋,陈国兴,张菁莉.基于子结构法的地铁地震反应分析,岩土力学,2005,Vol.26,Supp.:227-231.
    [93]周雍年,章文波,于海英.数字强震记录的长周期误差分析,地震工程与工程振动,1997,Vol.17(2):1-9.
    [94]朱百里.沈珠江等编著.计算土力学,上海:上海科学技术出版社,1990.
    [95]ABAQUS version 6.4 Documentation,2004
    [96]Abrahamson N.A.,Schneider J.F.and Stepp J.C.Spatial Variation of Strong Ground Motion for Use in Soil-Structure Interaction Analyses,Proceedings of Fourth U.S.National Conference on Earthquake Engineering,Palm Spings,California,May 20-24,1990,Vol.1: 317-326.
    [97] Abrahamson N. A., Schneider J. F. and Stepp J. C., Empirical Spatial Coherency Functions for Application to Soil-Structure Interaction Analysis, Earthquake Spectra, 1991a, Vol. 7(1): 1-27.
    [98] Abrahamson N. A., Schneider J. F. and Stepp J. C. Spatial Coherency of Shear Waves from the Lotung Taiwan Large-Scale Seismic Test, Structural Safety, 1991b, Vol. 10(1-3): 145-162.
    
    [99] Achenbach J.D. Wave propagation in elastic solids, Amstrerdam: North-Holland, 1973.
    [100] Alterman Z. Kara F. C. Propagation of Elastic waves in layered Media by Finite Difference Methods, Bulletin of Seismological Society of America, 1968, Vol. 58(1): 367-398.
    [101] Astley R.J. Infinite elements for wave problems: a review of current formulations and an assessment of accuracy, International Journal for Numerical methods in engineering, 2000, Vol.49: 951-976.
    
    [102] Bettess P. Infinite elements, Int. J. Num. Meth. Eng, 1977, Vol. 11: 53-64.
    [103] Bettess Jacqueline A., Bettess Peter. A new mapped infinite wave element for general wave diffraction problems and its validation on the ellipse diffraction problem, Computer methods in applied mechanics and engineering, 1998, Vol.164: 17-48.
    [104] Cheng Y. M. The use of infinite element, Computers and Geotectonics, 1996, Vol. 18(1): 65-70.
    [105] Clayton R. and B. Engquist, Absorbing Boundary Conditions for Acoustic and Elastic Wave Equations. Bull. Seism. Soc. Am. 1977, Vol 67(6): 1529-1540.
    [106] Clayton R. and B. Engquist, Absorbing Boundary Conditions for Wave-equation Migration, Geophysics, 1980, Vol 45(5): 895-904.
    [107] Clough G. W. and Duncan J. M. Finite Element Analysis of Retaining Wall Behavior, J. Soil Mech. Found. Div., 1971, ASCE Vol. 97(SM 12): 1657-1674.
    [108] Clough R. W. and Penzien J. Dynamics of structures. USA. Computers and structures Inc. 1975.
    [109] Desai C. S. Soil-Structure Interaction and Simulation Problems, Chap 7 in G. Gudehus (Ed), Finite Elements in Geomechanics, Wiley, Chichester, 1977.
    [110] Desai C. S. Modeling and Implementation of Constitutive Behavior of Interfaces, in Dynamic Soil-Structure Interaction, Proceedings of the International Symposium, Minneapolis 4-5 ,Sep. 1984. 103-112.
    [111] Desai C. S. and Zaman M. M. et al. Thin Layer Element for Interfaces and Joints, Int. J. for Num. Analytic. Meth. In Geom., 1984, Vol. 8(1): 19-43.
    [112] Desai C. S. and Nagaraj B. K. Modeling for Cyclic Normal and Shear Behavior of Interfaces, J. Eng. Mech. 1988, Vol. 114(7): 1198-1217.
    [113] Deodatis G. Simulation of ergodic multivariate stochastic processes, Journal of Engineering Mechanics, 1996, Vol. 122(8): 778-787.
    [114] Drumm E. C. and Desai C. S. Sand Concrete Interfaces: Cyclic Laboratory Testing and a Constitutive Model, in Dynamic Soil-Structure Interaction, Proceedings of the International Symposium, Minneapolis 4-5 Sep. 1984.125-132.
    [115] Drumm E. C. and Desai C. S. Determination of Parameters for a Model for the Cyclic Behavior of Interfaces, Earthquake Engineering & Structural Dynamics, 1986, Vol. 14: 1-18.
    [116] Finn W.D.L.Byrne P.M. and Martin G.D. Seismic response and liquefaction of sands, J. Geotech Engng Div, ASCE, Vol. 102(8): 841-856.
    [117] Ghaboussi J. and Wilson E.L. Variational formulation of dynamics of fluid-saturated porous elastic solids, J. Geotech Engng Div. ASCE, 1972, Vol.98: 947-963.
    [118] Ghaboussi J., Wilson E. L. and Isenberg J. Finite Element for Rock Joints and Interfaces, J. Soil Mech. And Found. Div., 1973, ASCE 99(SM10).
    [119] Gil L. M., Hernandez E. and Fuente P. Simplified Transverse Seismic Analysis of Buried Structures, Soil Dynamics and Earthquake Engineering, 2001, Vol.21: 735-740.
    [120] Gomez-Masso A. and Attalla I. Finite Element vs. Simplified Methods in the Seismic Analysis of Underground Structures. Earthquake Engineering and Structure Dynamics, 1984, 12:347-367.
    [121] Goodman R. E. A et al. A Model for the Mechanics of Jointed Rock, J. Eng. Mech., 1968, ASCE 94(EM3): 637-659.
    [122] Goto Y. and Ota J. On the earthquake response of submerged tunnels, Proceedings of the 5-(th) WCEE, 1973,579-582.
    [123] Hardin B.O. and Drnevich V.P. Shear modulus and damping in soil: design equations and curves, Proc. ASCE, SM7: 667-692.
    [124] Harichandran R. S. and Vanmarke E. H. Stochastic Variation of Earthquake Ground Motion in Space and Time, J. Eng. Mech., 1986, ASCE 112(2): 154-174.
    [125] Harichandran R. S. Estimating the Spatial Variation of Earthquake Ground Motion from Dense Array Recordings, Structural Safety, 1991, Vol. 10(1-3): 219-233.
    [126] Harichandran R. S. Local Spatial Variation of Earthquake Ground Motion, Earthquake Engineering and Soil Dynamics II: Recent Advances in Ground Motion Evaluation, Geotechnical Special Publication, New York, 1988, ASCE(20): 203-217.
    [127] Hao H. Oliveira C. S. and Penzien J. Multiple Station Ground Motion Processing and Simulation Based on SMART-1 Array Data, Nuclear Engineering and Design, 1989, Vol. 111(3): 293-310.
    [128] Hashash Youssef M.A. et.al Seismic design and analysis of underground structures, Tunneling and Underground Space Tecnology, 2001,16: 247-293.
    [129] Herrman L. R. Finite Element Analysis of Contact Problems, J. Eng. Mech. Div., 1978, ASCE 104(EM5): 1043-1057.
    [130] Hindy A., Novak M. Earthquake Response of Underground Pipelines, Earthquake Eng. Struct. Dyn. 1979,7:451-476.
    [131] Hindy A., Novak M. Pipeline Response to Random Ground Motion, J. Eng. Mech. 1980, ASCE 106: 339-360.
    [132] Higdon R.L. Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation, Math. Comp., 1986, Vol. 47:437-459.
    [133] Higdon R.L. Absorbing boundary conditions for acoustic and elastic waves in stratified media, J. Comp. Phys., 1992, Vol. 101:386-418.
    [134] Huang Maosong, Yue Zhongqi, et al. On the stable element procedures for dynamic problems of saturated porous media. International Journal for Numerical Methods in Engineering, 2004,61: 1421-1450.
    [135] Huo H. Seismic design and analysis of rectangular underground structures[disertation]. USA: Purdue University, 2005.
    [136] Julian Canto-Perello, Jorge Cruiel-Esparza, Human factors engineering in utility tunnel design, Tunneling and Underground Space Technology ,2001,16:211-215.
    [137] Kanai K. Semi-Empirical Formula for the Seismic Characteristics of Ground, Bull. Earthq. Res. Inst. University of Tokyo, 1957,35: 308-325.
    [138] Kiureghian A.D. A Coherency Model for Spatially Varying Ground Motions, Earthq. Eng. Struct. Dyn. 1996, Vol. 25(1): 99-111.
    [139] Kuesel T. R. Earthquake Design Excitation for Subways, J. Structural Division, 1969, ASCE 95(ST6): 1213-1231.
    [140] Kaynia A.M. and Novak M. Response of pile foundations to Rayleigh waves and obliquely incident body waves, Earthquake engineering and structural dynamics, 1992, Vol. 21: 303-318.
    [141] Legrand L. et al. Promoting the Urban Utilities Tunnel Technique Using a Design-making Approach, Tunneling and Underground Space Technology, 2004, Vol.19: 79-83.
    [142] Li J. Chen J.B. Fan W.L. The equivalent extreme-value event and evaluation of the structural system reliability, Structural safety, 2007, Vol. 29(2): 112-131.
    [143] Lindman E L. Free Space Boundary Conditions for the Time Dependent Wave Equation, J. Comp. Phsy. ,1975, vol. 18: 66-78.
    [144] Liao Z.P. Wong H.L. Yang B. etc. A transmitting boundary for transient wave analyses, Scienta Sinica (Series A), 1984, Vol. 27(10): 1063-1076.
    [145] Liao Z. P. and Yuan G., Multi-Directional Transmitting Boundaries for Steady-State SH Waves, Earthquake Engineering and Structural Dynamics, 1995, Vol. 24: 361-371.
    [146] Loh C. H. and Lin S. Z. , Directionality and Simulation in Spatial Variation of Seismic Waves, Engineering of Structures, 1990, Vol. 12(2): 134-143.
    [147] Loh C. H. and Yeh Y. T. Spatial Variation and Stochastic Modeling of Seismic Differential Ground Movement, Earthq. Eng. Struct. Dyn. 1988, Vol. 16(4): 583-596.
    [148] Luco J. E. and Wong H.L. Response of a Rigid Foundation to a Spatial Random Ground Motion, Earthq. Eng. Struct. Dyn. 1986, Vol. 14: 891-908.
    [149] Lysmer and Kuhlemeyer. Finite Dynamic Model for Infinite Media, Engineering Mechanics, 1969, ASCE Vol. 95(EM4): 859-877.
    [150] Lysmer J. 土动力学的分析方法, 地震工程和土动力学译文集, 谢君斐等译, 地震出版 社,1985.
    [151]Martin P.P.and Seed H.B.Simplified procedure for effective stress analysis of ground response.J.Geotech Engng Div,ASCE,Vol.101(5):423-438.
    [152]Makris N.Soil-pile interaction during the passage of Rayleigh waves:an analytical solution.Earthquake engineering and structural dynamics,1994,Vol.23:153-167.
    [153]Makris N.and Badoni D.Seismic response of pile groups under oblique-shear and Rayleigh waves,Earthquake Engineering & Structural Dynamics,1995,Vol.24:517-532.
    [154]Matsui J.Ohtomo K.Kawai I etc.Research on streamlining seismic safety evaluation of underground reinforced concrete duct-type station-Part-3-Analytical simulation by RC Macro-model and simple soil model,Transactions,SMiRT 16,Washington D.C.August,2001,Paper #1296.
    [155]Miller G.F.and Pursey H.On the partition of energy between elastic waves in a semi-infinite solid,Proc.Royal Society,London,1955,A,233:55-69.
    [156]Michael O'Rouker and Leon R.L.Wang,地下管道的地震反应,地震工程和土动力学译文集,谢君斐等译,地震出版社,1985.
    [157]Monsees J.E.and Merritt J.L.Seismic Modeling and Design of Underground Structures,Numerical Methods in Geomechanics,Innsburck,1988,1833-1842.
    [158]Nakamura H.and Yamazaki F.,Spatial Variation of Earthquake Ground Motion Based on Dense Array Records,Transaction of the 13th International Conf.On Structural Mechanics in Reactor Technology,Vol.13,1995,19-24.
    [159]Newmark N.M.Problems in wave propagation in soil and rock,Proc.of international symaposium on wave propagation and dynamic properties of earth materials,New Mexico,1968,7-26.
    [160]Newmark N.M.and Rosenblueth E.Fundamentals of Earthquake engineering,Pretiee-hall,1971.
    [161]Nishiyama S.,Kawama I.,Haya H.Analysis of the Cut and Cover Tunnels Damaged in the South-Hyogo Earthquake of 1995,13th World Conference on Earthquake Engineering,Canada,2004,Paper No.1511.
    [162]Okamoto S.et al.Behaves of submerged tunnels during the earthquakes,Proceedings of the 5~(th)WCEE,1973,544-553.
    [163]Okamoto S.Introduction to Earthquake Engineering,Tokyo University Press,1984.364-368.
    [164]Oliveria C.S.,Hong Hao and Penzien J.Ground Motion Modeling for Multiple-Input Structural Analysis,Structural Safety,1991,Vol.10(1-3):79-93.
    [165]Penzien J.Seismically Induced Racking of Tunnel Linnings,Earthquake Engineering and Structural dynamics,2000,29:683-691.
    [166]Paulo Miguel Lopes Pinto.Coupled Finite Element Formulations for Dynamic Soil-Structure Interaction[Dissertation].Florida:University of Florida,1988:78-80.
    [167]Prasad S.K.Towhata I.and Chandradhara G.P.etc.Shaking table tests in earthquake geotechnical engineering, 2004, Current Science, Vol. 87(10): 1398-1404.
    [168] Rodriguez-Roa F. Numerical Analysis of an Experimental Tunnel, Proceedings of 11-(th) International Conference on Soil Mechanics and Foundation Engineering, San Francisco, Balkema, 1985,789-792
    [169] Schneider J. F., Abrahamson N.A., Somerville P.G. and Stepp J.C. , Spatial Variation of Ground Motion from EPRI's Dense Accelerograph Array at Park Field, Califounia, Proceedings of Fourth U.S. National Conference on Earthquake Engineering, May 20-24,1990, Palm Spings, California, Vol. 1: 375-384.
    [170] Shawky A. and Maekawa K. Collapse Mechanism of Underground RC Structures during Hanshin Great Earthquake, Proceedings of the First International Conference on Concrete Structures, Cairo, Egypt, 1996: 1-17.
    [171] Shawky A. and Maekawa K. The collapse mechanism of a subway station during the Great Hanshin Earthquake, Cement and Concrete Composite, 1997, Vol.19:241-257.
    [172] Sharma K. G. and Desai C. S. Analysis and Implementation of Thin-Layer Element for Interfaces and Joints, J. Eng. Mech., 1992, ASCE 118(EM12): 2442-2462.
    [173] Smith J. A Non-reflecting Plane Boundary for Wave Propagation Problems, J. Comp. Phys. 1974, Vol. 15(4): 492-503.
    [174] Smith. J, The Application of Finite Element Analysis to Body Wave Problems, Geophysical J. R. Astr. Soc. 1975, Vol 42: 747-768.
    [175] Shinozuka M. and Deodatis G. Simulation of stochastic processes by spectral representation, Applied Mechanics Reviews, 1991, Vol. 44: 191-204.
    [176] Shinozuka M. and Deodatis G. Simulation of multi-dimensional Gaussian stochastic fields by spectral representation, Applied Mechanics Review, 1996, Vol. 49(1): 29-53.
    [177] Somerville P.G. ,Mclaren J.P. and Saikia C. K., Site—Specific Estimation of Spatial Incoherence of Strong Ground Motion, in Earthquake Engineering and Soil Dynamics II : Recent Advances in Ground Motion Evaluation, Geotechnical Special Publication, No. 20, ASCE, New York, 1988,188-202.
    [178] Somerville P.G.. ,Mclaren J.P. and Sen M. K. , The Influence of Site Conditions on the Spatial Incoherence of Ground Motions, Structural Safety, 1991, Vol. 10(1-3): 1-13.
    [179] St. John C.M. and Zaahrah T.F. Aseismic design of underground structures, Tunneling Underground Space Technology, Vol.22: 165-197.
    [180] Sugimoto Rie and Bettess Peter, Coupling of mapped wave infinite elements and plane wave basis finite elements for the Helmholtz equation in exterior domains, Communications in Numerical Methods in Engineering, 2003, Vol. 19: 761-777.
    [181] Toki K. et al. Separation and Sliding between Soil and Structure during Strong Ground Motion[J], Earthquake Engineering & Structural Dynamics, 1981, Vol. 9:263-277.
    [182] Toki K. and Miura F. Non-linear Seismic Response Analysis of Soil-Structure Interaction System, Earthquake Engineering & Structural Dynamics, 1983, Vol. 11: 77-89.
    [183] Toki K. and Fu C. S., Generalized Method for Non-Linear Seismic Response Analysis of a

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700