用户名: 密码: 验证码:
不完备信息下的河流健康风险预估模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河流健康问题危及国家安全和社会稳定。黄河流域,支流众多,河流健康系统风险和危机问题依然十分突出,其中尤以洪水、水质、水生态、水环境的风险和危机尤其严峻。
     本文针对河流系统健康风险、河流健康的径流条件和河流健康的风险和危机预估等问题进行了系统研究。在解读了风险与不确定性概念基础上,对河流系统健康风险概念给出了新的界定;分析了河流健康风险的各种影响因素之间的影响与联系,以及多种影响因素的综合效应,并对某些因素的影响进行了定量分析;结合河流健康风险分析的特点,着重系统的开展了信息云化扩散的理论与方法、河流健康的径流条件确定方法、河流健康的风险-危机度预估方法等的研究,并应用于黄河健康的风险分析,取得了一些创新性成果。
     (1)长期以来,数据统计分析方法在水文学中得到了广泛的应用,其目的是确定水文风险,即估计水文变量的超越概率。为估计水文风险,获取相关的长序列资料是极为重要的。但实际情况是,长序列特征极值数据的搜集是相当困难的,其样本数多为小样本。即使是获得了“长序列”数据,其数据的完备性仍然无法保证,由此而带来的是风险估计的精确度难以保障。针对水文特征极值数据的有限性(“小样本”)及非完备性,本文对适应于小样本数据的信息扩散估计方法进行了改进,提出了一种扩散窗宽多目标函数的综合优化法,并通过实例检验,表明这种方法较充分顾及了不同观测值的扩散能力,进一步提高了概率密度估计的精度,为风险分析提供较为客观的依据。
     (2)从信息的完备角度来看,所搜集到的信息均属非完备的,而非完备信息不仅提供了模糊信息,还提供了随机信息。针对非完备知识样本空间的模糊特征和随机特征,本文运用李德毅院士的云理论,对黄崇福教授提出的信息扩散理论和方法进行推广,提出了信息云化扩散原理和云化扩散估计方法,并指出信息云化扩散是黄崇福教授的信息扩散的推广,信息扩散是信息云化扩散的特例。经检验表明该推广是合理而有效的,较好地利用非完备信息中的模糊信息和随机信息,提高了有关概率密度分布估计的精度和适应性,丰富了水文水资源要素风险分析的模型体系。
     (3)在风险评价中,通常采用参数估计法,即先假设一个统计模型用以适配样本资料,然后用来估计某极值事件。而此方法通常存在两种不确定性:模型不确定性和参数不确定性。特别是对水文系统,各种水文要素的样本不多,且其形成的影响因素复杂,要假设出合乎实际情况的概率分布函数并进行参数估计是比较困难的。本文针对上述问题,给出了基于信息云化扩散的风险分析模型,通过实例计算,并与传统的方法比较,表明利用基于信息云化扩散的风险分析模型对随机事件风险水平进行分析的有效性,计算精度高,速度快,实现方便。
     (4)运用云化扩散理论和方法,对黄河干流的“水多、水少”风险问题进行风险分析,得到了相应的概率密度分布估计,并有以下结论:黄河干流上中下游的年最大流量风险水平和年最小流量差异均较大,其黄河中游的洪水较为频繁,极易导致洪灾;黄河下游的枯水较为频繁,极易出现断流。
     (5)本文在界定了生态流速和生态水深的概念的基础上,提出了一种同时考虑河道本身参数(湿周、糙率、水力坡度)和维持某一生态功能所需河流流量的水力学方法——生态水深流速法来估算河流健康的径流条件。经实例检验表明,生态水深流速法的计算结果符合实际情况,能基本满足河流生态系统健康对生态流量的要求,较好地适应了不同年型、不同时段河道形态的动态变化。
     (6)河流健康状况的预估问题是水安全风险管理和危机管理的主要研究内容之一。由于河流系统的复杂性、动态性、开放性、非线性,给河流健康状况的预估带来诸多困难。其中的核心问题在于预估指标如何建立,预估方法如何确定。本文就河流健康状况的预估问题,从风险和危机的角度,提出了河流健康风险-危机度预估方法,并应用于黄河健康的水多和水少风险-危机预估,结果表明该方法的实用性和有效性,为河流健康状况预估提供了一种有效的方法。
The problem of river health endangers badly national security and social stability in the lastest years. Systematic risk and crisis of river health system in the Yellow River basin with many tributaries, are very outstanding, especially on the flood, water quality, water ecology and water environment.
     This paper mainly researches systematic risk,runoff condition, runoff risk and crisis estimation of river health system, in which the concept of river health system risk is re-definited by deeply understanding the concepts of risk and uncertainties, and analyzing the relation among each influence factor and the comprehensive effect of those influence factors. Furthermore the quantitative analysis to some factors is made, and Combined the characteristics of river health risk analysis, those are studied on the theories and methods of information clouding diffusion, definition method of river health runoff condition and estimation method of risic-endangement degree. In the end, the theories and methods applied to risk analysis of the Yellow River health, which has made some innovation achievements.
     (1) For a long time, the Statistical Analysis Method of Datum has been widely applied in Hydrology to confirm hydrological risk, which purpose is to estimate the exceedance probability of hydrological variables. Long sequence data acquirement is very important to estimate hydrological risk. In fact, it is too complicated to collect long sequence feature extreme data because most of samples are small samples. Even if“long sequence”data has been acquired, data integrity still can not be ensured. As the result of this, the accuracy of risk estimation can not be ensured. In this paper, in allusion to the finiteness (“small sample”) and incompleteness of hydrological feature extreme data, information diffusion method for small sample data was improved and spread window-width multi-objective colligation optimization method was presented. By application of this method, the diffusivity of different observations was sufficiently considered, and the accuracy of probability density estimation was further improved, and objective basis was supplied for risk estimation.
     (2) The informations collected are non-perfect, those informations not only supply fuzzy information but also stochastic information. Aim at the the characteristic of fuzzy and stochastic of non-perfect sample space, combined the cloud theory to extension the information diffusion principle and method, information clouding diffusion principle and method is put forward, and the fact that information clouding diffusion is the precedent of information diffusion. The test indicates that the extension is reasonable and effective, the fuzzy and random information of non-perfect knowledge is used fully, the accuracy of the probability density estimation was improved, the risk analysis element of hydrology and water resource model is anundanced.
     (3) parameter estimation method is used in risk evaluation, first, a statistical model is supposed to adapt samples ,the one extremum event was estimated. model uncertainty and parameter uncertainty are existed in the method. To hydrological system, the samples of the hydrological factors are not sufficient, and the infection factors that formated is complex, the suppose of the probability distribution function that accord with the practical condition then undergo parameters estimation are impossible. The risk analysis model that based on information clouding diffusion principle is put forward. The result indicates that the analysis based on the model is more validity, more accuracy, more fast, and more convenience.
     (5) By definition of ecological velocity and water-depth, the ecological water depth & flow velocity method that considered wetted perimeter, rough rate, hydraulic gradient of channel and (considered) the water needed that to keep some ecological function simultaneity. The facts indicates that the computation result accord with the facts , can satisfy the basic need of river ecosystem health to ecological flux , can fit the dynamic changes of different annual precipitation and erent period of time of channel morphology perfectly.
     (6) The estimtation of rivers health status is one of the main research contents of water security risk management and crisis management. Because of the complexity, dynamic, openness, nonlinearity of river system, it brings many difficulties to the estimation. The core problem is the set of the prediction index and the ascertainment of the predication method. To improve better the estimation method of river health, the risk & endangement degree estimation model was put forward, and was used in the flood and storage risk & endangement estimation of Yellow River health. The results indicates that the practicality and effectiveness of the method is positive, as an effictive method to the estimitation of rivers health status.
引文
[1]钱正英,张光斗.中国可持续发展水资源战略研究综合报告及各专题报告[M].北京:中国水利水电出版社,2001
    [2]刘昌明,何希吾,任鸿遵.中国水问题研究[M].北京:气象出版社,1996
    [3]王栋,朱元甡.防洪系统风险分析的研究评述[J].水文,2003,23(2):17~20
    [4]朱元甡.洪泛区洪灾风险的分析和管理[J].水利经济,1990,(2):55~62
    [5]Yen B C,Ang A H S.Risk analysis in design of hydraulic projects[A].Proc.1st Inter. Sympo. On Stocha. Hydrau.[C].Chiu C L,University of Pittsburg,1971.694~709
    [6]Tang W H,Yen B C.Hydrologic and hydraulic design under uncertainties[A].Proc.Inter.Sym. Uncertainties in Hydro.and Water Resour Systems[C],V2:866-882,Tucson, Ariz., 1972
    [7]Ang A H S,Tang W H.Probability concepts in engineering planning and design[A].Decision,Risk,and Reliability[M].Vol.II.N John Wiley & Sons,Inc.,1984
    [8]Todorovic P,Zelenhasic E.A stochastic model for flood analysis[J].Water Resour.Res.,1970,6(6):1641~ 1648
    [9]Todorovic P,Rousselle J.Some problems of flood analysis[J].Water Resour.Res., 1971,7(5): 1144~1150
    [10]Wood E F.Bayesian approach to analyzing uncertainty among flood frequency models[J].Water Resour. Res.,1975,11(6):839~843
    [11]Ashkar,Rousselle J.Design discharge as arandom variable: a risk study[J].Water Resour.Res.,1981,17(3): 577~591
    [12]Archer D R.Seasonality of flooding and the assessment of flood risk[J].Proc.Inst.Civ.Eng.,1981,70: 1023~1035
    [13]Kuczera G.On the relationship between the reliability of parameter estimates and hydrologic time series data used in calibration[J].Wsour.Res.,1982,18(1):146~154
    [14]Stedinger J R,Taylor M R.Synthetic stream flow generation 1.Model verification and validation 2.Effect of parameter uncertainty[J].Water Resour.Res.,1982,18(4):919~924
    [15]Stedinger J R.Design events with specified flood risk[J].Water Resour.Res.,1983,19(2):511~522
    [16]Diaz-Granados M A,Valdes J B,Bras R L.A Physically based flood frequency distribution[J].Water Resour.Res.,1984,20(7):995~1002
    [17]Rasmussen P F,Rosbjerg D.Risk estimation in partial duratio nseries[J].Water Resour.Res.,1989, 25(11):2319~2330
    [18]李景玉,徐宗学.洪水风险率 Poisson 模型应用分析[J].数理统计与应用概率,1988,3(4):392~401
    [19]徐宗学,叶守泽.洪水风险率 CSPPC 模型及其运用[J].水利学报,1988(9):1~8
    [20]徐宗学,邓永录.洪水风险率 HSPPB 模型及其应用[J].水力发电学报,1989(1):46~55
    [21]徐宗学,曾光明.洪水频率分析 HSPPC 模型应用研究[J].水科学进展,1992,3(3):175~180
    [22]Xu Z X, Li J Y, Ito K. Clustering stochastic point process model for flood risk analysis[J]. Stocha. Hydro.l and Hydrau.,1998,12(1):53~64
    [23]Ettrick T M, Mawdllsey J A, Metcalfe A V. The influence of antecedent catchment conditions on seasonal flood risk[J].Water Resou Res,1987,23(3):481~488
    [24]Futter M R, Mawdsley J A, Metcalfe A V.Short-term flood risk prediction: a comparison of the cox regression model and a distribut[J].Water Resour.Res.,1991,27(7):1649~1656
    [25]向立云.洪水风险分析及近期防洪策略[J].灾害学,1992,7(3):79~83
    [26]姜树海.基于随机微分方程的河道行洪风险分析[J].水利水运科学研究,1995,(2):126~137
    [27]Anselmo V, Galeati G, Palmirei S, etal.Flood risk assessment using an intergrated hydrological and hydraulic modeling approach a case tudy[J].J.Hydrol,1996,175:533~554
    [28]王燕生.防洪调度风险分析[J].水力发电,1996(10):19~21
    [29]华家鹏,李国芳,朱元甡.洪水保险研究[J].水科学进展,1997,8(3):233~239
    [30]Fernandez B,Sales J D.Return period and risk of hydrologic eventsⅠ : Mathematical[J].J.Hydrolo.Engr., 1999,4(4):297~307
    [31]Fernandez B,Sales J D.Return period and risk of hydrologic eventsⅡ :Applications[J].J.Hydrolo.Engr., 1999,4(4):308~316
    [32]Clarke R T.Uncertainty in estimation of mean annual flood due to rating-curve indefinition[J].J.Hydrol, 1999, 222:185~190
    [33]Sen Z.Simple risk calculations in dependent hydrological series[J].Hydrolo.Scien.,1999,44(6):871- 878
    [34] 陈 元 芳 . 随 机 模 拟 中 模 型 与 参 数 不 确 定 性 影 响 的 分 析 [J]. 河 海 大 学 学 报 ( 自 然 科 学版),2000,28(1):32~ 35
    [35]徐玉英,王本德.水库洪水预报子系统的风险分析[J].水文,2001,21(2):1~4
    [36]刘俊萍,田峰巍,黄强.水库洪水调度中的风险分析方法[J].水文,2001,21(3):1~3
    [37]陈守煜.堤防设计洪水风险分析[J].黑龙江水专学报,2001,28(4):1~3
    [38]黄振平,沈福新,朱元甡,等.基于雨洪预报信息的防洪决策风险分析方法研究[J].水科学进展,2001, 12(4):499~503
    [39]冯利华.基于信息扩散理论的洪水风险分析[J].信息与控制,2002,31(2):164~165,170
    [40]胡志根,刘全,贺昌海,等.基于 Monte-Carlo 方法的土石围堰挡水导流风险分析[J].水科学进展,2002, 13(5):634~638
    [41]梅亚东,谈广鸣.大坝防洪安全的风险分析[J].武汉大学学报(工学版),2002,35(6):11~15
    [42]肖义,郭生练,周芬,等.基于风险分析的大坝设计洪水标准研究[J].水力发电,2003,29(11):6~9
    [43]汪新宇,张翔,赖国伟.防洪体系超标洪水综合风险分析[J].水利学报,2004,(2):83~87
    [44]王才君,郭生练,刘攀,等.三峡水库动态汛限水位洪水调度风险指标及综合评价模型研究[J].水科学进展,2004,15(3):376
    [45]徐天群,陈跃鹏.防洪风险分析中改进的组合分布模型研究[J].数学的实践与认识,2004,34(5):84~90
    [46]杨侃,张洪波,陈欣,等.基于风险分析的流域防洪系统调度决策模型研究[J].河海大学学报(自然科学版),2004,32(5):496~499
    [47]姜树海,范子武.水库防洪预报调度的风险分析[J].水利学报,2004,(11):102~107
    [48] Prakash A.Statistical determination of design low flows[J].J. Hydrol.,1981,31:109~118
    [49]Loganathan G V,Kuo C Y,McCormick T C.Frequency analysis of low flow[J].Nordic Hydrology, 1985, 16:105~128
    [50]Loganathan G V,Mattejat P ,Kuo C Y ,etal.Frequency analysis of low flows:hypothetical distribution methods and a physically base approach[J].Nordic Hydrology,1986,17:129~150
    [51]Tasker G D. A comparison of methods for estimating low flow characteristics of streams[J].Water Resour Bull ,1987,23(6):1077~1083
    [52]Singh V P.On derivation of the extreme value(EV) type Ⅲ distribution for low flows using entropy[J]. Hydrol Sci J ,19876,32:521~533
    [53]Vogel R M,Charles N K.Low-flow frequency analysis using probabilitu-plot correlation coefficients[J].J Water Resour Plann Manage,ASCE,1989, 115(3): 338~357
    [54]Vogel R M,CharlesN K.The value ofs tream low record augmentation procedures in low flow and flood-flow frequency analysis[J].J Hydrol,1991,125:259~276
    [55]Nathan R J, McMahon T A. Practical aspects of low-flow frequency analysis[J].Water Resour Res ,1990b, 26(9):2135~2141
    [56]Durrans S R.Low-flow analysis with a conditional Weibull tail model[J].Water Resour Res ,1996a, 32(6):1749~1760
    [57]Durrans S R,Tomic S. Regionalization of low-flow frequency estimates:an Alabama case study[J].Water Resour Bull ,1996b,32(1):23~37
    [58]Boughton W C.A Frequency Distribution for Annual Floods[J].Water Resources Research,1980, 16(2,1):347~354
    [59]O’conner D J.Comparison of probability distributions in the analysis of drought flow[J].Water and Sewage Works,1964,11:180
    [60]Wayland E J.Low-flow frequency exacerbation by irrigation withdrawals in the agricultural Midwest under various climate change scenarios[J].Water Resources Research,1999,35(7):2237~2246
    [61]梁虹,王在高.喀斯特流域枯水径流频率分析—以贵州省河流为例[J].中国岩溶,2002,21(2):106~113
    [62]涂新军,陈晓宏.基于 PPCC 检验法的枯水径流概率分布选型研究[J].水电能源科学,200 6,24(1):76~79
    [63]冯国章,王双银.河流枯水流量特征研究[J].自然资源学报,1995,10(2):127~135
    [64]李秀云.滇西地区枯水径流与水资源的开发利用[J].山地研究,1987,(2):108~113
    [65]汤奇成, 李秀云.新疆枯水流量的初步计算[J].干旱区地理,1985,8(4):15~20
    [66]王继辉,郭履维.贵州省诸河流枯水规律初步分析[J].水文,1995,15(5) :54~58
    [67]刘霞.风险决策:过程心理与文化[M].北京:经济科学出版社,1998
    [68]蒋影明.风险研究:逾越社会发展的根本障碍[www].www.ckzl.net,2006.01.15
    [69]Davidson P.Finacial markets,investment and employment[M].In:Barriers to Full Employment,J. Kregel, E.Matzner and A.Roncaglia(eds.),London:Macmillan,1998,73~92
    [70] Mowbray A H,Blanchard R H,Williams C A.Insurance.4th ed[M]·New York:McGraw-Hill,1995
    [71] Williams C A, Heins R M.Risk Management and Insurance[M]·New York:McGraw-Hill,1985
    [72] Rosenbloom J S.A Case Study in Risk Management[M].Prentice Hall,1972
    [73] Crane F G.Insurance Principles and Practices.2nd ed[M].New York:Wiley,1984
    [74]王明涛.证券投资风险计量、预测与控制[M].上海:上海财经大学出版社,2003
    [75]叶青.中国证券市场风险的度量与评价[M].北京:中国统计出版社,2001
    [76]胡宣达,沈厚才.风险管理学基础—数理方法[M].南京:东南大学出版社,2001
    [77]李瑞昌.风险、知识与公共决策—西方社会风险规制决策研究[D].上海:复旦大学博士学位论文,2005
    [78]Ewald F.Insurance ana Risk[M],in G Burchell,c.Gordon and P Miiller(eds) The Foucault Effect,London: Harvester Wheatsheaf,1991,PP198~199
    [79]Johnson B B,Covello V T.(eds)The Social and Cultural C0nstruction of Risk[M].Dordrecht:Reidel,1996
    [80] [英]安东尼·吉登斯,克里斯多弗·皮尔森.现代性--吉登斯访谈录[M].北京:新华出版社,2001
    [81]威洛比,刘秀芳等译.概率和统计[M].北京:文化教育出版社,1983
    [82]米道生,陈天然,李建才等.数学分支巡礼[M].北京:中国青年出版社,1983
    [83]浙江大学数学系.概率论与数理统计[M].北京:人民教育出版社,1979
    [84] Zadeh L A.Fuzzy Sets[J].Information and Contral,1965,(8):338~353
    [85]王国胤.Rough 集理论与知识获取[M].西安:西安交通大学出版社,2001
    [86]邓聚龙.灰色系统(社会与经济)[M].北京:国防工业出版社,1995
    [87]王清印,刘开第,吴和琴.灰色系统的基本元素—灰数[J].华中理工大学学报,1990,(1):47~54
    [88]王光远.未确知信息及其数学处理[J].哈尔滨建筑工程学院学报,1990,23(4):1~9
    [89]王清印.不确定性信息的内涵分析[J].西北民族学院学报,2000,(3):1~5
    [90]刘国东,丁晶.水环境中不确定性方法的研究现状与展望[J].环境科学进展,1996,4(4):46~53
    [91]黄冠华,叶自桐,杨金忠.一维非饱和随机运移模型的谱分析[J].水利学报,1995,(11):1~7
    [92]宋明哲.风险管理[M].台北:中华企业管理发展中心,1984
    [93]黄崇福.信息扩散原理与计算思维及其在地震工程中的应用[D].北京:北京师范大学博士论文,1992
    [94]中华人民共和国水利部,能源部.水利水电工程设计洪水计算规范(SL44-93)[M].北京:水利电力出版社,1993
    [95]金光炎.水文频率计算中估计参数方法评述[J].安徽水利科技,2004(3):38~40
    [96]北京林业大学院.数理统计[M].北京:中国林业出版社,1979
    [97]邹依仁.高级管理统计学[M].辽宁:辽宁人民出版社,1985
    [98]李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究和发展,1995,32(6):16~21
    [99]李德毅. 知识表示中的不确定性[J].中国工程科学,2000,2(10):73~79
    [100]LI Deyi.Soft inference mechanism based on cloud model.In: Proc of the Joint Int’l Conf and Symposium on Logic Programming.Martin,Germany,1996,38~63
    [101]Li Deyi,Cheung David,Ng V,etal.Uncertainty reasoning based on cloud models in controllers[J]. Computers and Mathematics with Application Elsevier Science,1998,35(3): 99~123
    [102]Li Deyi,Di Caichang,Li Deren,etal.Mining association rules with linguistic cloud models[J].Journal of Software,2000,11(2):143~158
    [103]Li Deyi,Di Kaichang,Li Deren,etal.Mining association rules with linguistic cloud models[R]. PAKDD’ 98,The Second Pacific-Asia Conference on Knowledge Discovery & Data Mining,Melbourne, Australia, April,1998
    [104]邸凯昌.空间数据发掘与知识发现[M].武汉:武汉大学出版社,2001
    [105]李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28~34
    [106]刘常昱,李德毅,杜鹢等.正态云模型的统计分析[J].信息与控制,2005,34(2):236~239,248
    [107]李镇敌.普通物理学[M].北京:清华大学出版社,1993,406~411
    [108]苏煜城.数学物理方程[M].北京:气象出版社,1998,49~60
    [109]王新洲,游扬声,汤永净.最优信息扩散估计理论及其应用[J].地理空间信息,2003,1(1):10~17,21
    [110]邢贞相,付强,芮孝芳.两种实用的洪灾损失频率分析方法[J].系统工程理论与实践,2006,26(2):127 ~132
    [111]王新洲,游扬声,汤永净.最优信息扩散估计理论及其应用[J].地理空间信息,2003,01(1):10~17,21
    [112]Kaplan s.The words of risk analysis[J].Risk Analysis,1997,17(4):406~419 [113,115]Smakhtin V U.Low Flow Hydrology: A Review[J].Journal of Hydrology, 2001 (240): 147~186
    [114]黄国如,陈永勤.枯水径流若干问题研究进展[J].水电能源科学,2005,23(4):61~65
    [116]Onoz B,Bayazit M.Troughs under threshold modeling of minimum flows in perennial streams[J]. Journal of Hydrology,2002(258):187~107
    [117]周芬,郭生练,熊立华.枯水频率分析线型比较研究[J].水文,2006,26(1):28~33
    [118]方彬,郭生练,肖义等基于低定量取样的枯水频率分析[J].武汉大学学报(工学版),2006,39(2):1~4
    [119]中华人民共和国水利部.水利水电工程水文计算规范 SL.278-2002[S].北京:中国水利水电出版社, 2002
    [120]Chow V T,Maidment D R, Mays L W.Applied Hydrology[M],McGraw-Hill, NewYork, NY,1988
    [121]刘光文,等.水文分析与计算[M].北京:高等教育出版社,1989
    [122]金岚.环境生态学[M].北京:高等教育出版社,1992
    [123]Thame R .A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies[J].River Research and Applications,2003, 19:397~441
    [124]杨志峰,张远.河道生态环境需水研究方法比较[J].水动力学研究与进展,2003A,18 (3):294~301
    [125]King J M, Tharme R E. Assessment of the Instream Flow Incremental Flow Methodology and initial development of alternative Instream Flow methodologies for South Africa[J].Water Research Commission Report 1994.295(1): 590
    [126]Orth D J, Maughan O E. Evaluation of the Incremental Methodology for Recommending In-stream Flows for Fishes[J].Trans Am Fish Soc,1982,111(4):413~445
    [127]王西琴,刘昌明,杨志峰.河道最小环境需水量确定方法及其应用研究(I)理论[J].环境科学学报, 2001, 21(5):544~547
    [128]王西琴,杨志峰,刘昌明.河道最小环境需水量确定方法及其应用研究(II)应用[J].环境科学学报, 2001,21(5):548~552
    [129]宋进喜,曹明明,李怀恩等.渭河(陕西段)河道自净需水量研究[J].地理科学,2005,25(3):310~316
    [130]石伟,王光谦.黄河下游输沙水量研究综述[J].水科学进展,2003,14(1):118~120
    [131]罗华铭,李天宏,倪晋仁等.多沙河流的生态环境需水特点研究[J].中国科学 E,2004,34(SUP.I):155~ 164
    [132]刘小勇,李天宏,赵业安等.黄河下游河道输沙用水量研究[J].应用基础与工程科学学报,2002,10(3): 253~262
    [133]石伟,王光谦.黄河下游生态需水量及其估算[J].地理学报,2002,57(5):595~602
    [134]宋进喜,刘昌明,徐宗学等.渭河下游河流输沙需水量计算[J].地理学报,2005,60(5):717~724
    [135]郑冬燕,夏军,黄友波.生态需水量估算问题的探讨[J].水电能源科学, 2002,20(3):3~6
    [136]韩曾翠,尤爱菊,徐有成等.强潮河口环境和生态需水及其计算方法[J].水利学报,2006,37(4):395~ 402
    [137]严登华,何岩,邓伟等.东辽河流域河流系统生态需水研究[J].水土保持学报,2001,15(1):46~49
    [138]杨书敏,邵东国,沈新平.南方季节性缺水河流生态环境需水量计算方法[J].水利学报,2005,36(11): 1341~1346
    [139]刘昌明,门宝辉,宋进喜.河道内生态需水量估算的生态水力半径法[J].自然科学进展,2007,17(1): 42~48
    [140]胡波,崔保山,杨志峰,等.澜沧江(云南段)河道生态需水量计算[J].生态学报,2006,26(1):163~173
    [141]周泽松.水文与地貌[M].上海:华东师范大学出版社,2002,71~72
    [142]Chow V T. Open-channel hydraulics[M].New York:McGraw-Hill Book Company lnc,1959,24~25
    [143]薛朝阳.确定水力半径的新方法[J].河海大学学报,1995,23(2):107~112
    [144]吴持恭.水力学(上册)[M].北京:高等教育出版社,1993,183~184
    [145]叶镇国.水力学及桥涵水文[M].北京:人民交通出版社,2002
    [146]Ubertini L, Manciola P, Casadei S. Evaluation of the minimum instream flow of the Tiber river basin[J]. Environmental Quality in Watersheds,1996,41(2):125~136
    [147]Christopher J, Gippel, michael J. Stewardson,use of wetted perimeter in defining minimum environmental flows[J]. regulated rivers: research & management,1998,14:53~67
    [148]数学手册编写组.数学手册[M].北京:人民教育出版社,1979
    [149]徐志侠,王浩,董增川.河道与湖泊生态需水量理论与实践[M].北京:中国水利水电出版社,2005
    [150]黄永基,马填珍.区域水资源供需分析方法[M].南京:河海大学出版社,1990
    [151]刘健康.高级水生生物学[M].北京:科学出版社,1999
    [152]邱德华. 区域水安全战略的研究进展[J].水科学进展,2005,16(2):305~312
    [153]夏军.华北地区水循环与水资源安全:问题与挑战[J].地理科学进展,2002,21(6):517~526
    [154]姜文来.中国 2l 世纪水资源安全对策研究[J].水科学进展,2001,12(1):66~71
    [155]王铮,冯皓洁,许世远.中国经济发展中的水资源安全分析[J].中国管理科学,2001,19(4):47~56
    [156]冉圣宏,陈吉宁,刘毅.区域水环境污染预警系统的建立[J].上海环境科学,2002,21(9):541~544
    [157]董志颖,王娟,李兵.水质预警理论初探[J].水土保持研究,2002,9(3):224~226
    [158]何焰,由文辉.水环境生态安全预警评价与分析—以上海市为例[J].安全与环境工程,2004,11(4):1~ 4
    [159]王浣尘.采用可能度和满意度的多目标决策方法[J].系统工程理论与实践,1982(1):11~21
    [160]陈绍金.水安全系统评价预警与调控研究[D].南京:河海大学公共管理学院博士论文,2005
    [161]陈家琦,王浩,杨小柳.水资源学[M].北京:科学出版社,2002
    [162]Bryan E H,谭辉明等译.美国防洪减灾总报告及研究规划[M].北京:中国科学技术出版社,1997
    [163]钱正英,张光斗.中国可持续发展水资源战略研究综合报告[M].北京:中国水利水电出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700