用户名: 密码: 验证码:
工程随机动力作用的正交展开理论及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作用于工程结构的动力荷载不仅随时间变化(具有动态特性),而且大多具有明显的随机性。经典的随机振动理论,一般用功率谱密度函数来描述这类随机动力作用。在本质上,功率谱密度函数是平稳随机过程的二阶数值特征,因此很难全面反映原始随机过程的丰富概率信息。事实上,建立在二阶数值特征意义上的随机振动分析仅能给出结构响应(无论是平稳还是非平稳)的数值特征解答,难以获得结构可靠度的精确解答。由此构成了结构可靠度理论发展中的一个瓶颈问题。有鉴于此,本文基于Karhunen-Loeve分解的基本原理,深入开展了工程随机动力作用的正交展开理论及其应用研究。
     对于随机过程,Karhunen-Loeve(K-L)分解为人们提供了从独立随机变量集合的角度研究随机过程的可能性。其基本思想在于把随机过程描述为由互不相关的随机系数所调制的确定性函数的线性组合形式。在实际问题中,K-L分解往往需要求解Fredholm积分方程,除少数情况外,获得其解析解答是相当困难的。为避免求解Fredholm积分方程的困难,本文首先建议了基于标准正交基的随机过程(随机场)展开法。研究证明:当展开项数趋于无穷大时,基于标准正交基的展开法等价于K-L分解法。而由于引入基于标准正交基的二重分解技巧,使得本文建议方法可以以较少的展开项数逼近原随机过程。在此基础上,通过对Fourier正交基和Hartley正交基的比较研究,本文进一步建议了采用Hartley正交基作为展开函数集实施对随机过程正交展开的基本方法。
     以上述理论为基础,进行了基于Hartley正交基的地震动随机过程的正交展开研究。研究表明:直接对地震动加速度过程实施正交展开,很难达到以较少展开项数反映原随机过程的目的。为此,本文从地震动位移随机过程的正交展开出发,引入一类能量等效原理,获得了地震动加速度随机过程的正交展开公式。研究表明:沿着这一途径,可以将地震动随机过程展开为由少量独立随机变量所调制的确定性函数的线性组合形式。
     以结构风作用为背景,本文进行了脉动风速随机过程的正交展开研究。通过引入虚拟脉动风位移过程的概念,应用能量等效原理,可以将反映脉动风特性的随机过程表示为由10个左右的独立随机变量所表述的确定性函数的线性组合形式;在此基础上,针对工程中常用的线性指数型空间相关函数,利用随机场的Karhunen-Loeve分解,建立了一类随机脉动风场正交展开模型。利用数论选点方法,验证了随机脉动风场正交展开方法的可行性与有效性。
     近年来,本研究梯队所发展的概率密度演化方法和等价极值事件思想,可以用来分析结构随机动力反应的概率密度分布及其随时间的演化过程,同时还能准确计算考虑复杂失效准则下的结构动力可靠度。应用本文提出的基于Hartley正交基的随机过程正交展开方法,结合这些方法,进行了结构非线性随机地震反应分析与动力可靠度研究。研究表明:本文建议方法为进行复杂结构非线性随机振动响应分析及动力可靠度计算打开了方便之门。
     最后,简要讨论了下一步需要研究的问题。
The dynamic loads acting on engineering structures not only vary with time, butalso have apparent stochastic characteristics. In classical random vibration theory,stochastic dynamic loads are generally depicted by the power spectral densityfunction, which actually is the second-order statistical value of a stationary stochasticprocess. Therefore, the probabilistic information of the original stochastic process cannot be roundly reflected. Whereas, the classical random vibration analysis can onlygive numerical characteristic solutions of structural response, not obtain the precisesolution of structural reliability. This, consequently, leads to a bottleneck for thedevelopment of structural reliability theory. To solve this predicament, the orthogonalexpansion method of engineering stochastic dynamic loads and its application arethoroughly studied in this paper based on the rationale of Karhunen-Loevedecomposition.
     The Karhunen-Loeve (K-L) decomposition provides a feasible approach to studya stochastic process using a set of random variables. Its basic idea is to represent astochastic process as a linear combination of deterministic functions modulated byuncorrelated random coefficients. Practically, the K-L decomposition needs to solvethe Fredholm integral equation. However, the analytical solutions of the Fredholmintegral equation are generally unavailable except for few cases, thus an expansionmethod based on normalized orthogonal bases is first proposed to decomposestochastic process. It has been proved that this method is equivalent to theKarhunen-Loeve decomposition when expanding terms N→∞. Further, after thecomparative study of the Fourier orthogonal bases and Hartley bases, we choose theHartley orthogonal bases to expand the stochastic process.
     Utilizing the above method, the stochastic process for earthquake ground motionis carried out based on the Hartley orthogonal expansion bases. In order to capture themain probabilistic characteristics of seismic ground motion, we carry out theorthogonal expansion directly on the seismic displacement process. Further by using the principle of energy equivalence, the expanding expressions of seismicacceleration process is achieved with 10 random variables.
     This orthogonal expansion method is also applied to the research on thesimulation of random wind velocity fields. First the random wind velocity field isdecomposed into the product of a stochastic process and a random field, whichrepresent the temporal property and the spatial correlation of wind velocityfluctuations, respectively. The stochastic process for wind velocity fluctuations maybe represented as a finite sum of deterministic time functions with correspondinguncorrelated random coefficients by the orthogonal expansion. Similarly, the randomfield can be expressed as a combination form with 5 random variables by theKarhunen-Loeve decomposition. Finally, a numerical example is given todemonstrate the accuracy and effectiveness of this procedure using the numbertheoretical method.
     Since the recently developed probability density evolution method (PDEM) iscapable of capturing instantaneous probability density function and its evolution oflinear and/or nonlinear response of structures. So it is natural to combine the PDEMand the foregoing orthogonal expansion of seismic ground motion to study thenonlinear random earthquake response. Furthermore, the aseismatic reliability ofstructures is assessed using the idea of equivalent extreme-value, which can be usedaccurately to evaluate structural systems under compound failure criterion.
     Finally, further researches are briefly discussed.
引文
[1] 朱位秋.随机振动[M].北京:科学出版社,1992.
    [2] 张森文,庄表中,欧阳怡,等.我国随机振动研究近10年来的进展[J].振动与冲击,1997,16(3):1-8.
    [3] Rice S.O. Mathematical analysis of random noise [J]. Bell System Technical Journal, 1944, 23(3): 282-332, and 1945, 24(1): 46-156. Reprinted in: N. Wax (Ed.), Selected Papers on Noise and Stochastic Process, Dover Publications, Inc., New York, 1954, p. 133-294.
    [4] Crandall S.H. Random vibration. The MIT Press, 1958.
    [5] Crandall S.H, Mark W.D. Random vibration in mechanical systems [M]. New York: Academic Press, 1963.
    [6] Lin Y.K. Probabilistic theory of structural dynamics [M]. New York: McGraw-Hill, 1967.
    [7] 星谷胜(著),常宝琦(译).随机振动分析[M].北京:地震出版社,1977.
    [8] 甘幼琛,谢世浩.随机振动的基本理论与应用[M].长沙:湖南科学技术出版社,1982.
    [9] 庄表中,王行新.随机振动概论[M].北京:地震出版社,1982.
    [10] Newland D.E. An introduction to random vibrations and spectral analysis [M]. (Second edition). Longman inc., New York, 1984.
    [11] 季文美,方同,陈松淇.机械振动[M].北京:科学出版社,1985.
    [12] Yang C.Y. Random vibration of structures [M]. New York: John Wiley & Sons, 1986.
    [13] 庄表中,陈乃立,高瞻.非线性随机振动理论及应用[M].杭州:浙江大学出版社,1986.
    [14] 俞载道,曹国敖.随机振动理论及其应用[M].上海:同济入学出版社,1988.
    [15] Roberts J.B, Spanos P.D. Random vibration and statistical linearization [M]. New York: John Wiley & Sons, 1990.
    [16] Lin Y.K, Cai G.Q. Probabilistic structural dynamics: advanced theory and applications [M]. New York: McGraw-Hill Press, 1995.
    [17] 方同.工程随机振动[M].北京:国防工业出版社,1995.
    [18] 欧进萍,王光远.结构随机振动[M].北京:高等教育出版社,1998.
    [19] Cooley J.W, Tukey J.W. An algorithm for the machine calculation of complex Fourier series [J]. Math. Comp., 1965, 19: 297-301.
    [20] 张柄根,赵玉芝.科学与工程中的随机微分方程[M].北京:海洋出版社,1980.
    [21] 林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社,2004.
    [22] Symposium on the response of nonlinear systems to random excitation. Journal of the Acoustical Society of America, 1963, 35 (11): 1683-1721.
    [23] Thomas K, Caughey T. Equivalent linearization techniques [J]. Journal of the Acoustical Society of America, 1963, 35(11): 1706-1711.
    [24] Selcuk Atalik T, Utku S. Stochastic linearization of multi-degree-of freedom non-linear systems [J]. Earthquake Engineering and Structural Dynamics, 1976, 4(4): 411-420.
    [25] Spanos RD. Stochastic linearization in structural dynamics [J]. Applied Mechanics Review, 1981, 34(1): 1-8.
    [26] Zhu W.Q. Stochastic averaging methods in random vibration [J]. Applied Mechanics Reviews, 1988, 41(5): 189-199.
    [27] Roberts J.B. First-passage time for randomly excited nonlinear oscillator [J]. Journal of Sound and vibration, 1986, 109: 33-50.
    [28] Park B.T, Petrosian V. Fokker-Planck equations of stochastic acceleration: a study of numerical method [J]. The Astrophysical Journal Supplement Series, 1996, 103: 255-267.
    [29] Zorzano M.P, Mais H, Vazquez L. Numerical solution for Fokker-Planck equations in accelerators [J]. Physics D, 1998, 113:379-381.
    [30] 戎海武,孟光,王向东等.FPK方程的近似闭合解[J].应用力学学报,2003,20(3):95-98.
    [31] Wehner M.F, Wolfer W.G. Numerical evaluation of path-integral solutions to Fokker-Planck equations [J]. Physical Review A, 1983, 27(5): 2663-2670.
    [32] Naess A, Moe V. Stationary and non-stationary random vibration of oscillators with bilinear hysteresis [J]. International Journal of Non-linear Mechanics, 1996, 31(5): 553-562.
    [33] Yu J.S, Cai G.Q, Lin Y.K. A new path procedure based on Gauss-Legendre scheme [J]. International Journal of Non-Linear Mechanics, 1997, 32(4):759-768.
    [34] Yu J.S, Lin Y.K. Numerical path integration of a nonlinear oscillator subject to both sinusoidal and white noise excitations [C]. Advances in Stochastic Structural Dynamics CRC Press, Boca Raton, FL, USA, 2003.
    [35] Xie W.X, Xu W, Cai L. Study of the Duffing-Rayleigh oscillator subject to harmonic and stochastic excitations by path integration [J]. Applied Mathematics and Computation, 2006, 172(2): 1212-1224.
    [36] 朱位秋.非线性随机动力学与控制[M].北京:科学出版社,2003.
    [37] 李杰.物理随机系统研究的若干基本观点(修订本).同济大学科学研究报告,2006.
    [38] 李杰,陈建兵.随机动力系统中的广义密度演化方程[J].自然科学进展,2006,16(6):712-719.
    [39] Gardiner C.W. Handbooks of stochastic methods for physics, chemistry and the natural sciences (2nd edition). Berlin Heidelberg: Springer-Verlag, 1985.
    [40] 柯尔莫哥洛夫A-N.概率论的解析方法[M],1931.见:伊藤清(著),刘璋温(译).随机过程[M].上海:上海科学技术出版社,1961.
    [41] Lasota A,Mackey M.C.Chaos,Fractals,and Noise:stochastic aspects of dynamics(2nd edition).New York:Springer-Verlag,1994.
    [42] Kozin F On the probability densities of the output of some random systems[J].Journal of Applied Mechanics,1961,28(2):161-164.
    [43] Syski R.Stochastic differential equations.In:Saaty T-L,ed.Modem nonlinear equations,chapter 8.New York:McGraw-Hill.1967.
    [44] Soong T.T. Random differential equations in science and engineering [M]. New York and London: Academic Press, 1973.
    [45] Dostupov B.G, Pugachev V.S. The equation for the integral of a system of ordinary differential equations containing random parameters [J]. Automatikai Telemekhanika, 1957, 18: 620-630.
    [46] Ghanem R, Spanos ED. Stochastic finite element: a spectral approach [M]. Berlin: Springer-Verlag, 1991.
    [47] Kleiber M, Hien T.D. The stochastic finite element method [M]. Chishcester: John Wiley & Sons, 1992.
    [48] 李杰.随机结构系统——分析与建模[M].北京:科学出版社,1996.
    [49] Anders M, Hori M. Three-dimensional stochastic finite element method for elasto-plastic bodies [J]. International Journal for Numerical Methods in Engineering, 2001, 51: 449-478.
    [50] 李杰,陈建兵.随机结构动力反应分析的概率密度演化方法[J].力学学报,2003,35(4):437-442.
    [51] 李杰,陈建兵.随机结构非线性动力反应的概率密度演化分析[J].力学学报,2003,35(6):716-722.
    [52] Li J, Chen J.B. Dynamic response and reliability analysis of structures with uncertain parameters [J]. International Journal for Numerical Methods in Engineering, 2005, 62(1): 289-315.
    [53] Chen J.B, Li J. Dynamic response and reliability analysis of nonlinear stochastic structures [J]. Probabilistic Engineering Mechanics, 2005, 20(1): 33-44.
    [54] Li J, Chen J.B. The probability density evolution method for dynamic response analysis of nonlinear stochastic structures [J]. International Journal for Numerical Methods in Engineering, 2006, 65(6): 882-903.
    [55] Siegert A.J.F. On the first passage time probability problem [J]. Physical Review, 1951, 81: 617-623.
    [56] Helstrom C.W. Two notes on a Markov envelop process [J]. Institute of Radio Engineers, Transaction on Information Theory, IT-5, 1959, 139-140.
    [57] Coleman J.J. Reliability of aircraft structures in resisting chance failure [J]. Operations Reserch., 1959, 7(5): 639-645.
    [58] Chandiramani K.I. First passage problem probability for a linear oscillator [J]. Doctoral Department of Mechanical Engineering, MIT, Cambridge, Mass., 1964.
    [59] Cramer H. On the intersections between the trajectories of a normal stationary stochastic process and a high level [J]. Arkiv. Mat., 1966, 6: 337-349.
    [60] Roberts J.B. An approach to the first-passage problem in random vibration [J]. Journal of Sound and Vibration, 1968, 8(2): 301-328.
    [61] Caughey T.K. Derivation and application of the Fokker-Planck equation to discrete nonlinear dynamic systems subjected to white noise random excitation [J]. Journal of the Acoustical Society of America, 1963, 35: 1700-1705.
    [62] Liu S. C. Earthquake response statistics of nonlinear systems[J]. ASCE, 1969, 95(2).
    [63] Crandall S. H. Some first-passage problems in random vibration [J]. Journal of Applied Mechanics, 1966, 532-538.
    [64] Yang J. N, Shinozuka M. On the first excursion probability in stationary narrow band random vibration [J]. Journal of Applied Mechanics, 1971, 38(4): 1017-1022.
    [65] Iyengar R. N. First passage probability during random vibration [J]. Journal of Sound and Vibration, 1973, 31 (2): 185-193.
    [66] Roberts J. B. Probability of first-passage failure for nonstationary random vibration [J]. Journal of Applied Mechanics, 1975, 42(3): 716-720.
    [67] Wen Y. K. Method for random vibration of hysteretic systems [J]. Journal of the Engineering Mechanics Division, 1976, 102(2): 249-263.
    [68] Iwan W. D, Spanos P. T. Response envelope statistics for nonlinear oscillators with random excitation [J]. Journal of Applied Mechanics, 1978, 45(1): 170-174.
    [69] Iyengar N. R, Iyengar J. K. Stochastic analysis of yielding system [J]. Journal of the Engineering Mechanics Division, 1978, 104(2): 382-398.
    [70] Gasparini D. A. Response of MDOF systems to nonstationary random excitation [J]. Journal of the Engineering Mechanics Division, 1979, 105 (1): 13-27.
    [71] 李桂青,曹宏,李秋胜等.结构动力可靠性理论及其应用[M].北京:地震出版社,1993.
    [72] 李桂青,曹宏,高耸结构在风荷载作用下的动力可靠性分析[J].土木工程学报,1987,20(1):57-64.
    [73] 欧进萍.多自由度体系的动力可靠性分析[J].地震工程与工程振动,1987,7(4):51-59.
    [74] Liu W. K, Belytschko T, Mani A. Probability finite elements for nonlinear structural dynamics [J]. Computer methods in Applied Mechanics and Engineering, 1986, 56: 61-81.
    [75] Kiureghian A. D. Finite Element Methods in Structural Safety Studies [J]. Structural Safety Studies, 1986, 40-52.
    [76] Kiureghian A. D, Ke J. B. The stochastic finite element method in structural reliability [J]. Probabilistic Engineering Mechanics, 1988, 3(2): 83-91.
    [77] 吴世伟,李同春.重力坝最大可能失效模式初探[J].水利学报,1989,4:36-44.
    [78] 吴世伟.拱坝的失效模式与可靠度[J].河海大学学报,1992,20(2):88-96.
    [79] 孙长龙,吕泰仁.基于随机元重力坝动力荷载法动力可靠度分析[J].河海大学学报,1995,23(1):16-21.
    [80] Li Q. S, Fang J. Q, Liu D. K. Evaluation of structural dynamic response by stochastic finite element method [J]. Structural Engineering and Mechanics, 1999, 8(5): 477-490.
    [81] 曹晖,赖明,白绍良.基于小波分析的线性结构随机响应求解[J].重庆建筑大学学报,2000,22(增刊):47-66.
    [82] 张俊芝,李桂青.界限为随机过程的工程结构时变动力可靠度[J].工业建筑,2001,24-27.
    [83] 罗乃东,赵国藩.高层、高耸结构抗风动力可靠度[J].大连理工大学学报,2002,42(2): 208-212.
    [84] 王恒,杨艳平,解伟.结构动力可靠度中相关性问题研究[J].武汉大学学报(工学版),2004,37(3):61-65.
    [85] Li J, Chen J.B. Probability density of evolution method for dynamic response analysis of structures with uncertain parameters [J]. Computational Mechanics, 2004, 34: 400-409.
    [86] 陈建兵,李杰.非线性随机结构动力可靠度的密度演化方法[J].力学学报,2004,36(2):196-201.
    [87] Li J, Chen J.B, Fan W.L. The equivalent extreme-value event and evaluation of the structural system reliability [J]. Structural Safety, 2007, 29(2): 112-131.
    [88] Goto H, Toki K. Structural response to nonstationary random excitation [A]. Proc. 4th WCEE, Santiago, Chile, 1969.
    [89] Borgman L.E. Ocean wave simulation for engineering design [J]. Journal of the Waterways and Harbors Division, ASCE, 1969, 95(4): 557-583.
    [90] Shinozuka M. Simulation of multivariate and multidimensional random processes [J]. Journal of the Acoustical Society of America, 1971, 49(1): 357-368.
    [91] Shinozuka M, Jan C.M. Digital simulation of random processes and its applications [J]. Journal of Sound and Vibration, 1972, 25(1): 111-128.
    [92] Shinozuka M. Monte Carlo solution of structural dynamics [J]. Computers and Structures, 1972, 2(5-6): 855-874.
    [93] Yang J.N. Simulation of random envelope processes [J]. Journal of Sound and Vibration, 1972, 25(1): 73-85.
    [94] Yang J.N. On the normality and accuracy of simulated random processes [J]. Journal of Sound and Vibration, 1973, 26(3): 417-428.
    [95] Shinozuka M. Digital simulation of random processes in engineering mechanics with the aid of FFT technique. In Stochastic Problems in Mechanics, ed. S. T. Ariaratnam and H. H. E. Leipholz, University of Waterloo Press, Waterloo, 1974, pp. 277-286.
    [96] Yamazaki F, Shinozuka M. Digital generation of non-Gaussian stochastic fields [J]. Journal of Engineering Mechanics, 1988, 114(7): 1183-1197.
    [97] Yamazaki F, Shinozuka M. Simulation of stochastic fields by statistical preconditioning [J]. Journal of Engineering Mechanics, 1990, 116(2): 268-287.
    [98] Shinozuka M, Deodatis G. Simulation of stochastic processes by spectral representation [J]. Applied Mechanics Review, 1991, 44(4): 191-204.
    [99] Grigoriu M. On the spectral representation method in simulation [J]. Probabilistic Engineering Mechanics, 1993, 8: 75-90.
    [100] Shinozuka M, Deodatis G. Simulation of multi-dimensional Gaussian stochastic fields by spectral representation [J]. Applied Mechanics Review, 1996, 49(1): 29-53.
    [101] Hu B, Schiehlen W. On the simulation of stochastic processes by spectral representation [J]. Probabilistic Engineering Mechanics, 1997, 12(2): 105-113.
    [102] Spanos P.D, Zeldin B.A. Monte Carlo treatment of random fields: A broad perspective [J]. Applied Mechanics Review, 1998, 51 (3): 219-237.
    [103] Popescu R, Deodatis G, Prevost J. H. Simulation of homogeneous non-Gaussian stochastic vector fields [J]. Probabilistic Engineering Mechanics, 1998, 13(1): 1-13.
    [104] Grigoriu M. A spectral representation based model for Monte Carlo simulation [J]. Probabilistic Engineering Mechanics, 2000, 15(4): 365-370.
    [105] Grigoriu M. Spectral representation for a class of non-Gaussian processes [J]. Journal of Engineering Mechanics, 2004, 130(5): 541-546.
    [106] Grigoriu M. Evaluation of Karhunen-Loeve, Spectral, and Sampling Representations for Stochastic Processes [J]. Journal of Engineering Mechanics, 2006, 132(2): 179-189.
    [107] 王之宏.风荷载的模拟研究[J].建筑结构学报,1994,15(1):44-52.
    [108] Deodatis G. Simulation of ergodic multivariate stochastic processes [J]. Journal of Engineering Mechanics, 1996, 122(8): 778-787.
    [109] Yang W. W, Chang T. Y. P, Chang C. C. An efficient wind field simulation technique for bridges [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67-68: 697-708.
    [110] Cao Y. H, Xiang H. F, Zhou Y. Simulation of stochastic wind velocity field on long-span bridges [J]. Journal of Engineering Mechanics, 2000, 126(1): 1-6.
    [111] 韩大建,邹小江,苏成.大跨度桥梁考虑桥塔风效应的随机风场模拟[J].工程力学,2003,20(6):18-22.
    [112] Shinozuka M, Deodatis G. Stochastic process models for earthquake ground motion [J]. Probabilistic Engineering Mechanics, 1988, 3(3): 114-123.
    [113] Deodatis G, Shinozuka M. Simulation of seismic ground motion using stochastic waves [J]. Journal of Engineering Mechanics, 1989, 115(12): 2723-2737.
    [114] Deodatis G. Non-stationary stochastic vector processes: seismic ground motion applications [J]. Probabilistic Engineering Mechanics, 1996, 11: 149-168.
    [115] 梁建文.非平稳地震动过程模拟方法(Ⅰ)[J].地震学报,2005,27(2):213-228.
    [116] 梁建文.非平稳地震动过程模拟方法(Ⅱ)[J].地震学报,2005,27(3):346-351.
    [117] Wyatt T. A, May H. I. Generation of stochastic load functions to simulate wind loading on structures [J]. Earthquake Engineering and Structural Dynamics, 1973, 1 (3): 217-224.
    [118] Reed D. A, Scanlan R. H. Autoregressive representation of longitudinal, lateral, and vertical turbulence spectral [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1984, 17: 199-214.
    [119] Iannuzzi A, Spinelli P. Artificial wind generation and structural response [J]. Journal of Structural Engineering, 1987, 113(12): 2382-2398.
    [120] Deodatis G, Shinozuka M. Autoregressive model for non-stationary stochastic processes [J]. Journal of Engineering Mechanics, 1988, 114(11): 1995-2012.
    [121] Mignolet M. P, Spanos P. D. Simulation of homogeneous two dimensional random fields: part Ⅰ-AR to ARMA models [J]. Journal of Applied Mechanics, 1992, 59(2): 260-269.
    [122] Spanos P. D, Mignolet M. P. Simulation of homogeneous two dimensional random fields: part Ⅱ-MA to ARMA models [J]. Journal of Applied Mechanics, 1992, 59(2): 270-277.
    [123] Owen J. S, et al. The application of auto-regressive time series modeling for the time-frequency analysis of civil engineering structures [J]. Engineering Structures, 2001, 23: 521-536.
    [124] Solari G, Spinelli P. Time-domain analysis of tall buildings response to wind action [A]. Proceedings of the Third International Conference on Tall Buildings, Hong Kong & Guangzhou, 1984, 278-284.
    [125] Samaras E, Shinozuka M, Tsurui A. ARMA representation of random processes [J]. Journal of Engineering Mechanics, 1985, 111(3): 449-461.
    [126] 曾宪武,韩大建.大跨度桥梁风场模拟方法对比研究[J].地震工程与工程振动,2004,24(1):135-140.
    [127] Naganuma T, Deodatis G, Shinozuka M. ARMA model for two dimensional processes [J]. Journal of Engineering Mechanics, 1987, 113(2): 234-251.
    [128] Mignolet M. P, Spanos P. D. Recursive simulation of stationary multivariate random processes [J]. Journal of Applied Mechanics, 1987, 54(3): 674-680.
    [129] Yamazaki F, Shinozuka M. Digital generation of non-Gaussian stochastic fields [J]. Journal of Engineering Mechanics, 1988, 114(7): 1183-1197.
    [130] Spanos P. D, Mignolet M. P. Simulation of stationary random processes: two stage MA to ARMA approach [J]. Journal of Engineering Mechanics, 1990, 116(3): 620-641.
    [131] Li Y, Kareem A. ARMA systems in wind engineering [J]. Probabilistic Engineering Mechanics, 1990, 5(2): 50-59.
    [132] 周志勇,项海帆,陈艾荣.多变量ARMA模型与大跨结构随机风场的数值仿真[J].自然科学进展,2001,11(6):631-634.
    [133] Jurkevics A, Ulrych T. J. Representing and simulating strong ground motion. The Bulletin of the Seismological Society of America (BSSA), 1978, 68(3): 781-801.
    [134] Chang M. K, Kwiatkowski J. W, Nau R. F et al. ARMA models for earthquake ground motions [A]. Univ. of Calif. Tech. Report, ORC 79-1, Operations Research Center, U. C. Berkeley, 1979.
    [135] Nau R. F, Oliver R. M, Pister K. S. Simulating and analyzing artificial non-stationary earthquake ground motions [A]. Report NO. UCB/EERC-80/36, Earthquake Engineering Research Center(EERC), U. C. Berkeley, 1980.
    [136] Polhemus N. W, Cakmak A. S. Simulation of earthquake ground motions using autoregressive moving average (ARMA) models [J]. Earthquake Engineering and Structural Dynamics, 1981, 9(4): 343-354.
    [137] Conte J. P, Pister K. S, Mahin S. A. Influence of the earthquake ground motion process and structural properties on response characteristics of simple structures [A]. Report No. UCB/EERC-90/09, Earthquake Engineering Research Center, U. C. Berkeley, 1990, 1-25.
    [138] Cakmak A. S, Sherif R. I, Ellis G. W. Modeling earthquake ground motions in California using parametric time series methods [J]. Soil Dynamics and Earthquake Engineering, 1985, 4(3): 124-131.
    [139] Kozin F Autoregressive moving average models of earthquake records [J]. Probabilistic Engineering Mechanics, 1988, 3(2): 58-63.
    [140] Shinozuka M, Deodatis G. Stochastic process models for earthquake ground motion [J]. Probabilistic Engineering Mechanics, 1988, 3(3): 114-123.
    [141] Conte J.P, Pister K.S, Mahin S.A. Non-stationary ARMA modeling of seismic motions [J]. Soil Dynamics and Earthquake Engineering, 1992, 11:411-426.
    [142] Simon O, Ragnar S. Application of ARMA models to estimate earthquake ground motion and structural response [J]. Earthquake Engineering & Structural Dynamics, 1995, 24(7): 951-966.
    [143] Aghababaii Mobarakeh A, Rofooei F.R, Ahmadi G. Simulation of earthquake records using time-varying ARMA(2, 1) model [J]. Probabilistic Engineering Mechanics, 2002, 17(1): 15-34.
    [144] 蒋溥,梁小华,雷军.工程地震动时程合成与模拟[M].北京:地震出版社,1991.
    [145] 李英民.地震波仿真及多刚体离散模型在剪切型结构地震反应分析中的应用[D].重庆:重庆建筑大学,1992.
    [146] 夏洪流,李英民,赖明.调制ARMA模型在地震动仿真中的几个问题探讨[J].重庆建筑大学学报,2004,26(5):54-58.
    [147] 曾珂,牛荻涛,商瑞霞.新型随机地震动模型[J].地震工程与工程振动,2005,25(6):30-37
    [148] Loeve M. Probability theory [M]. New York: Van Nostrand, 1955.
    [149] Papoulis A. Probability, random variables, and stochastic processes [M]. New York: McGraw-Hill, 1965.
    [150] Graham M.D, Kevrekidis I.G. Alternative approaches to the Karhunen-Loeve Decomposition for model reduction and data analysis [J]. Computers and Chemical Engineering, 1996, 20(5): 495-506.
    [151] Lin W.Z, Lee K.H, Lu P, Lim S.P, Liang Y.C. The relationship between eigenfunctions of Karhunen-Loeve Decomposition and the modes of distributed parameter vibration system [J]. Journal of Sound and Vibration, 2002, 256(4): 791-799.
    [152] Ravindra B. Comments on "On the physical interpretation of proper orthogonal modes in vibrations" [J]. Journal of Sound and Vibration, 1999, 219(1): 189-192.
    [153] Jolliffe I.T. Principal component analysis [M]. New York: Springer-Verlag, 2002.
    [154] Azeez M.EA, Vakakis A.E Proper Orthogonal Decomposition (POD) of a class of vibroimpact oscillations [J]. Journal of Sound and Vibration, 2001, 240(5): 859-889.
    [155] Therrien C.W. Discrete random signals and statistical signal processing [M]. New Jersey: Prentice-Hall, Englewood Cliffs, 1992.
    [156] Kosambi D.D. Statistics in function space [J]. J. Indian Math. Soc., 1943, 7: 76-88.
    [157] Loeve M. Fonctions aleatoire de second ordre. Compte Red. Acad. Sci. Paris, 1945, Vol.
    [158] Karhunen K. Zur spektraltheorie stochastischer prozess. Ann. Acad. Sci. Fennicae, 1946, Vol.1, 34.
    [159] Kac M, Siegert A.J.F. An eplicit representation of a stationary Gaussian process. Ann. Math. Stat, 1947, Vol. 18,438-442.
    [160] Lumley J.L. The structure of inhomogeneous turbulent flows [A]. Proc, Int. Coll. on the Fine Scale Structure of the Atmosphere and its Influence on Radio Wave Propagation, DokladyAkademia Nauk SSSR, Moscow, 1967, 166-176.
    
    [161] Lumley J.L. Stochastic tools in turbulence [M]. New York: Academic Press, 1970.
    [162] Moin P. Probing turbulence via large-eddy simulation [J]. AIAA, 1984, 84-174.
    [163] Herzog S. The large scale structure in the near wall region of a turbulent pipe flow [D]. Ph.D. Thesis, Cornell University, 1986.
    [164] Moin P, Moser R.D. Characteristic-eddy decomposition of turbulence in a channel [J]. Journal of Fluid Mechanics, 1989,200: 471-509.
    [165] Aubry N, Lian W.Y, Titi E.S. Preserving symmetries in the proper orthogonal decomposition [J]. SIAM Journal on Scientific Computing, 1993, 14(2): 483-505.
    [166] Berkooz G, Holmes P, Lumley J.L. Proper orthogonal decomposition in the analysis of turbulent flows [J]. Annual Review of Fluid Mechanics, 1993, 25: 539-575.
    [167] Holmes P, Lumley J.L, Berkooz G. Turbulence: coherent structures, dynamical systems and symmetry [M]. Great Britain: Cambridge University Press, 1996.
    [168] Bonnet J.P, Cole D.R, Delville J, et al. Stochastic estimation and proper orthogonal decomposition: complementary techniques for identifying structure [J]. Experiments in Fluids, 1994, 17(5): 307-314.
    [169] Solari G, Carassale L. Modal transformation tools in structural dynamics and wind engineering [J]. Wind and Structures, 2000, 3(4): 221-241.
    [170] Carassale L. POD-based filters for the representation of random loads on structures [J]. Probabilistic Engineering Mechanics, 2005, 20(3): 263-280.
    [171] Lee B.E. The effect of turbulence on the surface pressure field of a square prism [J]. Journal of Fluid Mechanics, 1975, 69(2): 263-282.
    [172] Kareem A, Cermak J.E. Pressure fluctuations on a square building model in boundary-layer flows [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1984, 16(1): 17-41.
    [173] Kareem A, Cheng C.M, Lu P.C. Pressure and force fluctuations on isolated circular cylinders of finite height in boundary layer flows [J]. Journal of Fluids and Structures, 1989, 3:481-508.
    [174] Kikuchi H, Tamura Y, Ueda H, et al. Dynamic wind pressures acting on a tall building model-proper orthogonal decomposition [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 69-71: 631-646.
    [175] Holmes J.D, Sankaran R, Kwok K.C.S, et al. Eigenvector modes of fluctuating pressures on low-rise building models [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997,69-71:697-707.
    [176] Baker C.J. Aspects of the use of proper orthogonal decomposition of surface pressure fields [J]. Wind and Structures, 2000, 3(2): 97-115.
    [177] Traina M.I, Miller R.K, Masri S.F. Orthogonal decomposition and transmission of nonstationary random processes [J]. Probabilistic Engineering Mechanics, 1986, 1(3): 136-149.
    [178] Masri S.F, Miller R.K, Traina M.I. Probabilistic representation and transmission of earthquake ground motion records [J]. Earthquake Engineering and Structural Dynamics, 1990, 19(7): 1025-1040.
    
    [179] Masri S.F, Smyth A.W, Traina M.I. Probabilistic representation and transmission of non- stationary processes in multi-degree-of-freedom systems [J]. Journal of Applied Mechanics, ASME, 1998, 65: 398-409.
    [180] Gullo I, Di Paola M, Spanos P.D. Spectral approximation for wind induced structural vibration studies [J]. Meccanica, 1998, 33(3): 291-298.
    [181] Carassale L, Piccardo G, Solari G. Double modal transformation and wind engineering applications [J]. Journal of Engineering Mechanics, ASCE, 2001, 127(5): 432-439.
    [182] Chen X, Kareem A. Proper orthogonal decomposition-based modeling, analysis, and simulation of dynamic wind load effects on structures [J]. Journal of Engineering Mechanics, 2005, 131(4): 325-339.
    [183] Tubino F, Carassale L, Solari G. Seismic response of multi-supported structures by proper orthogonal decomposition [J]. Earthquake Engineering and Structural Dynamics, 2003, 32: 1639-1654.
    [184] Benfratello S, Di Paola M, Spanos P D. Stochastic response of MDOF wind excited structures by means of Volterra series approach [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998,74-76: 1135-1145.
    [185] Carassale L, Kareem A. A Volterra approach for nonlinear multi-DOF structures [A]. Proc, EURODYN 2002, 2002, Vol. 1, 755-760.
    [186] Di Paola M, Muscolino G, Sofi A. Monte Carlo simulation for the response analysis of long-span suspended cables under wind loads [J]. Wind and Structures, 2004, 7(2): 107-130.
    [187] Ghanem R, Spanos P.D. Stochastic Galerkin expansion for nonlinear random vibration analysis [J]. Probabilistic Engineering Mechanics, 1993, 8(3-4): 255-264.
    [188] Cusumano J.P, Bai B.Y. Period-infinity periodic motions, chaos and spatial coherence in a 10 degree of freedom impact oscillator [J]. Chaos, Solitons and Fractals, 1993, 3(5): 515-535.
    [189] Spanos P.D, Ghanem R. Stochastic finite element expansion for random media [J]. Journal of Engineering Mechanics, 1989, 115(5): 1035-1053.
    [190] Ghanem R, Spanos P.D. Polynomial chaos in stochastic finite elements [J]. Journal of Applied Mechanics, ASME, 1990, 57(1): 197-202.
    [191] Ghanem R, Spanos P.D. Spectral stochastic finite-element formulation for reliability analysis [J]. Journal of Engineering Mechanics, 1991, 117(10): 2351-2372.
    [192] Rathinam M, Petzold L.R. A new look at proper orthogonal decomposition [J]. SIAM Journal on Numerical Analysis, 2003,41(5): 1893-1925.
    [193] Feeny B F, Kappagantu R. On the physical interpretation of proper orthogonal modes in vibrations [J]. Journal of Sound and Vibration, 1998,211(4): 607-616.
    [194] Kerschen G, Golinval J.C. Physical interpretation of the proper orthogonal modes using the singular value decomposition [J]. Journal of Sound and Vibration, 2002, 249(5): 849-865.
    [195] Lenaerts V, Kerschen G, Golinval J.C. ECL benchmark: Application of the proper orthogonal decomposition [J]. Mechanical Systems and Signal Processing, 2003, 17(1): 237-242.
    [196] Han S, Feeny B.F. Enhanced proper orthogonal decomposition for the modal analysis of homogeneous structures [J]. Journal of Vibration and Control, 2002, 8(1): 19-40.
    [197] Riaz M.S, Feeny B.F. Proper orthogonal modes of a beam sensed with strain gages [J]. Journal of Vibration and Acoustics, ASME, 2003, 125(1): 129-131.
    [198] Brincker R, Zhang L, Andersen P. Modal identification of output-only systems using frequency domain decomposition [J]. Smart Materials and Structures, 2001, 10: 441-445.
    [199] Barroso L.R, Rodriguez R. Damage detection utilizing the damage index method to a benchmark structure [J]. Journal of Engineering Mechanics, ASCE, 2004, 130(2): 142-151.
    [200] Dodds C.J, Robson J.D. Partial coherence in multivariate random processes [J]. Journal of Sound and Vibration, 1975,42(2): 243-249.
    [201] Li Y, Kareem A. Simulation of Multivariate Random Processes: Hybrid DFT and digital filtering approach [J]. Journal of Engineering Mechanics, ASCE, 1993, 119(5): 1078-1098.
    [202] Li Y, Kareem A. Stochastic decomposition and application to probabilistic dynamics [J]. Journal of Engineering Mechanics, ASCE, 1995, 121(1): 162-174.
    [203] Li Y, Kareem A. Simulation of multivariate nonstationary random processes: Hybrid DFT and digital filtering approach [J]. Journal of Engineering Mechanics, ASCE, 1997, 123(12): 1302-1310.
    [204] Shinozuka M, Yun C.B, Seya H. Stochastic methods in wind engineering [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 36, 829-843.
    [205] Di Paola M, Pisano A.A. Multivariate stochastic wave generation [J]. Applied Ocean Research, 1996, 18(6): 361-365.
    [206] Di Paola M. Digital simulation of wind field velocity [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74-76: 91-109.
    
    [207] Benfratello S, Muscolino G. Filter approach to the stochastic analysis of MDOF wind- excited structures [J]. Probabilistic Engineering Mechanics, 1999, 14(4): 311-321.
    [208] Di Paola M, Gullo I. Digital generation of multivariate wind field processes [J]. Probabilistic Engineering Mechanics, 2001, 16(1): 1-10.
    [209] Carassale L, Solari G. Wind modes for structural dynamics: a continuous approach [J]. Probabilistic Engineering Mechanics, 2002, 17(2): 157-166.
    [210] Van Trees H.I. Detection, estimation and modulation theory: Part 1 [M]. New York: John Wiley and Sons, 1968.
    [211] Solari G, Tubino F. A turbulence model based on principal components [J]. Probabilistic Engineering Mechanics, 2002, 17(4): 327-335.
    [212] Tubino F, Solari G. Double Proper Orthogonal Decomposition for Representing and Simulating Turbulence Fields [J]. Journal of Engineering Mechanics, ASCE, 2005, 131(12): 1302-1312.
    [213] Huang S.P, Quek S.T, Phoon K.K. Convergence study of the truncated Karhunen-Loeve expansion for simulation of stochastic processes [J]. International Journal for Numerical Methods in Engineering, 2001, 52(9): 1029-1043.
    [214] Phoon K.K, Huang S.P, Quek S.T. Implementation of Karhunen-Loeve expansion for simulation using a wavelet-Galerkin scheme [J]. Probabilistic Engineering Mechanics, 2002, 17(3): 293-303.
    [215] Phoon K.K, Huang H.W, Quek S.T. Comparison between Karhunen-Loeve and wavelet expansions for simulation of Gaussian processes [J]. Computers & Structures, 2004, 82(13-14): 985-991.
    [216] Phoon K.K, Huang S.P, Quek S.T. Simulation of second-order processes using Karhunen -Loeve expansion [J]. Computers & Structures, 2002, 80(12): 1049-1060.
    [217] Phoon K.K, Quek S.T, Huang H. Simulation of non-Gaussian processes using fractile correlation [J]. Probabilistic Engineering Mechanics, 2004, 19(4): 287-292.
    [218] Phoon K.K, Huang H.W, Quek S.T. Simulation of strongly non-Gaussian processes using Karhunen-Loeve expansion[J]. Probabilistic Engineering Mechanics, 2005, 20(2): 188-198.
    [219] Li L.B, Phoon K.K, Quek S.T. Comparison between Karhunen-Loeve expansion and translation-based simulation of non-Gaussian processes [J]. Computers and Structures, 2007, 85(5-6): 264-276.
    
    [220] Carassale L, Solari G. Monte Carlo simulation of wind velocity fields on complex structures [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(5): 323-339.
    [221] Gurley K, Kareem A. Applications of wavelet transforms in earthquake, wind and ocean engineering [J]. Engineering Structures, 1999, 21: 149-167.
    [222] Yamada M, Ohkitani K. Orthonormal wavelet analysis of turbulence [J]. Fluid Dynamics Research, 1991, 8(1-4): 101-115.
    [223] Zeldin B.A, Spanos P.D. Random field representation and synthesis using wavelet bases [J]. Journal of Applied Mechanics, 1996, 63(12): 946-952.
    [224] Gurley K.R, Tognarelli M.A, Kareem A. Analysis and simulation tools for wind engineering [J]. Probabilistic Engineering Mechanics, 1997, 12(1): 9-31.
    [225] Bienkiewicz B, Ham H.J. Wavelet study of approach-wind velocity and building pressure [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 69-71: 671-683.
    [226] Pettit C.L, Jones N.P, Ghanem R. Detection and simulation of roof-corner pressure transients [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(3): 171-200.
    [227] Kitagawa T, Nomura T. A wavelet-based method to generate artificial wind fluctuation data [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91 (7): 943-964.
    [228] 陈艾荣,王毅.基于小波方法的随机脉动风模拟[J].同济大学学报(自然科学版),2005,33(4):427-431.
    [229] Iyama J, Kuwamura H. Application of wavelets to analysis and simulation of earthquake motions [J]. Earthquake Engineering & Structural Dynamics, 1999, 28(3): 255-272.
    [230] Basu B, Gupta V.K. Non-stationary seismic response of MDOF systems by wavelet transform [J]. Earthquake Engineering & Structural Dynamics, 1997, 26(12): 1243-1258.
    [231] Basu B, Gupta V.K. Seismic Response of SDOF Systems by Wavelet Modeling of Non-stationary Processes [J]. Journal of Engineering Mechanics, 1998, 124(10): 1142-1150.
    [232] Basu B, Gupta V.K. Stochastic seismic response of single-degree-of-freedom systems through wavelets [J]. Engineering Structures, 2000, 22(12): 1714-1722.
    [233] Spanos RD, Failla G Evolutionary spectra estimation using wavelets [J]. Journal of Engineering Mechanics, 2004, 130(8): 952-960.
    [234] 曹晖,赖明,白绍良.基于小波变换的地震地面运动仿真研究[J].土木工程学报,2002,35(4):40-46.
    [235] Agrawal O.R Application of wavelets in modeling stochastic dynamic systems [J]. Journal of Vibration and Acoustics, Transactions of the ASME, 1998, 120(3): 763-769.
    [236] Newland D.E. Wavelet analysis of vibration, Part Ⅰ: theory [J]. Journal of Vibration and Acoustics, Transactions of the ASME, 1994, 116(4): 409-416.
    [237] Newland D.E. Wavelet analysis of vibration, Part Ⅱ: wavelet maps [J]. Journal of Vibration and Acoustics, Transactions of the ASME, 1994, 116(4): 409-416.
    [238] Huang N.E, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear, nonstationary time series analysis [A]. Proc. R. Soc. London, Ser. A, 1998, 454, 903 -995.
    [239] Loh C.H, Wu T.C, Huang N.E. Application of the empirical mode decomposition-Hilbert spectrum method to identify near-fault ground-motion characteristics and structural response. Bull. Seismol. Soc. Am. (special issue on the 1999 Chi-Chi Taiwan Earthquake). 2001, 91(5): 1339-1357.
    [240] Zhang R, Ma S, Hartzell S. Signature of the seismic source in EMD-based characterization of the 1994 Northridge, California earthquake recordings. Bull. Seismol. Soc. Am., 2003, 93(1):501-518.
    [241] Wen Y.K, Gu Ping. Description and simulation of nonstationary processes based on Hilbert spectra [J]. Journal of Engineering Mechanics, 2004, 130(8): 942-951.
    [242] Bracewell R.N. The Hartley Transform [M]. New York: Oxford University Press, 1986.
    [243] Wang Z. Harmonic analysis with a real frequency function-Ⅲ: data sequence [J]. Applied Mathematics and Computation, 1981, 9, 245-255.
    [244] Bracewell R. N. Discrete Hartley transform [J]. Journal of the Optical Society of America, 1983, 73, 1832-1835.
    [245] Bracewell R. N. The fast Hartley Transform [J]. Proceedings of the IEEE 72, 1984, 1010-1018.
    [246] Winterstein S. R. Random process simulation with the fast Hartley transform [J]. Journal of Sound and Vibration, 1990, 137(3): 527-531.
    [247] Rodriguez G. Analysis and simulation of wave records through fast Hartley transform [J]. Ocean Engineering, 2003, 30, 2255-2273.
    [248] 梁建文,肖笛.平稳随机过程模拟的一个快速Hartley变换方法[J].应用力学学报,2004,21(3):101-105.
    [249] Chen L, Letchford C. W. Simulation of multivariate stationary Gaussian stochastic processes: Hybrid spectral representation and proper orthogonal decomposition approach [J]. Journal of Engineering Mechanics, 2005, 131 (8): 801-808.
    [250] 王梓坤.随机过程通论(上、下卷)[M].北京:北京师范大学出版社,1996.
    [251] 陆大淦.随机过程及其应用[M].北京:清华大学出版社,1986.
    [252] 闵华玲.随机过程[M].上海:同济大学出版社,1987.
    [253] Field Jr R. V, Grigoriu M. On the accuracy of the polynomial chaos approximation [J]. Probabilistic Engineering Mechanics, 2004, 19: 65-80.
    [254] 李杰,刘章军.基于标准正交基的随机过程展开法[J].同济大学学报(自然科学版),2006,34(10):1279-1283.
    [255] 刘天云,伍朝晖,赵国藩.随机场的投影展开法[J].计算力学学报,1997,14(4):484-489.
    [256] Solari G, Carassale L, Tubino F. POD methods and applications in wind engineering [A]. The Sixth Asia-Pacific Conference on Wind Engineering (APCWE-6), Seoul, Korea, 2005, 14-23.
    [257] Kanwal R. P. Generalized functions: theory and applications [M]. London: Academic Press, 1983.
    [258] Priestley M. B. Spectral analysis and time series [M]. London: Academic Press, 1981.
    [259] Kanai K. Semi-empirical formula for the seismic characteristics of the ground. Bulletin of the Earthquake Research Institute, University of Tokyo, Japan, 1957, 35: 309-325.
    [260] Tajimi H. A statistical method of determining the maximum response of a building structure during an earthquake [A]. Proceedings of the Second Worm Conference on Earthquake Engineering. Tokyo and Kyoto, 1960, (2): 781-798.
    [261] 李杰.生命线工程抗震——基础理论与应用[M].北京:科学出版社,2005.
    [262] 胡聿贤,周锡元.弹性体系在平稳和平稳化地面运动下的反应[A].地震工程研究报告集第一集[C].北京:科学出版社,1962,33-50.
    [263] Clough R. W, Penzien J. Dynamics of Structures [M]. New York: McGraw-Hill, 1975.
    [264] 松岛丰.地动履历1自由度系应答.日本建筑学会构造系论文报告集,1986,369,42-46.
    [265] 欧进萍,牛荻涛,杜修力.设计用随机地震动的模型及其参数确定[J].地震工程与工程振动,1991,11(3):45-54.
    [266] 杜修力,陈厚群.地震动随机模拟及其参数确定方法[J].地震工程与工程振动,1994,4(4):1-5.
    [267] 杜修力.水工建筑物抗震可靠度设计和分析用的随机地震输入模型[J].地震工程与工程振动,1998,18(4):76-81.
    [268] 江近仁,洪峰.功率谱与反应谱的转换和人造地震波[J].地震工程与工程振动,1984,4(3):1-10.
    [269] 洪峰,江近仁,李玉亭.地震地面运动的功率谱模型及其参数的确定[J].地震工程与工程振动,1994,14(2):46-51.
    [270] 方开泰,王元.数论方法在统计中的应用[M].北京:科学出版社,1996.
    [271] 华罗庚,王元.数论在近似分析中的应用[M].北京:科学出版社,1978.
    [272] 陈建兵,李杰.结构随机响应概率密度演化分析的数论选点法[J].力学学报,2006,38(1):134-140.
    [273] 胡聿贤.地震工程学[M].北京:地震出版社,1988.
    [274] 赵凤新,刘爱文.地震动功率谱与反应谱的转换关系[J].地震工程与工程振动,200l,21(2):30-35.
    [275] Seya H, Talbott M.E, Hwang H.H.M. Probabilistic seismic analysis of a steel frame structure [J]. Probabilistic Engineering Mechanics, 1993, 8: 127-136.
    [276] Li Hong-Jing, Sun Guang-Jun. A correlation function model to earthquake-induced ground motion process with a modified Kanai-Tajimi spectrum [A]. The Ninth International Symposium on Structural Engineering for Young Experts, Fuzhou & Xiamen, China, 2006, 2151-2157.
    [277] 薛素铎,王雪生,曹资.基于新抗震规范的地震动随机模型参数研究[J].土木工程学报,2003,36(5):5-10.
    [278] 《建筑抗震设计规范》(GB 50011-2001)[S].北京:中国建筑工业出版社,2001.
    [279] 李杰,李国强.地震工程学导论[M].北京:地震出版社,1992.
    [280] 张相庭.结构风压和风振计算[M].上海:同济大学出版社,1985.
    [281] Davenport A.G. The spectrum of horizontal gustiness near the ground in high winds [J]. Q. J. R. Meteorol. Soc., 1961, 87: 194-211.
    [282] 张琳琳.随机风场研究与高耸、高层结构抗风可靠性分析:[博士学位论文].上海:同济大学,2006.
    [283] 李杰,张琳琳.实测风场的随机Fourier谱研究[J].振动工程学报,2007,20(1):74-80.
    [284] 李杰,张琳琳.脉动风速功率谱与随机Fourier幅值谱的关系研究[J].防灾减灾工程学报,2004,24(4):363-369.
    [285] 张相庭.工程抗风设计计算手册[M].北京:中国建筑工业出版社,1998.
    [286] Housner G.W. Characteristics of strong-motion earthquakes [J]. Bulletin of the Seismological Society of America, 1947, 37(1): 19-31.
    [287] 陈建兵,李杰.随机结构反应概率密度演化分析的切球选点法[J].振动工程学报, 2006,19(1):1-8.
    [288] 李杰,陈建兵.随机结构响应密度演化分析的映射降维法[J].力学学报,2005,37(4):460-466.
    [289] Bouc R. Forced vibration of mechanical systems with hysteresis [A]. In: Proceedings of the 4th conference on nonlinear oscillations, Prague, Czechoslovakia; 1967, p.315.
    [290] Baber T.T, Wen Y.K. Random vibration hysteretic degrading systems [J]. Journal of the Engineering Mechanics Division, ASCE, 1981, 107(6): 1069-1087.
    [291] Baber T.T, Noori M.N. Random vibration of degrading, pinching systems [J]. Journal of Engineering Mechanics, 1985, 111(8): 1010-1026.
    [292] Cornell C.A. Bounds on the reliability of structural systems [J]. Journal of Structural Division, 1967, 93(1): 171-200.
    [293] Ditlevsen O. Narrow reliability bounds for structural systems [J]. Journal of Structural Mechanics, 1979, 7(4): 453-472.
    [294] Murotsu Y, Okada H, Taguchi K, Grimmelt M, Yonezawa M. Automatic generation of stochastically dominant failure modes of frame structures[J]. Structural Safety, 1984, 2(1): 17-25.
    [295] Nowak A.S, Collins K.R. Reliability of Structures [M]. McGraw-Hill Companies, Inc., 2000.
    [296] 陈建兵,李杰.随机结构动力可靠度分析的极值概率密度方法[J].地震工程与工程振动,2004,24(6):39-44.
    [297] 李杰,陈建兵.随机结构动力可靠度分析的概率密度演化方法[J].振动工程学报,2004,17(2):121-125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700