用户名: 密码: 验证码:
松材线虫休眠相关基因daf-3、daf-9、daf-12、daf-16的克隆及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松材线虫,学名Bursaphelenchus xylophilus (Steiner&Buhrer),异名Bursaphelenchus lignicolus (Mamiya Y&Kiyohara)是一种重要的检疫性外来入侵物种,通过松墨天牛进行传播,是松属树种的毁灭性病害,给亚洲多个国家和地区造成巨大的经济损失。松材线虫的生活史分为繁殖阶段和扩散阶段,在特定条件下这两个阶段可以相互转换。这种特性有利于松材线虫在不良环境条件下保持较高的存活率,也有利于松材线虫随天牛传播扩散,但这种转换机制尚不明确。为了明确松材线虫繁殖型和扩散型转换的机制,本研究根据模式线虫秀丽隐杆线虫(Caenorhadits elegans)的滞育机制,以模式线虫滞育相关基因为基础,从松材线虫中克隆相关基因daf-3、daf-9、daf-12和daf-16,并分析基因在不同虫态和环境条件下的表达模式,并利用农杆菌介导灰葡萄孢菌表达松材线虫基因dsRNA的技术,敲低松材线虫daf-3、daf-9、daf-12、daf-16-1、daf-16-2基因的表达,并对其发育、繁殖量、寿命、脂肪积累等性状进行了统计,初步确定基因对松材线虫滞育的影响和作用,同时建立原生质体转化体系,成功敲除灰葡萄孢菌的Dicer-1基因,为以喂饲法介导RNA干扰研究松材线虫功能奠定基础。主要研究结果如下:
     1.采用RACE法从松材线虫中克隆与秀丽隐杆线虫滞育调控基因同源的daf-3、daf-9、daf-12和daf-16基因(daf-9、daf-12和daf-16基因登录号分别为GU256938、GU584879、JN628938、GU584878)。其中daf-3基因由9个外显子和8个内含子组成,属于MH蛋白家族;daf-9基因由6个外显子和5个内含子组成,属于细胞色素P450蛋白家族;daf-12基因含有6个外显子和5个内含子,属于核激素受体(NHR)蛋白家族;daf-16属于FOXO转录因子家族,存在2个基因即daf-16-1和daf-16-2,每个基因有2种剪接方式。在松材线虫基因组中daf-3、daf-9、daf-12和daf-16均为单拷贝基因。蛋白序列比对分析表明,松材线虫daf-3、daf-9、daf-12和daf-16基因分别与其同族基因具有高度保守性。
     2.分析了松材线虫繁殖型和扩散型中daf-9和daf-12基因的表达模式。Daf-9和daf-12在松材线虫不同发育时期和不同虫态中均有表达,但是在扩散型和繁殖型线虫中表达量变化较大。基因daf-9在扩散型Ⅲ龄线虫中表达水平极低,仅为繁殖型幼虫的1/10,而在扩散型Ⅳ龄幼虫中的表达量则与繁殖型幼虫持平。基因daf-12在扩散型Ⅲ龄线虫中表达水平与繁殖型幼虫基本持平,而在扩散型Ⅳ龄幼虫中表达量为扩散型Ⅲ龄的20倍以上,说明在松材线虫由繁殖型进入扩散型时daf-9基因大幅度下调,导致daf-12(NHR)缺少配体,而使松材线虫进入并保持扩散型Ⅲ龄。松材线虫此时出现积累脂肪,停止发育等表型,进入扩散型Ⅳ龄后,松材线虫daf-9基因恢复至繁殖型幼虫水平,daf-12基因大幅上调,daf-9利用松材线虫体内的固醇类物质合成DA,为daf-12提供配体。松材线虫由扩散型Ⅲ龄进入扩散型Ⅳ龄后,固醇类物质消耗掉而得不到补充,DA的合成再次被降低,使松材线虫维持扩散型Ⅳ龄幼虫。
     3.分析了松材线虫daf-3、daf-9、daf-12和daf-16基因在松材线虫应对外界不良条件(食物缺乏、高温、低温、种群密度增大)的表达模式。在温度适宜、食物充足、种群密度不大的条件下,松材线虫daf-3、daf-9、daf-12、daf-16基因均上调表达;在食物匮乏的情况下,松材线虫daf-3、daf-9、daf-12、daf-16基因均呈下调表达;当种群密度过大时,daf-3、daf-9、daf-12、daf-16基因均上调表达;低温时,daf-3、daf-12、daf-16-1基因呈上调表达,daf-9、daf-16-2基因呈下调表达;高温胁迫下,除daf-16-1基因略下调外,其它基因均上调表达。Daf-16-2蛋白在食物匮乏和低温胁迫下,大幅下调表达,而高温胁迫对其影响不大。
     4.构建了农杆菌介导转化在丝状真菌中表达dsRNA的载体PHD-RH,并利用灰葡萄孢菌介导表达松材线虫daf-3、daf-9、daf-12、daf-16-1、daf-16-2以及非靶性的sGFP基因的dsRNA,分别这些菌株连续培养松材线虫10代后(以转空载体的菌株为对照),分析松材线虫靶标基因表达量、发育速度、繁殖量、寿命、脂肪积累等表型。经过连续10代的RNAi处理松材线虫的靶标基因表达量下调近20倍,而sGFP基因dsRNA对靶标基因的表达没有影响;经daf-9、daf-12、daf-16-2基因RNAi处理后松材线虫发育速度显著低于对照(空载体),而经其它基因RNAi处理的线虫对其发育速度无影响;daf-9、daf-12基因RNAi处理的线虫繁殖量显著减少,而daf-16-1和daf-16-2RNAi处理的线虫繁殖量显著增加,经daf-3和sGFP基因RNAi处理的线虫对其繁殖量无影响;经daf-9、daf-12、daf16-1基因RNAi处理的线虫寿命显著增高,经daf-3、daf16-3、sGFP基因RNAi处理的线虫对其寿命无影响;经daf-3、daf-9、daf-12、daf16-1、daf-16-2基因RNAi处理的线虫脂肪含量均显著高于对照,而sGFP基因RNAi对松材线虫的脂肪积累量没有影响。
     5.建立灰葡萄孢菌原生质体转化体系,对灰葡萄孢菌Dicer-1基因进行同源敲除,获得了Dicer-1基因功能缺失的灰葡萄孢菌突变体,为更近一步利用灰葡萄孢菌表达松材线虫基因dsRNA研究松材线虫基因功能奠定了基础。
The pine wood nematode (Bursaphelenehus xylophilus),the pathogen of pinewilt disease transmitted by Monochamus spp., is a kind of quarantine pest toconiferous trees, which has caused huge economic losses in some countries andregions in Asian. In the life cycle of B. xylophilus, two distinct phases are involved,a propagating phase and a dispersal phase, and the two stages can transform andinterchange. The pine wood nematode keep highly survival rate under favorableenvironment and propagate with Monochamus spp by this transformation. Howeverthe mechanism of this transformation is not clear to this day. Therefore,it is essentialand significant to understand the diapause in pine wood nematode.The research onthe genes controlling the diapause and the switch between propagation and dispersalphases of B.xylophilus under environment stress are necessary. In this study, wecloned and sequenced four important genes daf-3, daf-9, daf-12and daf-16in B.xylophilus based on the result of model nematode (Caenorhadits.elegans), andanalyzed their gene structure. We detected the mRNA expression patterns of the fourgenes in different stages and ecological environments. Meanwhile, and theexpression of daf-3, daf-9, daf-12and daf-16were suppressed by Agrobacteriummediated transformation of Botyfis cinerea expressing dsRNA of daf-3, daf-9, daf-12and daf-16. The development speed, reproduction number, life span and triglycerideaccumulation of B.xylophilus were counted. In this study, the protoplaststransformation system was established. Dicer-1of B. cinerea was successfullyknockdowned by protoplasts transformation methods. The main results were asfollows:
     1. Based on the genes involved in diapause in C. elegans, daf-3, daf-9, daf-12and daf-16full-length cDNA and DNA fragment were obtained from B. xylophilusby RACE. The GenBank acession number of daf-9, daf-12, daf-16-1and daf-16-2were GU256938、GU584879、JN628938and GU584878, respectively. According tothe analysis of gene structure, daf-3gene consists of9exons and8introns andbelongs to MH protein family, daf-9gene consists of6exons and5introns and belongs to P450protein family; daf-12gene contains6exons and5introns andbelongs to NHR protein family; daf-16gene belongs to FOXO transcription factorfamily including two genes and has two different shear mechanisms. A single copyof daf-3, daf-9, daf-12and daf-16in the genome of B. xylophilus was revealed bysouthern blot experiments. By multiple sequences alignment of daf-3, daf-9, daf-12and daf-16, the results indicated that they were highly conserved with its homdogy,respectively.
     2. The real-time qPCR was used to detect the mRNA expression levels of daf-9and daf-12in propagation stages of eggs, larvae and adults, as well as the twodispersal stages, LIIIand LIVjuveniles of B. xylophilus. The result showed that daf-9and daf-12expressed in all development stages. The expression levels of daf-9waslow in the third dispersal stage as0.1times as larvae in propagation stages, but theexpression of dispersal LIVjuveniles recovered high level. There were no obviousdifferences in the expression of daf-12in larvaes in propagation stage and in thethird dispersal stages. However, expression of daf-12in the fourth dispersal stagewas much significantly higher than that in any other stages, more than20times ofthose the third dispersal stages. It is possible that the low expression of daf-9gene isthe reason of B. xylophilu transformation betweem propagation and dispersal stagesand keeping dispersal stages LIIIjuveniles. B. xylophilu reserved fats, stop growingand taking food at dispersal stages. At dispersal stages of LIVjuveniles, theexpression levels of daf-9gene was recovered to the levels as larvaes in propagationstages, and the biosynthesis of DA was recovered and provided the ligand for daf-12finishing transformation from dispersal stages LIIIjuveniles to LIVjuveniles. Sterolprovided by food is the material for biosynthesis of DA. When intracorporal sterolwas consumed, the biosynthesis of DA is stop. The lack of DA was resulted in B.xylophilu keeping dispersal stages LIVjuveniles.
     3. The change of mRNA expression of daf-3, daf-9, daf-12and daf-16in differentenvironments, such as starvation, high temperature, low temperature and crowding,were analyzed. The expression of the genes increased under favorable environments(suitable temperature, enough food and crowding). Under condition of no food, daf-3, daf-9, daf-12and daf-16gene were all downregulated. Under condition of crowding,the expression of daf-3, daf-9, daf-12and daf-16gene were all upregulated. Undercondition of low temprture, daf-3, daf-9, daf-16-1gene were upregulated and daf-9,daf-16-2gene were downregulated. Under condition of high temprture, daf-16-1genewas downregulated and others were upregulated. The expression of daf-16-2proteinwas downregulated under condition of no food and low tempreture, but was littlechange under condition of high tempreture.
     4. The PHD-RH vector expressing dsRNA in filamentous fungi wasconstructed. The dsRNA of daf-3、daf-9、daf-12、daf-16-1、daf-16-2gene of B.xylophilus and non-target sex gene sGFP were expressed by Botryis cinerea withthe PHD-RH vector. The pine wood nematode were cultured on those transformersand transformer of PHD-RH vector for10genenration and analyse the geneexpression level, development speed, reproduction number, life span andtriglyceride accumulation. The expression level of target gene wasdeclined by20times and the sGFP has no effect on expression of target gene. Thedevelopment speed of B. xylophilus were declined with the RNAi treatment of daf-9,daf-12, daf-16-2gene, and other gene RNAi treatment have no effect on developmentspeed. The reproduction number of B. xylophilus were declined with the RNAitreatment of daf-9、 daf-12gene, and increased with the RNAi treatment ofdaf-16-1and daf-16-2gene, but daf-3and sGFP gene RNAi treatment haveno effect on the reproduction number. The life span of the nematode increased withthe RNAi treatment,and other gene RNAi treatment have no effect on life span.Thetriglyceride accumulation were increased with the RNAi treatment of daf-3、daf-9、daf-12、daf-16-1、daf-16-2gene, and sGFP gene RNAi treatment have no effect ontriglyceride accumulation.
     5. The protoplasts transformation system was established and successfully used toknockout the Dicer-1of B. cinerea. The transformation system can provide thetechnical support for studying on the gene function of B. xylophilus by B. cinereaexpressing dsRNA of target gene.
引文
[1] Aarnio V, Lehtonen M, Storvik, M et al. Caenorhabditis Elegans MutantsPredict Regulation of Fatty Acids and Endocannabinoids by the CYP-35AGene Family [J]. Front Pharmacol,2011;2:1-10.
    [2] Aboobaker A A, Blaxter M L. Use of RNA interference to investigate genefunction in the human filarial nematode parasite Brugia malayi [J]. MolBiochem Parasitol,2003;129:41-51.
    [3] Albert P S and Riddle D L. Mutants of Caenorhabditis elegans that formdauer-like larvae [J]. Developmental Biology,1988;126:270-293.
    [4] Ao, W Y, Gaudet J, Kent W J, et al. Environmentally Induced ForegutRemodeling by PHA-4/FoxA and DAF-12/NHR [J]. Science,2004;305:1743-1746.
    [5] Bakhetia M, Charlton W, Atkinson H J, et al. RNA interference of dualoxidase in the plant nematode Meloidogyne incognita [J]. Mol Plant MicrobeInteract,2005;18:1099-1106.
    [6] Baugh L R and Sternberg P W. DAF-16/FOXO transcriptionof cki-1/Cip/Kipand repressionof lin-4during C.elegans L1arrest [J]. Current Biology,2006;16:780-78.
    [7] Benasciutti E., Pagès G, Kenzior O, et al. MAPK and JNK transductionpathways can phosphorylate Sp1to activate the uPA minimal promoterelement and endogenous gene transcription [J]. Blood,2004;104:256-262.
    [8] Bento G A, Ogawa, Sommer R J. Co-option of the hormone-signalling moduledafachronic acid-DAF-12in nematode evolution [J]. Nature,2010;466:494-498.
    [9] Birnby D A, Link E M, Vowels J J, et al. A transmembrane guanylyl cyclase(DAF-11) and Hsp90(DAF-21) regulate a common set of chemosensorybehaviors in C. elegans [J]. Genetics,2000;155:85-104.
    [10] Bolla I, JordanW. Cultivation of the pine wilt nematode, Bursaphelencnusxylophilus, in axenic culture media[J]. Journal of Nematology,1982;14(3):377-381.
    [11] Bolla J A, Bramble J, Yamaguchi A. Attraction of Bursaphelenchus xylophilus,pathotype MPSy-1, to Monochamus carolinensis larvae [J]. JapaneseNematology,1989;19:32-37.
    [12] Boutros M, Ahringer J. The art and design of genetic screens: RNAinterference [J]. Nature Reviews Genetics,2008;9:554-566.
    [13] Boutros M, Kiger A A, Armknecht S, et al. Genome-wide RNAi analysis ofgrowth and viability in Drosophila cells [J]. Science,2004;303:832-835.
    [14] Broue F, Liere P, Kenyon C, et al. A steroid hormone that extends the lifespanof caenorhabditis elegans [J]. Aging Cell,2007;6:87-94.
    [15] Buhler M and Moazed D. Transcription and RNAi in heterochromatic genesilencing [J]. Nature Structural&Molecular Biology,2007;14:1041–1048.
    [16] Calixto A,Chelur D,Topalidou I, et al. Enhanced neuronal RNAi in C.elegans using SID-1[J]. Nat Methods,2010;7:554–559.
    [17] Catalanotto C, Nolan T, Cogoni C. Homology effects in Neurospora crassa [J].FEMS,2006;254:182–189.
    [18] Chambon P. A decade of molecular biology of retinoic acid receptors [J].FASEB,1996;10:940–954.
    [19] Chen D, and Riddle D L. Function of the PHA-4/FOXA transcription factorduring C.elegans post-embryonic development [J]. BMC DevelopmentalBiology,2008;8:1-10.
    [20] Chen Q, Rehman S, Smant G, et al. Functional analysis of pathogenicityproteins of the potato cyst nematode Globodera rostochiensis using RNAi [J].Mol Plant Microbe Interact,2005;18:621-625.
    [21] Choi, I H, Park J Y, Shin S C et al. Nematicidal activity of medicinal plantextracts and two cinnamates isolated from Kaempferia galanga L.(Proh Hom)against the pine wood nematode, Bursaphelenchus xylophilus [J]. Nematology,2006;8:359-365.
    [22] Chuang C F and Meyerowitz E M. Specific and heritable gnetic interferenceby double-stranded RNA in Arabidopsis thaliana [J]. PNAS,2000;97:4985-4990.
    [23] Cogoni C, Macino G. Gene silencing in Neurospora crassa requires a proteinhomologous to RNA-dependent RNA polymerase [J]. Nature,1999;399:166-169
    [24] Cole K A, Huggins J, Laquaglia M et al. RNAi screen of the protein kinomeidentifies checkpoint kinase1(CHK1) as a therapeutic target inneuroblastoma[J]. PNAS,2011:3336–3341.
    [25] Conrad C and Gerlich D W. Automated microscopy for high-content RNAiscreening core metazoan actinome by phenotype [J]. Cell Biology,2010;188:453-461.
    [26] Da Graca L S, Zimmerman K K, Mitchell M C, et al. DAF-5is a Skioncoprotein homolog that functions in a neuronal TGFβ pathway to regulate C.elegans dauer development [J]. Development,2004;131:435-446.
    [27] Daniel M, Motola L, Cummins C L, et al. Identification of Ligands forDAF-12that Govern Dauer Formation and Reproduction in C.elegans [J].Cell,2006;124:1209-1223.
    [28] Drinnenberg I A, Fink G R, Bartel D P. Compatibility with Killer Explains theRise of RNAi-Deficient Fungi [J]. Science,2011;333:1592.
    [29] DropkinV H, Foudin A S. Report of the occurrence of BursaphelenchusLignicolus induce pine wilt disease in Mis-souri[J]. Plant Disease Reporter,1979;65:1002-1927.
    [30] Dropkin V H, Foudin A S, Kondo E, et al. Pine wood nematode: a threat toU.S. forests?[J]. Plant Disease,1981;65:1022-1027.
    [31] Dunoyer P, Brosnan C A, Schott G, et al. An endogenous, systemic RNAipathway in plants [J]. EMBO,2010;29:1699-1712.
    [32] Dwinell L D and Nickle W R. An overview of the pine wood nematode ban inNorth America [J]. NAFC,1989:13-55.
    [33] Echeverri C J and Perrimon N. High-throughput RNAi screening in culturedcells: A user’s guide [J]. Nat Rev Genet,2006;7:373-384.
    [34] Estevez M,Attisano L,Wrana J L, et al. The daf-4gene encodes a bonemorphogenetic protein receptor controlling C.elegans dauer larvadevelopment [J]. Nature,1993;365:644-649.
    [35] Fanelli E, Di Vito M, Jones J T, et al. Analysis of chitin synthase function in aplant parasitic nematode, Meloidogyne artiellia, using RNAi [J]. Gene,2005;349:87-95.
    [36] Feinberg E H and Hunter C P. Transport of dsRNA into cells by thetransmembrane protein SID-1[J]. Science,2003;301:1545-1547.
    [37] Fielenbach N and Antebi A. Dauer formation and the molecular basis ofplasticity C. elegans [J]. Genes,2008;22:2149-2165.
    [38] Fire A, Xu S, Montgomery M K, et al. Potent and specific genetic interferenceby double-stranded RNA in Caenorhabditis elegans [J]. Nature,1998;391:806-811.
    [39] Franchini A, Imbriano C, Peruzzi E, et al. Expression of the CCAAT-bindingfactor NF-Y in Caenorhabditis elegans [J].Molecular Histology,2005;36:139-145.
    [40] Gems D,Sutton A J, Sundermeyer M L, et al.Two pleiotropic classes of daf-2mutatio affect larval arrest, adult behavior, reproduction and longevity in C.elegans [J]. Genetics,1998;150:129-155.
    [41] Georgi L L, Albert P S, Riddle D L. daf-1, a C. elegans gene controlling dauerlarvadevelopment, encodes a novel receptor protein kinase [J]. Cell,1990;61:635-645.
    [42] Gerisch B V, Rottiers D L. Li D L, et al. A bile acid-like steroid modulatesCaenorhabditis elegans lifespan through nuclear receptor signaling [J]. PNAS,2007;104:5014-5019.
    [43] Gerisch B, Weitzel C, Kober-Eisermann C, et al. A hormonal signalingpathway influencing C. elegans dauer diapause in response to environmentalcues [J]. Development Cell,2001;131:1765-1766.
    [44] Gerisch B, Weitzel C, Kober-EisermannV C, et al. A Hormonal SignalingPathway Influencing C. elegans Metabolism, Reproductive Development, andLife Span [J]. Developmental Cell,2001;1:841-851.
    [45] Guo S and Kemphues K J. Par-1, a gene required for establishing polarity in C.elegans embryos, encodes a putative Ser/Thr kinase that is asymmetricallydistributed [J]. Cell,1995;81:611-620.
    [46] Han Z M, Hong Y D, Zhao B G. et al. A study on pathogenicity of bacteriacarried by pine wood nematodes[J]. Phytopathol,2003;151:683-689.
    [47] Hochbaum D, Zhang Y, Stuckenholz C, et al. DAF-12Regulates a ConnectedNetwork of Genes to Ensure Robust Developmental Decisions [J]. PLoSGenetics,2011;7:1-16.
    [48] Holt S J and Riddle D L. SAG Esurveys C.elegans carbohydratemetabolism:Evidence for an anaerobic shift in the long-lived dauer larva [J].Mech.Ageing Development,2003;124:779-800.
    [49] Hussein A S, Kichenin K, Selkirk M E. Suppression of secretedacetylcholinesterase expression in Nippostrongylus brasiliensis by RNAinterference [J]. Mol Biochem Parasitol,2002;122:91-94.
    [50] Inoue T, and Thomas J H. Targets of TGF-[beta] signaling in Caenorhabditiselegans dauer formation [J]. Developmental Biology,2000;217:192-204.
    [51] Jensen V L,Simonsen K T, Lee Y H et al. RNAi Screen of DAF-16/FOXOTarget Genes in C. elegans Links Pathogenesis and Dauer Formation [J]. PLoSONE,2010;5:1-8.
    [52] Jeong M H, Kawasaki I, Shim Y H. A Circulatory Transcriptional RegulationAmong daf-9, daf-12, and daf-16Mediates Larval Development UponCholesterol Starvation in Caenorhabditis elegans [J]. Development Dynamics,2010;239:1931–1940.
    [53] Jia K L, Albert P S. Riddle D L. DAF-9, a cytochrome P450regulating C.elegans larval development and adult longevity [J]. Development,2002;29:221-231.
    [54] Junhai Niu, Heng Jian, Jianmei Xu, et al. RNAi silencing of the Meloidogyneincognita Rpn7gene reduces nematode parasitic success. Eur J Plant Pathol,2012,3:1-14.
    [55] Kawazu K, Kanneko N. A sept is is of the pine wood nematode isolae OKD-3causes it to lose its pathogenieith[J]. Japanese Journal of Nematology,1997;27:76-80.
    [56] Kawazu K. Pathogenic toxins of pine wilt disease[J]. Kagaku to Seibultsu,1998;36:120-124.
    [57] Kawazu K. Resolation of the pathogens from wilted red pine seedlingsinoculated with the bacterium carrying nematode, and the cause of differencein pathogenicity among pine wood nematode isolates, Scientific Reports of theFaculty of Agriculture,1999;87:1-5.
    [58] Kawazu K, Yanmashita H, Konbayashi A, et al. Isolation of pine wiltingbacteria accompanying pine wood nematode. Bursaphelenchus xylophilus,and their toxic metabolites, Scientific Reports of the Faculty of Agriculture[J].Okayam a University,1998;87:1-7.
    [59] Kikuchi T, Cotton J A, Dalzell J J, et al. Genomic Insights into the Origin ofParasitism in the Emerging Plant Pathogen Bursaphelen chusxylophilus [J].Public Library of Science Pathogens,2011;7:1-17.
    [60] Kobayshi F, Yamane A, Ikeda T. The Japanese pine sawyer beetle as the vectorof pine wilt disease [J]. Annual Review of Entomology,1984;29:115-135.
    [61] Konda E, Ishibashi N. Ultrastructural differences between the propagative anddispersal forms in pine wood nematode, Bursaphelenchus lignicolus, withreference to the survival [J]. Applied Entomology and Zoology,1978;13:1-11.
    [62] Kondo E. SEM observations on the intratracheal existence and cuticle surfaceof the pine wood nematode Bursaphelenchus xylophilus, associated with thecerambycid beetle Monochamus carolinensis [J]. Applied Entomology andZoology,1986;21:340-346.
    [63] Ku roda K. ito S. Migration speed of pine wood nematodes and activities ofother microbes during the development of pine wilt-disease in Pinusthunbergi[J]. Japanese Forestry Society,1992;74(5):383-389.
    [64] Lai Y X, Zhou Y P, Yu L X, et al. Study on instantly burning dead pines atcutting spots in pine forests to control pine wilt disease [J]. Japanese ForestryScience&Technology,2000;27:28-32.
    [65] Lai Y. The different effect of practicing two strategic ways to control the pinewilt disease. Proceedings of International Symposium [C]. Shokado Shoten,1999:181-183.
    [66] Lanjuin A and Sengupta P. Regulation of chemosensory receptor expressionand sensory signaling by the KIN-29Ser/Thr kinase [J]. Neture,2002;33:369-381.
    [67] Larsen P L. Aging and resistance to oxidative damage in C.elegans [J]. PNAS,1993;90:8905-8909.
    [68] Lee H C, Aalto A P, Yang Q y, et al. The DNA/RNA-Dependent RNAPolymerase QDE-1Generates Aberrant RNA and dsRNA for RNAi in aProcess Requiring Replication Protein A and a DNA Helicase [J]. PLoSBiology,2010;8:1-11.
    [69] Lee S K and Kumar P. Conditional RNAi: Towards a silent gene therapy[J].Advanced Drug Delivery Reviews,2009;61:650–664.
    [70] Levidiotis V, Kanellis J, Ierino F. L,et al. Increased expression of heparanasein puromycin aminonucleoside nephrosis [J]. Kidney International,2001;60:1287–1296.
    [71] Li H, Zhou G Y, Liu J N, et al. Study on Pine Wilt Disease and its ControlSituation [J]. Applied Mechanics and Materials,2011;55:567-572.
    [72] Li J M. Vidal T M, Lee S S. The14-3-3protein FTT-2regulates DAF-16inCaenorhabditis elegans [J]. Developmental Biology,2007;301:82-91.
    [73] Li L J, Sun L, Gao F R, et al. Stk40links the pluripotency factor Oct4to theErk/MAPK pathway and controls extraembryonic endoderm differentiation [J].PNAS,2010;107:1402-1407.
    [74] Linit M J. Transmission of pinewood nematode through feeding wounds ofMonochamus carolinensis (Coleoptera: Cerambycidae)[J]. Nematology,1990;22:231-236.
    [75] Lithgow G J, White T M, Melov S, et al. Thermotolerance and extendedlife-span conferred by single-gene mutations and induced by thermal stress[J]. PNAS,1995;92:7540-7544.
    [76] Liu T, Zimmerman K K, Patterson G I. Regulation of signaling genes byTGF-β during entry into dauer diapause in C. elegans [J]. BMCDevelopmental Biology,2004;4:1-17.
    [77] Lohmann J U, Endl I, Bosch T C. Silencing of developmental genes in Hydra[J]. Developmental Biology,1999;214:211-214.
    [78] Mamiya Y, Kiyohara T. Description of Bursaphelenchus lignicolusn. sp. Frompine wood and histopathology of nematode-infested trees [J]. Nematologica,1972;18:120-124.
    [79] Mamiya Y. A kind of nematode-trapping fungus, Dactylella leptospora, foundin wood around pupal chambers of Monochamus alternatus [J]. Forest Pests,1976;25:147-149.
    [80] Mamiya Y. Pathogenicity of the Pine Wood Nematode [J]. Japan APS Press St.Paul,1987:59-65.
    [81] Mamiya Y. Plant and Insect Nematodes[C]. Japan Marcel Dekker Inc,1984:589-626.
    [82] Matsuura K. Analysis of prevention effects of systemic nematodes againstpine wilt diseases. Proceedings of International Symposium [C]. ShokadoShoten,1999.
    [83] Matsuura T. Recovery of pine from the lethal process of pine wilt disease withsystemic nematocide, thionazin. Proceedings of International Symposium [C].Shokado Shoten,1999.
    [84] Milanini-Mongiat J, Pouysségur J, Pages G. Identification of two Sp1phosphorylation sites for p42/p44mitogen activated protein kinases: theirimplication in vascular endothelial growth factor gene transcription [J].Biological Chemistry,2002;277:20631-20639.
    [85] Min K, Kang J, Lee J. A modified feeding RNAi method for simultaneousknock-down of more than one gene in C. elegans [J]. Biotechniques,2010;48:229-232.
    [86] Mohr S, Bakal C, Perrimon N. Genomic Screening with RNAi: Results andChallenges [J]. Biochem,2010;79:37-64.
    [87] Mori T, Morikawa C, Noda T, et al. Effects of chelators (EGTA, EDTA) andcalcium ions on nematode capture by the nematode-trapping fungusArthrobotrys ellipsospora [J]. Mycoscience,2000;41:455-460.
    [88] Mota M M and Vieira P. Pine wilt disease: a worldwide threat to forestecosystems [M]. Springer Science,2008.
    [89] Muramoto M. Ending of pine wilt disease in okinoerabu island, kagoshimaprefecture. Proceedings of International Symposium [C]. Shokado Shoten,1999.
    [90] Necibi S, andLinit M J. Effect of Monochamus carolinensis onBursaphelenchus xylophilus dispersal stage formation [J]. Journal ofNematology,1998;30:246-254.
    [91] Ng H, Tschudi C, Gull K, et al. Double-stranded RNA induces mRNAdegradation in Trypanosoma brucei [J]. PNAS,1998;95:14687-14692.
    [92] Nobuchi A. An automatic releasing equipment of Beauveria contaminatedbark beetle for microbial control of Monochamus alternatus [J]. Forest Pests,1993;42:213-217.
    [93] Ogg S, Paradis S, Gottlieb S, et al. The fork head transcription factor DAF-16transduces sisulin-like metabolic and longevity signals in C.elegans [J].Nature,1997;389:994-999.
    [94] Oku H, Morimoto T, Ando T, et al. Simple method for evaluation of durabilityof anthelmintic compounds within pine stands. Proceedings of InternationalSymposium [C]. Shokado Shoten,1999.Oku H, Shiraishi T, Kurozumi S. et al. Pine wilt toxin, the metabolite of abacterium associated with a nematode[J]. Naturwissenschaften,1980;67:198-199.
    [95] Oxford University Press. A guide to using RNAi and other nucleotide-basedtechnologies [J]. Briefings inTunctional Genomics,2011;10:173-174.
    [96] Pal-Bhadra M, Bhadra U, Birchler J A. Cosuppression of nonhomologoustransgenes in Drosophila involves mutually related endogenous sequences [J].Cell,1999;99:35-46.
    [97] Park D, Estevez A, Riddle1D L. Antagonistic Smad transcription factorscontrol the dauer/non-dauer switch in C. elegans [J]. Development,2010;137:477-485.
    [98] Patterson G I, Koweek A, Wong Aet al. The DAF-3Smad protein antagonizesTGF-β related receptor signaling in the C.elegans dauer pathway [J]. Genesand Development,1997;11:2679-2690.
    [99] Peckol E L, Troemel E R, Bargmann C I. Sensory experience and sensoryactivity regulate chemosensory receptor gene expression in Caenorhabditiselegans [J]. PNAS,2001;98:11032-11038.
    [100] Per Lundin. Is silence still golden? Mapping the RNAi patent landscape [J].Nature Biotechnology,2011;29:493-497.
    [101] Perrimon N, Ni J Q, Perkins L. In vivo RNAi: Today and Tomorrow [J]. ColdSpring Harb Perspect Biol,2010;2:36-40
    [102] Perry R N. Chemoreception in plant parasitic nematodes [J]. Annual Review ofPhytopathology,1996;34:181-199.
    [103] Reddy B D, Wang Y, Niu L F, et al. Elimination of a specific histone H3K14acetyltransferase complex by passes the RNAi pathway to regulate pericentricheterochromatin functions [J]. Genes&Development,2011;25:214-219.
    [104] Ren P F, Lim C S, Johnsen R, et al. Control of C. elegans larval developmentby neuronal expression of a TGF-β homolog [J]. Science,1996;274:1389-1391.
    [105] Riddle D L and Albert P S. Genetic and environmental regulation of Dauerlarva development [C]. Cold Spring Harbor Labora-tory Press,Cold SpringHarbor, NY,1997.
    [106] Riddle D L, Swanson M M, Albert P S. Interacting genes in nematode dauerlarva formation [J]. Nature,1981;290:668-671.
    [107] Rohn J L, Sims D, Liu T, et al. Comparative RNAi screening identifies aconserved [J]. Cell Biology,2011;194:789–805.
    [108] Rosso M N, Dubrana M P, Cimbolini N, et al. Application of RNAinterference to root-knot nematode genes encoding esophageal gland proteins[J]. Mol Plant Microbe Interact,2005;18:615-620.
    [109] Rouault J P, Kuwabara P E, Sinilnikova O M, et al. Regulation of dauer larvadevelopment in C.elegans by daf-18, a homologue of regulation of the tumoursuppressor PTEN [J]. Current Biology,1999;9:329-332.
    [110] Sánchez A A and Newmark P A. Double-stranded RNA specifically disruptsgene expression during planarian regeneration [J]. PNAS,1999;96:5049-5054.
    [111] Savage-Dunn C. WormBook [M]. The C.elegans Research Community,2005.
    [112] Schackwitz W S, Inoue T, Thomas J H. Chemo sensory neurons functioninparallel to mediate a pheromone responsein C. elegans [J]. Neuron,1996;17:719-728.
    [113] Schaser T, Wrede C, Duerner L, et al. RNAi-mediated gene silencing intumour tissue using replication-competent retroviral vectors [J]. Gene Therapy,2011;7:1038-1048.
    [114] Shimazu. Microbial control of the pine sawyer, Monochamus alternatus byBeauveria bassiana. International Symposium of Pine Wilt disease Caused byPine Wood Nematode [C]. Beijing,1995.
    [115] Stamps W T and Linit M J. Interaction of intrisic and extrinsic chemical cuesin the behaviour of Bursaphelenchus xylophilus (AphelenchidaAphelenchoididae) in relation to its beetle vectors [J]. Nematology,2001;3:295-301.
    [116] Tamura H. Pathogenicity of aseptic Bursaphelenchus xyophius and associatedbacteria to pine seeding[J]. Japen Nematology,1983;13:1-5.
    [117] Takai K, Soejima T, Suzuki T, et al. Development of a water-solublepreparation for emamectin benzoate and its preventative effect against thewilting of pot-grown pine trees inoculated with the pine wood nematode,Bursaphelenchus xylophilus [J]. Pest Management Science,2001;57:463-466.
    [118] Takai K, Soejima T, Suzuki T, et al. Emamectin benzoate as a candidate fortrunk-injection agent against the pinewood nematode, Bursaphelenchusxylophilus [J]. Pest Management science,2000;56:937-941.
    [119] Tamura K, Dudley J, Nei M, et al. MEGA4: molecular evolutionary geneticsanalysis (MEGA) software version4.0[J]. Molecular Biology and Evolution,2007;24:1596-1599.
    [120] Tamura H. Pathogenicity of aseptic Bursaphelenchus xylophilus and associatedbacteria to pine seedlings[J]. Japen Nematology,1983;13:1–5.
    [121] Tennessen J M, Opperman K J, Rougvie A E. The C. elegans developmentaltiming protein LIN-42regulates diapause in response to environmental cues[J].Development,2010;137:3501-3511.
    [122] Tewari M, Hu P J, Ahn J S, et al. Systematic interactome mapping and geneticperturbation analysis of a C. elegans TGF-[beta] signaling network [J].Molecular Cell,2004;13:469-482.
    [123] Thomas J H, Birnby D A., Vowels J J. Evidence for parallel processing ofsensory information controlling dauer formation in C.elegans [J]. Genetics,1993;134:1105-1107.
    [124] Urwin P E, Lilley C J, Atkinson H J. Ingestion of double-stranded RNA bypreparasitic juvenile cyst nematodes leads to RNA interference [J]. Mol PlantMicrobe Interact.,2002;15:747-752.
    [125] van der Krol A R, Mur LA, Beld M, et al. Flavonoid genes in petunia: additionof a limited number of gene copies may lead to a suppression of geneexpression [J]. Plant Cell,1990;2:291-299.
    [126] Vanfleteren J R and De Vreese A. Rate of aerobic metabolism and superoxideproduction rate potential in the nematode Caenorhabditis elegans [J].Experimental Biology,1996;274:93-100.
    [127] Voinnet O. RNA silencing as a plant immune systemgainst viruses [J].TrendsGenet,2001;17:449-459.
    [128] Wang Y and Levy D E. C.elegans STAT cooperates with DAF-7/TGF-betasignaling to repress dauer formation [J]. Current Biology,2006;16:89-94.
    [129] Wang Y and Levy D E. C.elegans STAT: evolution of a regulatory switch [J].FASEB,2006;20:1640-1652.
    [130] Wang Z, Zhou X E, Motola D L, et al. Identification of the nuclear receptorDAF-12as a therapeutic target in parasitic nematodes [J]. PNAS,2009;106:9138-9143.
    [131] Warner-Schmidt J L and Duman R S. VEGF is an essential mediator of theneurogenic and behavioral actions of antidepressants [J]. PNAS,2007;104:4647-4652.
    [132] Waterhouse P M, Graham M W, Wang M B. Virus resistance and genesilencing in plants can be induced by simultaneous expression of sense andantisense RNA [J]. PNAS,1998;95:13959-13964.
    [133] Wianny F and Zernicka G M. Specific interference with gene function bydouble-stranded RNA in early mouse development [J]. Nat Cell Biol,2000;2:70-75.
    [134] Wingfield M J. Fungi associated with the pine wood nematode,Bursaphelenchus xylophilus, and cerambycid beetles in Wisconsin [J].Mycologia,1987;9:325-328.
    [135] Wingfield M J and Blanchette R A. The pine wood nematode Bursaphelenchusxylophilus in Minnesota and Wisconsion USA: insect associates andtransmission studies [J]. Canadian Forest Research,1983;13:1068-1076.
    [136] Wingfield M J, Balnchette, R A, Nicholls T H. Is the pine wood nematode animportant pathogen in the United States?[J]. Forestry,1984:82:232-235.
    [137] Wingfield M J. Transmission of pinewood nematode to cut timber and girdledtrees [J]. Plant Disease,1983;67:35-37.
    [138] Wolkow C A, Mu oz M J, Riddle D L.et al. Insulin receptor substrate and p55orthologous adaptor proteins function in the Caenorhabditis elegansdaf-2/insulin-like signaling pathway [J]. Biological,2002;277:49591-49597.
    [139] Zhao B G, Wang H L, Han S F. et al. Distribution and pathogenicity of bacteriaspecies carried by Bursaphelenchus xylophilus in China[J]. Nematology,2003;5:899-906.
    [140] Zhao B G, Futai K, Sutherland J R, et al. Pine wilt disease [M]. Springer. KatoBunmeisha, Japan.2008.
    [141] Zhao L L, Wei W, Kang L, et al. Chemotaxis of the pinewood nematode,Bursaphelenchus xylophilus, to volatiles associated with host pine, Pinusmassoniana, and its vector Monochamus alternatus [J]. Chemical Ecology,2007;33:1207-1216.
    [142] Zhao X, Schmitt M, Hawes M C. Species-dependent effects of border cell androot tip exudates on nematode behavior [J]. Phytopathology,2000;90:1239-1245.
    [143] Zhu L H, Ye J, Negi S. et al. Pathogenicity of Aseptic Bursaphelenchusxylophilus[J]. PLoS ONE,2012;7:1-8.
    [144] Zunkerman B M and Jansson H B. Nematode chemotaxis and possiblemechanisms of host/prey recognition [J]. Annual Review of Phytopathology,1984;22:95-113.
    [145]曹越,沈伯葵.人工培养条件下松材线虫提取物的毒性研究[J].南京林业大学学报,1996;20(4):13-16.
    [146]陈国华,肖罗,谢丙炎等南方根结线虫促分裂原活化蛋白激酶(MAPK)基因的RNAi效应分析[J].植物病理学报,2008;509-51
    [147]戴素明,成新跃,肖启明等.利用RNAi技术研究松材线虫纤维素酶基因(Bx-eng-1)的功能[C].中国植物病理学会学术年会论文集,2006.
    [148]郭道森,赵博光,高蓉等.利用愈伤组织验证的细菌分离物B619与松材线虫病的关系[J].南京林业大学学报,2001;25(5):71-74.
    [149]莫明和,李国红,董锦艳等.日本亮耳菌一种新的杀线虫真菌[J].菌物系统,2000;19:529-533.
    [150]宋世涵,张连芹,陈沐荣.利用管氏肿腿蜂防治松材线虫病的研究[J].广东林业科技,1998;14:38-42.
    [151]孙建华.土壤真菌培养物对松材线虫生长和繁殖抑制作用的研究[J].南开大学学报,1997;30:82-88.
    [152]谈家金,向红琼,冯志新等.松材线虫伴生细菌的分离鉴定及其致病性[J].林业科技开发,2008;20(2):23-26.
    [153]谈家金,杨荣铮,吴慧平等.不同地理种群的松材线虫对马尾松的致病力差异[J].植物检疫,2000;14(6):324-325.
    [154]汪永俊.松褐天牛的初步研究[J].江苏林业科技,1998:31~33.
    [155]王守先,牛宝龙,沈卫锋等.松材线虫RNA聚合酶基因的RNA干扰研究.浙江农业科学,2007:690-694.
    [156]肖罗.松材线虫(Bursaphelenchus xylophilus)flp基因与香蕉穿孔线虫(Radopholus similes)Rs-eng-1基因的克隆和功能分析[D].湖南农业大学,2009.
    [157]谢丙炎,成新跃,石娟等.松材线虫入侵种群形成与扩张机制——国家重点基础研究发展计划“农林危险生物入侵机理与控制基础研究”进展[J].生命科学,2009;39:333-341.
    [158]杨宝君.不同松树品种对松材线虫的抗病性.植物病理学报,1987;17:211-214.
    [159]张建军,张润志,陈京元.松材线虫媒介昆虫种类及其扩散能力.浙江林学院学报2007,24(3):350—35.
    [160]张连芹.利用引诱剂和肿腿蜂防治松墨天牛的研究.林业科学研究,1991;3:285-290.
    [161]赵博光,郭道森,高蓉等.细菌分离物B619与松材线虫病关系的初步研究[J].南京林业大学学报,2000;24(4):72-74.
    [162]赵博光,郭道森.松材线虫携带的一株细菌分离及其致病性[J].北京林业大学学报,2004;26(1):57-61.
    [163]赵博光,梁波,徐梅等.松材线虫携带一株荧光假单胞细菌致萎毒素的初步分离[J].林业科学,2006;42(1):75-78.
    [164]周性恒,林巧娥.松材线虫天敌—矛线虫的发现[C].北京:中国林业出版社,1995.
    [165]周性恒,朱洪兵,肖文忠.南京地区墨天牛病原真菌的调查研究[C].北京:中国林业出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700