用户名: 密码: 验证码:
柚皮基活性炭制备及吸附应用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性炭一般具有孔隙发达、比表面积大、表面官能团丰富和活性高等特点,是水处理中应用非常广泛的吸附剂。国内外开展了大量有关活性炭制备及其用于含重金属废水、印染废水等处理的研究。然而,采用煤炭和其他不可再生资源制备活性炭成本很高。为了寻找制备活性炭原料的新来源,不少学者把目光投向来源广泛、再生性强以及无二次污染的农业废弃物。柚子是我国主要水果之一,在南方许多地区大量种植。通常柚皮未被利用就直接丢弃。目前有关以柚皮为原料采用氯化锌活化法制备活性炭,并进行污水处理的研究尚未见报道。本文以柚皮为原料,采用氯化锌活化法制备柚皮基活性炭,并针对不同典型污染物进行了吸附处理研究。通过红外光谱、X射线衍射、扫描电子显微镜等分析方法和吸附动力学、热力学等理论,系统研究了柚皮基活性炭物理化学性质,以及吸附废水中氨氮、磷、碱性染料亚甲蓝、酸性染料刚果红和六价铬的机理,并讨论了pH、温度和吸附时间等因素对吸附容量的影响。主要研究结论:
     (1)利用农业废弃物柚子皮为活性炭原料,采用ZnCl2活化法制备柚皮基活性炭,设计正交试验确定最佳制备工艺条件:ZnCl2溶液质量分数20%,液料质量比为3.0:1,活化温度和时间分别为500℃、80min。所得柚皮基活性炭得率为35.36%,碘吸附值为851mg/g。其BET比表面积为1045m2/g,孔容积为7.471cm3/g,孔平均直径为1.430nm。红外光谱分析结果说明,柚皮基活性炭表面主要存在羟基、羧基、胺基和吡喃酮等官能团。样品的零电点为5.67。
     (2)利用柚皮基活性炭处理含Cr(Ⅵ)废水。研究结果表明,吸附时间12h达到吸附平衡,在pH等于1.0时,吸附效果最好。Temkin和Langmuir模型可以很好地描述Cr(vi)吸附过程;Langmuir单分子层饱和吸附量达到145.47mg/g。根据Dubinin-Radushkevich模型计算的吸附自由能为9.93、17.72和20.82kJ/mol, Cr (Ⅵ)吸附以化学吸附为主。准二级动力学模型能很好地拟合柚皮基活性炭吸附Cr(Ⅵ)的动力学实验数据。颗粒内扩散模型和Boyd模型研究表明,膜扩散系数和孔扩散系数均值分别为3.72×10-13cm2/s和5.99×10-12cm2/s,吸附过程由膜扩散和颗粒内扩散共同控制,膜扩散为主控步骤。柚皮基活性炭吸附Cr(Ⅵ)的⊿G在-0.32kJ/mol和-20.06kJ/mol之间,⊿H在39.85kJ/mol和342.93kJ/mol之间,⊿S在134.91kJ/(mol·K)和829.51kJ/(mol·K)之间,说明吸附是一个自发吸热熵增过程。吸附机理主要涉及几方面作用:活性炭表面带电基团(羟基、羧基和胺基)通过静电引力吸附Cr(Ⅵ)离子;吸附的Cr(Ⅵ)离子在强酸条件下还原为三价铬,一部分进入溶液系统,一部分与炭基质发生反应形成螯合物。
     (3)利用柚皮基活性炭处理含碱性染料亚甲蓝(MB)废水。吸附初期吸附速率很快,2h后吸附基本平衡。pH2.0~10.0范围吸附量无明显变化。Temkin和Langmuir模型可以很好地描述MB吸附过程,Langmuir单分子层最大饱和吸附量达到234.26mg/g。根据Dubinin-Radushkevich模型计算吸附自由能均值为18.53kJ/mol, MB吸附以化学吸附为主。准二级动力学模型能够很好地描述柚皮基活性炭吸附MB的动力学实验数据。颗粒内扩散模型和Boyd模型分析表明,膜扩散系数和孔扩散系数均值分别为2.85×10-12cm2/s和2.30×10-10cm2/s,吸附过程受膜扩散和颗粒内扩散影响,其中膜扩散为主控步骤。柚皮基活性炭吸附MB的⊿G在-19.44kJ/mol和-24.77kJ/mol之间,⊿H在64.63kJ/mol和67.50kJ/mol之间,⊿S在276.65kJ/(mol·K)和277.98kJ/(mol·K)之间,吸附是一个自发吸热过程。吸附机理包括静电相互作用、氢键作用和电子供体受体作用。
     (4)利用柚皮基活性炭处理含酸性染料刚果红(CR)废水。吸附2h后反应基本平衡,pH3.0~10.0范围吸附量无明显变化。Freundlich模型可以很好地描述CR吸附过程;利用Dubinin-Radushkevich模型计算吸附自由能的平均值为12.73kJ/mol,反应过程以化学离子交换吸附为主。准二级动力学和Elovich模型能够很好地用于描述柚皮基活性炭吸附CR过程。颗粒内扩散模型分析表明:膜扩散系数和孔扩散系数均值分别为3.72×10-13cm2/s和5.99×10-12cm2/s,吸附过程由膜扩散和颗粒内扩散联合控制,其中膜扩散为主控步骤。实验条件下,柚皮基活性炭吸附CR的⊿G在-3.72kJ/mol和-15.17kJ/mol之间,⊿H在45.35kJ/mol和49.54kJ/mol之间,⊿S在154.00kJ/(mol·K)和166.05kJ/(mol·K)之间,反应属于自发吸热过程。柚皮基活性炭吸附CR时,静电引力和氢键作用为吸附过程主要作用力。
     (5)利用柚皮基活性炭处理含氨氮废水。吸附5h后反应基本平衡。Freundlich和Temkin模型可以很好地描述氨氮吸附过程;准二级动力学和Elovich模型描述柚皮基活性炭吸附氨氮的动力学实验数据达到显著相关。利用Dubinin-Radushkevich模型计算吸附自由能的平均值为9.19kJ/mol,吸附过程以化学离子交换吸附为主。颗粒内扩散模型和Boyd模型分析表明:柚皮基活性炭吸附氨氮的膜扩散系数和孔扩散系数均值分别为6.65×10-13和1.15×10-11cm2/s,吸附过程由膜扩散和颗粒内扩散联合控制,其中膜扩散为限速步骤。实验条件下,柚皮基活性炭吸附氨氮的⊿G在-4.26kJ/mol和-4.73kJ/mol之间,⊿H在1.48kJ/mol和2.58kJ/mol之间,⊿s在19.74kJ/(mol·K)和23.29kJ/(mol·K)之间,吸附为自发吸热过程。柚皮基活性炭吸附氨氮时,静电引力和范德华力作用为吸附过程主要作用力。
     (6)利用柚皮基活性炭处理含磷废水。吸附3h后反应基本平衡。Freundlich和Dubinin-Radushkevich模型都可以反映柚皮基活性炭吸附磷特征,磷吸附属于多分子层吸附。准二级动力学和Elovich模型能很好地描述柚皮基活性炭对磷的吸附动力学过程。吸附自由能的平均值为8.43kJ/mol,吸附过程以化学离子交换吸附为主。颗粒内扩散模型和Boyd模型分析表明,膜扩散系数和孔扩散系数的平均值分别为5.16×10-13cm2/s和5.03×10-12cm2/s,吸附过程主要受膜扩散控制。实验条件下,柚皮基活性炭吸附磷的⊿G在-2.29kJ/mol和-4.03kJ/mol之间,⊿H在2.68kJ/mol和23.15kJ/mol之间,⊿S在18.38kJ/(mol·K)和86.48kJ/(mol·K)之间,吸附为自发吸热过程。柚皮基活性炭吸附磷时,静电引力和范德华力为吸附过程主要作用力。
Activated carbons, known as very effective adsorbents, are used widely due to their highly developed porosity, large surface area, variable characteristics of surface chemistry, and high degree of surface reactivity. There are many studies on the development of preparation of activated carbon and application for the removal of specific pollutants from aqueous phase, mainly heavy metals, dyes and etc, at home and abroad. However, the costs of activated carbon preparation from coal and other non-renewable sources are too expensive. In search of new and alternative source as a precursor for the preparation of activated carbon, many agricultural wastes have been studied. The raw materials obtained from agricultural wastes have attracted people's attention because of their wide resources, renewability and no second pollution. Grapefruit is one of the principal fruits in the south of China with high production. After processing, grapefruit peels are generally discarded as a waste in large scale. Till now, nothing on the preparation of activated carbon from grapefruit peel waste by zinc chloride and treatment of the wastewater has been reported. This dissertation is concerned with the synthesis of activated carbons derived from grapefruit peel by chemical activation with zinc chloride and the removal of different pollution from aqueous solution. Samples were characterized by using FTIR, SEM and XRD techniques, etc. The principles of kinetics, isotherms and thermodynamics about the sorption of ammonia nitrogen, phosphate, Methylene Blue (MB), Congo Red (CR) and hexavalent chromium on the prepared samples were studied. The influence of several operating parameters, such as pH, contact time and initial concentrations of adsorbate on the adsorption capacity, were also investigated. The main conclusions of this study are as follows:
     (1) The low-cost activated carbon was prepared from grapefruit peel, an agricultural waste material, by chemical activation with zinc chloride. The optimal conditions for the production of activated carbon by orthogonal test were:20%zinc chloride solution concentration,3.0:1mass ratio of liquid to solid,500℃activation temperature and80min. activation time, resulting in35.36%of carbon yield and851mg/g of iodine adsorption value. At this optimal condition, the BET surface area of GAC was found as1045m2/g. The pore volume of GAC is estimated to be7.471cm3/g. The mean pore size of GAC is estimated to be1.430nm. The FT-IR spectroscopy result indicates that the carbons produced are rich in surface functional groups, such as hydroxy, amide, carboxyl and pyrone groups. The pHpzc value of GAS was5.67.
     (2) Adsorption of Cr(VI) onto GAC was investigated in a batch system. The results show that it takes12hours to reach the equilibrium. Cr(VI) removal is pH dependent and found to be maximum at pH1.0. Temkin and Langmuir isotherm model fitted the data well. The maximum monolayer adsorption capacity of Cr(VI) onto GAC was calculated as145.47mg/g. The mean free sorption energy was calculated as9.93,17.72and20.82kJ/mol respectively. It is very likely that Cr(VI) adsorption onto GAC is chemical in nature. The adsorption kinetic was well fitted to the pseudo-second-order model. Intraparticle diffusion model and Boyd model suggested that average values of the film diffusion coefficient (D1) and the pore diffusion coefficient (D2) were3.72×10-13and5.99×10-12cm2/s. Adsorption was both by film diffusion and intraparticle diffusion and the external mass transfer was the rate-determining. Thermodynamic parameters for the adsorption system were determinated,△G=-0.32kJ/mol~-20.06kJ/mol,△H=39.85kJ/mol~342.93kJ/mol,△S=134.91kJ/(mol·K)-829.51kJ/(mol·K). The negative value of△G showed spontaneous nature of adsorption. The positive values of both△H and△S suggest the adsorption process is an endothermic reaction increasing in randomness at the solid-liquid interface. Possible adsorption mechanism involved three processes:(Ⅰ) adsorption of Cr(VI) ions onto charged groups such as hydroxy, carboxyl and amines groups;(Ⅱ) reduction of Cr(Ⅵ) to Cr(Ⅲ) in the acidic medium;(Ⅲ) reduction releasing Cr(Ⅲ) to the aqueous phase or complexation.
     (3) Adsorption of MB onto GAC was investigated in a batch system. The results show that it takes2hours to reach the equilibrium. The MB removal was not affected over pH range of2.0~10.0. Temkin and Langmuir isotherm model fitted the data well. The maximum monolayer adsorption capacity of MB onto GAC was calculated as234.26mg/g. The adsorption kinetic was well fitted to the pseudo-second-order model. The mean free sorption energy was calculated as18.53kJ/mol. The adsorption of MB onto GAC was mainly attributed to the chemical adsorption. Intraparticle diffusion model and Boyd model suggested that average values of the film diffusion coefficient (D1) and the pore diffusion coefficient (D2) were2.85×10-12and2.30×10-10cm2/s. Adsorption process was affected by both film diffusion and intraparticle diffusion and film-diffusion dominate the adsorption rate. Thermodynamic parameters for the adsorption system were determinated,△G=-19.44 kJ/mol~-24.77kJ/mol,△H=64.63kJ/mol~67.50kJ/mol,△S=276.65kJ/(mol·K)-277.98kJ/(mol·K). The adsorption process of MB was endothermic and spontaneous. Possible adsorption mechanism was proposed as follows:electrostatic interactions, hydrogen bonding formation and electron donor-acceptor interactions.
     (4) Adsorption of CR onto GAC was investigated in a batch system. The results show that it takes2hours to reach the equilibrium. The CR removal was not affected over pH range of3.0-10.0. Freundlich model fitted the data well. The mean free sorption energy was calculated as12.73kJ/mol. The adsorption of CR onto GAC was mainly attributed to the chemical ion exchange adsorption. The adsorption kinetic was well fitted to the pseudo-second-order model and Elovich model. Intraparticle diffusion model and Boyd model suggested that average values of the film diffusion coefficient (D1) and the pore diffusion coefficient (D2) were3.72×10-13and5.99×10-12cm2/s. Adsorption process was both handled by film diffusion and intraparticle diffusion and film-diffusion dominate the adsorption rate. Thermodynamic parameters for the adsorption system were determinated,△G=-3.72kJ/mol~-15.17kJ/mol,△H=45.35kJ/mol~49.54kJ/mol,△S=154.00kJ/(mol·K)~166.05kJ/(mol·K). The adsorption process of CR was endothermic and spontaneous. Possible adsorption mechanism was proposed as follows:electrostatic interactions, hydrogen bonding formation.
     (5) Adsorption of ammonia nitrogen onto GAC was investigated in a batch system. The results show that it takes5hours to reach the equilibrium. Temkin and Freundlich model fitted the data well. The adsorption kinetic was well fitted to the pseudo-second-order model and Elovich model. The mean free sorption energy was calculated as9.19kJ/mol. The adsorption of ammonia nitrogen onto GAC was mainly attributed to the Chemical ion-exchange adsorption. Intraparticle diffusion model and Boyd model suggested that average values of the film diffusion coefficient (D1) and the pore diffusion coefficient (D2) were6.65×10-13and1.15×10-11cm2/s. Adsorption process was both handled by film diffusion and intraparticle diffusion and film-diffusion was the rate-limiting step. Thermodynamic parameters for the adsorption system were determinated,△G=-4.26kJ/mol~-4.73kJ/mol,△H=1.48kJ/mol~2.58kJ/mol,△S=19.74kJ/(mol-K)-23.29kJ/(mol·K). The adsorption process of ammonia nitrogen was endothermic and spontaneous. Possible adsorption mechanism was proposed as follows:electrostatic interactions and Van der Wals forces.
     (6) Adsorption of phosphate onto GAC was investigated in a batch system. The results show that it takes3hours to reach the equilibrium. Freundlich and Dubinin-Radushkevich model fitted the data well. The adsorption kinetic was well fitted to the pseudo-second-order model and Elovich model. The mean free sorption energy was calculated as8.43kJ/mol. The adsorption of phosphate onto GAC was mainly attributed to the Chemical ion-exchange adsorption. Intraparticle diffusion model and Boyd model suggested that average values of the film diffusion coefficient (D1) and the pore diffusion coefficient (D2) were5.16×10-13and5.03×10-12cm2/s. Adsorption process was dominated by film diffusion. Thermodynamic parameters for the adsorption system were determinated,△G=-2.29kJ/mol~-4.03kJ/mol,△H=2.68kJ/mol~23.15kJ/mol,△S=18.38kJ/(mol·K)~86.48kJ/kJ/(mol—K). The adsorption process of phosphate was endothermic and spontaneous. Possible adsorption mechanism was proposed as follows:electrostatic interactions and Van der Wals forces.
引文
[1]H. Wu, S. Wang. Impacts of operating parameters on oxidation-reduction potential and pretreatment efficacy in the pretreatment of printing and dyeing wastewater on Fenton process[J]. Journal of Hazardous Materials,2012,243:86-94
    [2]何珍宝.印染废水特点及处理技术[J].印染,2007,33(17):41-44
    [3]奚旦立,马春燕.印染废水的分类,组成及性质[J].印染,2010,36(14):51-53
    [4]刘梅红.印染废水处理技术研究进展[J].纺织学报,2007,28(1):116-119
    [5]孟范平,易怀昌.各种吸附材料在印染废水处理中的应用[J].材料导报,2009,23(7):69-73
    [6]I. M. Banat, P. Nigam, D. Singh, et al. Microbial decolorization of textile-dyecontaining effluents:A review[J]. Bioresource Technology,1996,58 (3):217-227
    [7]韩月,卢徐节,陈方雨,等.印染废水处理技术现状研究[J].工业安全与环保,2008,34(7):12-14
    [8]曾杭成,张国亮,孟琴,等.超滤/反渗透双膜技术深度处理印染废水[J].环境工程学报,2008,2(8):1021-1025
    [9]郑广宏,夏邦天,许璟.光化学氧化技术处理印染废水研究进展[J].水处理技术,2008,34(2):5-8
    [10]张治宏,王彩花,王晓昌.高级氧化技术在印染废水处理中的研究进展[J].工业安全与环保,2008,34(8):19-21
    [11]胡娟,黄流雅,段俊,等.活性炭吸附对印染废水深度处理的研究[J].环境污染与防治,2009,31(8):46-49
    [12]刘伟京,许明,吴海锁,等.厌氧-好氧-混凝工艺处理印染废水中试研究[J].环境科学研究,2009,22(4):478-483
    [13]封伟聪.曝气生物滤池在印染废水处理中的应用[JJ].化工管理,2013(10):61-62
    [14]卢徐节,孙芮,柳林,等.水解酸化/接触氧化/生物滤池工艺处理针织印染废水[J].中国给水排水,2008,24(22):60-62
    [15]易怀昌,孟范平,宫艳艳.壳聚糖对酸性染料的吸附性能研究[J].化工环保,2009,29(2):113-117
    [16]王雯,谢丽,王帅,等.钢渣对阴离子染料刚果红的吸附特性和机理[J].同济大学学报:自然科学版,2010,38(8):1182-1187
    [17]蒋志茵,杨儒,张建春,等.大麻杆活性炭对染料吸附性能的研究[J].北京化工大学学报(自然科学版),2010,37(2):83-89
    [18]张丽芳,魏德洲.真菌生物吸附剂对染料吸附脱色的研究[J].东北大学学报(自然科学版),2007,28(10):1489-1492
    [19]李仕友,邝应林,谢水波,等.改性膨润土对废水中染料的吸附[JJ].工业水处理, 2012,32(8):5-8
    [20]王瑜,黄进,刘薇,等.新型纳米锰氧化物的制备及其染料吸附性能[J].武汉大学学报(理学版),2010,56(3):268-272
    [21]G. Z. Kyzas, M. Kostoglou, A. A. Vassiliou, et al. Treatment of real effluents from dyeing reactor:Experimental and modeling approach by adsorption onto chitosan[J]. Chemical Engineering Journal,2011,168 (2):577-585
    [22]常云海.粉煤灰对印染废水的吸附处理研究[J].环境科学与管理,2010,35(7):54-56
    [23]冯秀娟,王洪昌,吴淼.新型吸附剂的制备及其对亚甲基蓝染料吸附行为的研究[J].南方冶金学院学报,2005,26(6):50-54
    [24]F. Gode, E. Pehlivan. Removal of Cr(Ⅵ) from aqueous solution by two Lewatit-anion exchange resins[J]. Journal of Hazardous Materials,2005,119 (1):175-182
    [25]K. Selvi, S. Pattabhi, K. Kadirvelu. Removal of Cr(Ⅵ) from aqueous solution by adsorption onto activated carbon[J]. Bioresource Technology,2001,80 (1):87-89
    [26]F. Fu, Q. Wang. Removal of heavy metal ions from wastewaters:A review[J]. Journal of Environmental Management,2011,92 (3):407-418
    [27]M. H. Isa, N. Ibrahim, H. A. Aziz, et al. Removal of chromium (Ⅵ) from aqueous solution using treated oil palm fibre[J]. Journal of Hazardous Materials,2008,152 (2): 662-668
    [28]L. V. A. Gurgel, J. C. Perin de Melo, J. C. de Lena, et al. Adsorption of chromium (Ⅵ) ion from aqueous solution by succinylated mercerized cellulose functionalized with quaternary ammonium groups[J]. Bioresource Technology,2009,100 (13):3214-3220
    [29]S. S. Baral, S. N. Das, P. Rath. Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust[J]. Biochemical Engineering Journal,2006,31 (3): 216-222
    [30]王芳芳,孙英杰,封琳,等.含铬废水的处理技术及机理简述[J].环境工程,2013,31(3):21-24
    [31]N. R. Bishnoi, M. Bajaj, N. Sharma, et al. Adsorption of Cr(Ⅵ) on activated rice husk carbon and activated alumina[J]. Bioresource Technology,2004,91 (3):305-307
    [32]胡小军,梁洁贞,曾玉带.水浮莲膳食纤维对Pb2+, Cd2+, Cr6+吸附作用的研究[J].食品工业科技,2007,28(11):103-105
    [33]陈福星,周立祥.生物催化合成的施氏矿物对废水中Cr(Ⅵ)的吸附[J].中国环境科学,2006,26(1):11-15
    [34]刘转年,杨志远.超细粉煤灰吸附Cr6十机理和动力学[J].中国矿业大学学报,2008,37(4):478-482
    [35]黄韵,马晓燕,刘海林,等.改性累托石对水溶液中Cr(Ⅵ)的吸附[J].硅酸盐学报,2005,33(2):197-201
    [36]杨慧芬,傅平丰,周枫.钢渣颗粒对水中Cr(Ⅵ)的吸附与还原作用[J].过程工程学报,2008,8(3):499-503
    [37]V. K. Gupta, M. Gupta, S. Sharma. Process development for the removal of lead and chromium from aqueous solutions using red mud-an aluminium industry waste[J]. Water Research,2001,35 (5):1125-1134
    [38]V. K. Gupta, A. Rastogi, A. Nayak. Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material[J]. Journal of Colloid and Interface Science,2010,342 (1):135-141
    [39]K. Selvaraj, S. Manonmani, S. Pattabhi. Removal of hexavalent chromium using distillery sludge[J]. Bioresource Technology,2003,89 (2):207-211
    [40]V. K. Gupta, A. K. Shrivastava, N. Jain. Biosorption of Chromium(Ⅵ) From Aqueous solutions by green algae spirogyra species[J]. Water Research,2001,35 (17): 4079-4085
    [41]P. Suksabye, P. Thiravetyan, W. Nakbanpote, et al. Chromium removal from electroplating wastewater by coir pith[J]. Journal of Hazardous Materials,2007,141 (3): 637-644
    [42]吕晓军,何婵.超细粉煤灰对含铬废水的吸附性能和机理研究[J].洁净煤技术,2008,14(3):84-87
    [43]张战营,李冬.改性煤矸石吸附Cr(Ⅵ)的研究[J].非金属矿,2007,30(1):54-56
    [44]信欣,何歆,崔钶,等.核桃壳炭化吸附废水中Cr(Ⅵ)的性能研究[J].环境工程学报,2010(10):2273-2277
    [45]张自杰,林荣忱,金儒霖.排水工程[M].北京:中国建筑工业出版社,2000,16-17.
    [46]张慧,代静玉,李辉信.炭化秸秆对水体中氨氮和磷的吸附性能及其与粉煤灰和炉渣的对比[J].农业环境科学学报,2009,28(11):2389-2394
    [47]S. H. Lee, S. Vigneswaran, H. Moon. Adsorption of phosphorus in saturated slag media columns[J]. Separation and Purification Technology,1997,12 (2):109-118
    [48]高廷耀,夏四清,周增炎.城市污水生物脱氮除磷工艺评述[J].环境科学,1999,20(1):110-112
    [49]夏素兰,周勇,曹丽淑,等.城市垃圾渗滤液氨氮吹脱研究[J].环境科学与技术,2000,3(3):26-29
    [50]王有乐,翟钧,谢刚.超声波吹脱技术处理高浓度氨氮废水试验研究[J].环境污染治理技术与设备,2001,2(2):59-63
    [51]张军,周琪,何蓉.表面流人工湿地中氮磷的去除机理[J].生态环境,2004,13(1): 98-101
    [52]霍守亮,席北斗,刘鸿亮,等.磷酸铵镁沉淀法去除与回收废水中氮磷的应用研究进展[J].化工进展,2007,26(3):371-376
    [53]M. GuoSheng, C. Juan. Removal Effects on Nitrogen, Phosphorus and COD in Water Body of Shanghu Lake Ecological Wetland in Taihu Lake Watershed[J]. Procedia Environmental Sciences,2011,10, Part C,2665-2670
    [54]张波,高廷耀.生物脱氮除磷工艺厌氧/缺氧环境倒置效应[J].中国给水排水,1997,13(3):7-10
    [55]A. Tilche, E. Bacilieri, G. Bortone, et al. Biological phosphorus and nitrogen removal in a full scale sequencing batch reactor treating piggery wastewater[J]. Water Science and Technology,1999,40 (1):199-206
    [56]沈耀良,赵丹.强化SBR工艺脱氮除磷效果的若干对策[J].中国给水排水,2000,16(7):23-25
    [57]黄祖安.Carrousel氧化沟脱氮除磷工艺的运行控制[J].中国给水排水,2003,19(12):101-102
    [58]杨殿海,宋拥好,谭巧国,等.低碳源,低能耗型改良A 2/O工艺的脱氮除磷研究[J].中国给水排水,2006,22(23):18-21
    [59]Y. Peng, H. Hou, S. Wang, et al. Nitrogen and phosphorus removal in pilot-scale anaerobic-anoxic oxidation ditch system[J]. Journal of Environmental Sciences,2008, 20 (4):398-403
    [60]Z. Ahmed, B.-R. Lim, J. Cho, et al. Biological nitrogen and phosphorus removal and changes in microbial community structure in a membrane bioreactor:Effect of different carbon sources[J]. Water Research,2008,42 (1-2):198-210
    [61]M. Ozacar. Adsorption of phosphate from aqueous solution onto alunite [J]. Chemosphere,2003,51 (4):321-327
    [62]T. E. Kose, B. Kivanc. Adsorption of phosphate from aqueous solutions using calcined waste eggshell[J]. Chemical Engineering Journal,2011,178 (15):34-39
    [63]Y. Xue, H. Hou, S. Zhu. Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag[J]. Journal of Hazardous Materials,2009,162 (2-3):973-980
    [64]彭进平,赖焕然,程高,等.改性硅藻土的制备,表征及其在富营养化水体除磷中的应用[J].生态环境学报,2010,19(8):1936-1940
    [65]朱格仙,张建民,王蓓.活性炭负载氧化锆制备除磷吸附剂的最佳条件研究[J].中国给水排水,2008,24(3):79-81
    [66]周培国,罗舒君,张齐生.载铁竹炭处理含磷废水的研究[J].水处理技术,2010,36(2):36-38
    [67]段金明,林建清,方宏达,等.改性沸石同步深度脱氮除磷的实验研究[JJ].环境工程学报,2009,3(5):829-833
    [68]陈思琳,刘方,张登宇,等.木炭和活性炭对沼液中氨态氮,总磷和化学需氧量的吸附效果[J].贵州农业科学,2012,40(3):204-206
    [69]朱文涛,司马小峰,方涛.几种基质对水中磷的吸附特性[J].中国环境科学,2011,31(7):1186-1191
    [70]徐越群,赵巧丽.活性炭吸附技术及其在水处理中的应用[J].石家庄铁路职业技术学院学报,2010,9(1):48-50
    [71]孙艳.一次性筷子制备活性炭的研究[J].攀枝花学院学报,2011,28(3):4-11
    [72]崔静,赵乃勤,李家俊.活性炭制备及不同品种活性炭的研究进展[J].炭素技术,2005,24(1):26-31
    [73]范延臻,王宝贞.活性炭表面化学[J].煤炭转化,2000,23(4):26-30
    [74]T. Zhang, W. P. Walawender, L. T. Fan, et al. Preparation of activated carbon from forest and agricultural residues through CO2 activation[J]. Chemical Engineering Journal,2004,105 (1-2):53-59
    [75]W. T. Tsai, C. Y. Chang, S. L. Lee. Preparation and characterization of activated carbons from corn cob[J]. Carbon,1997,35 (8):1198-1200
    [76]W. T. Tsai, C. Y. Chang, S. L. Lee. A low cost adsorbent from agricultural waste corn cob by zinc chloride activation[J]. Bioresource Technology,1998,64 (3):211-217
    [77]A. Ahmadpour, D. D. Do. The preparation of activated carbon from macadamia nutshell by chemical activation[J]. Carbon,1997,35 (12):1723-1732
    [78]A. Aygun, S. Yenisoy-Karakas, I. Duman. Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties[J]. Microporous and Mesoporous Materials,2003,66 (2-3): 189-195
    [79]余筱洁,周存山,王允祥,等.山核桃壳活性炭制备及其吸附苯胺特性[J].过程工程学报,2010,10(1):65-69
    [80]张蕊,葛滢.稻壳基活性炭制备及其对重金属吸附研究[J].环境污染与防治,2011,33(2):41-51
    [81]W. T. Tsai, C. Y. Chang, S. Y. Wang, et al. Cleaner production of carbon adsorbents by utilizing agricultural waste corn cob[J]. Resources, Conservation and Recycling,2001, 32(1):43-53
    [82]徐涛,刘晓勤.磷酸活化法制备花生壳活性炭工艺[J].化学工程,2009,37(11):70-74
    [83]张志柏,朱义年,刘辉利,等.氯化锌活化法制备甘蔗渣活性炭吸附剂[J].化工环 保,2009,29(1):62-66
    [84]左秀凤,朱永义.氯化锌活化稻壳制备活性炭的研究[J].粮食与饲料工业,2005,(12):5-5
    [85]N. Yal9in, V. Sevinc. Studies of the surface area and porosity of activated carbons prepared from rice husks[J]. Carbon,2000,38 (14):1943-1945
    [86]C. Moreno-Castilla, J. Rivera-Utrilla. Carbon materials as adsorbents for the removal of pollutants from the aqueous phase[J]. MRS Bulletin,2001,26 (11):890-894
    [87]J. A. Meidl. Responding to changing conditions:How powdered activated carbon systems can provide the operational flexibility necessary to treat contaminated groundwater and industrial wastes[J]. Carbon,1997,35 (9):1207-1216
    [88]D. Xu, X. L. Tan, C. L. Chen, et al. Adsorption of Pb(II) from aqueous solution to MX-80 bentonite:Effect of pH, ionic strength, foreign ions and temperature[J]. Applied Clay Science,2008,41 (1-2):37-46
    [89]D. Xu, X. Zhou, X. Wang. Adsorption and desorption of Ni2+ on Na-montmorillonite: Effect of pH, ionic strength, fulvic acid, humic acid and addition sequences[J]. Applied Clay Science,2008,39 (3-4):133-141
    [90]J. Li, J. Hu, G. Sheng, et al. Effect of pH, ionic strength, foreign ions and temperature on the adsorption of Cu(Ⅱ) from aqueous solution to GMZ bentonite[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009,349 (1-3):195-201
    [91]B. Saha, C. Orvig. Biosorbents for hexavalent chromium elimination from industrial and municipal effluents[J]. Coordination Chemistry Reviews,2010,254 (23-24): 2959-2972
    [92]李坤权,郑正,蒋剑春,等.铅在棉秆基活性炭上的吸附动力学与热力学[J].环境科学,2010,31(5):1402-1408
    [93]陈丽萍,司秀荣,李凌云.磷酸活化活性炭对Cu2+的吸附特征研究[J].生态环境学报,2011,20(2):353-358
    [94]A. Silber, B. Bar-Yosef, S. Suryano, et al. Zinc adsorption by perlite:Effects of pH, ionic strength, temperature, and pre-use as growth substrate[J]. Geoderma,2012,170: 159-167
    [95]罗来盛,周美华.微波活化制备加拿大一枝黄花活性炭及对Cd(Ⅱ)的吸附[J].环境工程学报,2012,6(5):1543-1547
    [96]K. Kadirvelu, C. Namasivayam. Activated carbon from coconut coirpith as metal adsorbent:adsorption of Cd(Ⅱ) from aqueous solution [J]. Advances in Environmental Research,2003,7 (2):471-478
    [97]王正芳,郑正,罗兴章,等.互花米草厌氧发酵渣活性炭的制备表征及吸附性能 研究[J].农业环境科学学报,2010,29(7):1374-1381
    [98]范晓丹,张襄楷,杨虹莹.污泥活性炭的制备及其脱色性能[J].化工进展,2007,26(12):1804-1807
    [99]范延臻,王宝贞,王琳,等.改性活性炭对有机物的吸附性能[J].环境化学,2001,20(5):444-448
    [100]李婕,羌宁.活性炭吸附回收挥发性有机物的研究进展[J].化工环保,2008,28(1):24-28
    [101]程爱华,郭璇,李富生.生物活性炭去除水中天然有机物的性能研究[J].水处理技术,2011,37(10):83-85
    [102]J. M. Dias, M. C. M. Alvim-Ferraz, M. F. Almeida, et al. Waste materials for activated carbon preparation and its use in aqueous-phase treatment:A review[J]. Journal of Environmental Management,2007,85 (4):833-846
    [103]V. Lopez-Ramon, C. Moreno-Castilla, J. Rivera-Utrilla, et al. Ionic strength effects in aqueous phase adsorption of metal ions on activated carbons[J]. Carbon,2003,41 (10): 2020-2022
    [104]A. El Nemr, A. Khaled, O. Abdelwahab, et al. Treatment of wastewater containing toxic chromium using new activated carbon developed from date palm seed[J]. Journal of Hazardous Materials,2008,152 (1):263-275
    [105]D. Duranoglu, A. W. Trochimczuk, U. Beker. Kinetics and thermodynamics of hexavalent chromium adsorption onto activated carbon derived from acrylonitrile-divinylbenzene copolymer[J]. Chemical Engineering Journal,2012,187: 193-202
    [106]C. Jung, J. Heo, J. Han, et al. Hexavalent chromium removal by various adsorbents: Powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes[J]. Separation and Purification Technology,2013,106 (14):63-71
    [107]L. Khezami, R. Capart. Removal of chromium(VI) from aqueous solution by activated carbons:Kinetic and equilibrium studies[J]. Journal of Hazardous Materials, 2005,123 (1-3):223-231
    [108]I. D. Mall, V. C. Srivastava, N. K. Agarwal, et al. Removal of congo red from aqueous solution by bagasse fly ash and activated carbon:kinetic study and equilibrium isotherm analyses[J]. Chemosphere,2005,61 (4):492-501
    [109]D. Kavitha, C. Namasivayam. Experimental and kinetic studies on methylene blue adsorption by coir pith carbon[J]. Bioresource Technology,2007,98 (1):14-21
    [110]S. Nethaji, A. Sivasamy, A. Mandal. Preparation and characterization of corn cob activated carbon coated with nano-sized magnetite particles for the removal of Cr (Ⅵ)[J]. Bioresource Technology,2013,134:94-100
    [111]I. Kiran, T. Akar, A. S. Ozcan, et al. Biosorption kinetics and isotherm studies of Acid Red 57 by dried Cephalosporium aphidicola cells from aqueous solutions[J]. Biochemical Engineering Journal,2006,31 (3):197-203
    [112]M. U. Dural, L. Cavas, S. K. Papageorgiou, et al. Methylene blue adsorption on activated carbon prepared from Posidonia oceanica (L.) dead leaves:Kinetics and equilibrium studies[J]. Chemical Engineering Journal,2011,168 (1):77-85
    [113]丁洋,靖德兵,周连碧,等.板栗内皮对水溶液中镉的吸附研究[J].环境科学学报,2011,31(9):1933-1941
    [114]李克斌,唐兴礼,国丽,等.载镧壳聚糖去除水中氟离子的吸附特征研究[J].湖南科技大学学报(自然科学版),2009,24(3):113-117
    [115]H. Demiral, I. Demiral, F. Tumsek, et al. Adsorption of chromium(Ⅵ) from aqueous solution by activated carbon derived from olive bagasse and applicability of different adsorption models[J]. Chemical Engineering Journal,2008,144 (2):188-196
    [116]党艳,罗倩,李克斌,等.荞麦皮生物吸附去除水中罗丹明B的吸附条件响应面法及热力学研究[J].环境科学学报,2011,31(12):2601-2608
    [117]T. S. Choong, T. Wong, T. Chuah, et al. Film-pore-concentration-dependent surface diffusion model for the adsorption of dye onto palm kernel shell activated carbon[J]. Journal of Colloid and Interface Science,2006,301 (2):436-440
    [118]C. W. Cheung, J. F. Porter, G. McKay. Sorption kinetics for the removal of copper and zinc from effluents using bone char[J]. Separation and Purification Technology, 2000,19 (1-2):55-64
    [119]Y. Onal. Kinetics of adsorption of dyes from aqueous solution using activated carbon prepared from waste apricot[J]. Journal of Hazardous Materials,2006,137 (3): 1719-1728
    [120]Y. Onal, C. Akmil-Basar, C. Sarici-Ozdemir. Investigation kinetics mechanisms of adsorption malachite green onto activated carbon[J]. Journal of hazardous materials, 2007,146(1):194-203
    [121]J. Acharya, J. Sahu, B. Sahoo, et al. Removal of chromium (Ⅵ) from wastewater by activated carbon developed from Tamarind wood activated with zinc chloride [J]. Chemical Engineering Journal,2009,150 (1):25-39
    [122]G. Manju, K. Anoop Krishnan, V. Vinod, et al. An investigation into the sorption of heavy metals from wastewaters by polyacrylamide-grafted iron (Ⅲ) oxide[J]. Journal of hazardous materials,2002,91 (1):221-238
    [123]李坤权,郑正,罗兴章,等.KOH活化微孔活性炭对对硝基苯胺的吸附动力学 [J].中国环境科学,2010,30(2):174-179
    [124]S. S. Baral, S. N. Das, G. R. Chaudhury, et al. Adsorption of Cr(VI) using thermally activated weed Salvinia cucullata[J]. Chemical Engineering Journal,2008,139 (2): 245-255
    [125]司崇殿,郭庆杰.活性炭活化机理与再生研究进展[J].中国粉体技术,2008,14(5):48-52
    [126]谢志刚,吉芳英,邱雪敏,等.柑橘皮中孔活性炭的制备及性能表征[J].功能材料,2009,40(4):645-649
    [127]李湘洲.棉秆制活性炭的研究[J].林产工业,2004,31(4):35-37
    [128]李玥,陈正行.稻壳制备活性炭的研究[JJ].粮油加工与食品机械,2004,(7):55-57
    [129]M. T. Uddin, M. A. Islam, S. Mahmud, et al. Adsorptive removal of methylene blue by tea waste[J]. Journal of hazardous materials,2009,164 (1):53-60
    [130]A. Ofomaja, E. Naidoo, S. Modise. Removal of copper (Ⅱ) from aqueous solution by pine and base modified pine cone powder as biosorbent[J]. Journal of hazardous materials,2009,168 (2):909-917
    [131]宁平,彭金辉,高建培.ZCMR法从废物中制取活性炭及在含铬废水处理中应用[JJ].中国环境科学,1999,19(4):306-309
    [132]涂久洁,江梅.ZnCl2活化法酒糟谷壳制取糖用活性炭[J].南昌大学学报:理科版,1997,21(3):293-298
    [133]T. Yang, A. C. Lua. Textural and chemical properties of zinc chloride activated carbons prepared from pistachio-nut shells[J]. Materials chemistry and physics,2006, 100 (2):438-444
    [134]K. Mohanty, M. Jha, B. Meikap, et al. Removal of chromium (VI) from dilute aqueous solutions by activated carbon developed from Terminalia arjuna nuts activated with zinc chloride[J]. Chemical Engineering Science,2005,60 (11):3049-3059
    [135]姜玉,庞浩,廖兵.甘蔗渣吸附剂的制备及其对Pb2+, Cu2+, Cr3+的吸附动力学研究[J].中山大学学报:自然科学版,2008,47(6):32-37
    [136]丁春生,彭芳,卢敬科,等.改性活性炭的制备表征及吸附Zn2+的影响因素[J].中国矿业大学学报,2011,40(6):983-989
    [137]韩磊,杨儒,刘国强,等.汉麻杆基活性炭表面织构与储氢性能的研究[J].2009,25(12):2097-2104
    [138]B. R. Araujo, J. O. M. Reis, E. I. P. Rezende, et al. Application of termite nest for adsorption of Cr(VI)[J]. Journal of Environmental Management,2013,129:216-223
    [139]王宇,魏献忠,邵莲芬.路堑边坡锚固防护参数的响应面优化设计[J].长江科学 院院报,2011,28(7):19-23
    [140]李璐,杨朝晖,孙佩石,等.基于响应面优化条件下柚皮对Pb 2+的吸附[JJ].环境科学学报,2009,29(7):1426-1433
    [141]J. F. Fu, Y. Q. Zhao, X. D. Xue, et al. Multivariate-parameter optimization of acid blue-7 wastewater treatment by Ti/TiO2 photoelectrocatalysis via the Box-Behnken design[J]. Desalination,2009,243 (1-3):42-51
    [142]N. Zhao, N. Wei, J. Li, et al. Surface properties of chemically modified activated carbons for adsorption rate of Cr (VI)[J]. Chemical Engineering Journal,2005,115 (1-2):133-138
    [143]N. K. Hamadi, X. D. Chen, M. M. Farid, et al. Adsorption kinetics for the removal of chromium(Ⅵ) from aqueous solution by adsorbents derived from used tyres and sawdust[J]. Chemical Engineering Journal,2001,84 (2):95-105
    [144]W. Liu, J. Zhang, C. Zhang, et al. Adsorptive removal of Cr (VI) by Fe-modified activated carbon prepared from Trapa natans husk[J]. Chemical Engineering Journal, 2010,162 (2):677-684
    [145]K. Foo, B. Hameed. Adsorption characteristics of industrial solid waste derived activated carbon prepared by microwave heating for methylene blue[J]. Fuel Processing Technology,2012,99:103-109
    [146]Z. Al-Othman, R. Ali, M. Naushad. Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell:Adsorption kinetics, equilibrium and thermodynamic studies[J]. Chemical Engineering Journal,2012,184: 238-247
    [147]E. Bulut, M. Ozacar, I. A. Sengil. Adsorption of malachite green onto bentonite: Equilibrium and kinetic studies and process design[J]. Microporous and Mesoporous Materials,2008,115 (3):234-246
    [148]张艳素,豆小敏,赵蓓,等.As(V)在锆铁复合氧化物颗粒上的吸附动力学[J].化工进展,2011,30(S1):874-877
    [149]S. Yusan, C. Gok, S. Erenturk, et al. Adsorptive removal of thorium (Ⅳ) using calcined and flux calcined diatomite from Turkey:Evaluation of equilibrium, kinetic and thermodynamic data[J]. Applied Clay Science,2012,67:106-116
    [150]E. Tutem, R. Apak, C. a. F. Unal. Adsorptive removal of chlorophenols from water by bituminous shale[J]. Water Research,1998,32 (8):2315-2324
    [151]E. Malkoc, Y. Nuhoglu. Potential of tea factory waste for chromium (VI) removal from aqueous solutions:Thermodynamic and kinetic studies[J]. Separation and Purification Technology,2007,54 (3):291-298
    [152]F.-C. Wu, R.-L. Tseng, R.-S. Juang. Preparation of highly microporous carbons from fir wood by KOH activation for adsorption of dyes and phenols from water[J]. Separation and Purification Technology,2005,47 (1):10-19
    [153]A. Agrawal, K. Sahu, B. Pandey. Systematic studies on adsorption of lead on sea nodule residues[J]. Journal of colloid and interface science,2005,281 (2):291-298
    [154]X. Li, Q. Xu, G. Han, et al. Equilibrium and kinetic studies of copper (II) removal by three species of dead fungal biomasses[J]. Journal of Hazardous Materials,2009,165 (1):469-474
    [155]T. Karthikeyan, S. Rajgopal, L. R. Miranda. Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon[J]. Journal of Hazardous Materials,2005,124 (1-3):192-199
    [156]P. S. Kumar, S. Ramalingam, S. D. Kirupha, et al. Adsorption behavior of nickel(Ⅱ) onto cashew nut shell:Equilibrium, thermodynamics, kinetics, mechanism and process design[J]. Chemical Engineering Journal,2011,167 (1):122-131
    [157]邝应林,何少华,文竹清.阴离子有机改性膨润土吸附废水中甲基紫的热力学规律研究[J].水科学与工程技术,2011,5:21-23
    [158]M. Barkat, D. Nibou, S. Chegrouche, et al. Kinetics and thermodynamics studies of chromium(Ⅵ) ions adsorption onto activated carbon from aqueous solutions[J]. Chemical Engineering and Processing:Process Intensification,2009,48 (1):38-47
    [159]吕婧,封莉,张立秋.不同活性炭对水中微量药物萘普生的吸附规律研究[J].环境科学学报,2012,32(10):2443-2449
    [160]B. H. Hameed, I. A. W. Tan, A. L. Ahmad. Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon[J]. Chemical Engineering Journal,2008,144 (2):235-244
    [161]王宝娥,胡勇有,谢磊,等.CMC固定化灭活烟曲霉小球吸附活性艳蓝KNR[J].环境科学学报,2008,28(1):83-88
    [162]Y. Feng, H. Zhou, G. Liu, et al. Methylene blue adsorption onto swede rape straw (Brassica napus L.) modified by tartaric acid:Equilibrium, kinetic and adsorption mechanisms[J]. Bioresource Technology,2012,125:138-144
    [163]M. Arulkumar, K. Thirumalai, P. Sathishkumar, et al. Rapid removal of chromium from aqueous solution using novel prawn shell activated carbon[J]. Chemical Engineering Journal,2012,185:178-186
    [164]A. B. Albadarin, C. Mangwandi, A. a. H. Al-Muhtaseb, et al. Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent[J]. Chemical Engineering Journal,2012,179:193-202
    [165]G. F. Malash, M. I. El-Khaiary. Piecewise linear regression:A statistical method for the analysis of experimental adsorption data by the intraparticle-diffusion models[J]. Chemical Engineering Journal,2010,163 (3):256-263
    [166]M. A. Ahmad, N. K. Rahman. Equilibrium, kinetics and thermodynamic of Remazol Brilliant Orange 3R dye adsorption on coffee husk-based activated carbon[J]. Chemical Engineering Journal,2011,170(1):154-161
    [167]刘新,陈卫中,李茂全,等.响应面法优化壳聚糖对混合液镉铬离子吸附条件的研究[J].食品工业科技,2013,34(11):238-242
    [168]姚笛,马萍,王颖,等.响应面法优化玉米芯中木聚糖的提取工艺[J].食品科学,2011,32(8):111-115
    [169]E. Demirbas, M. Kobya, A. Konukman. Error analysis of equilibrium studies for the almond shell activated carbon adsorption of Cr (VI) from aqueous solutions[J]. Journal of hazardous materials,2008,154 (1):787-794
    [170]李荣华,张增强,孟昭福,等.玉米秸秆对Cr(Ⅵ)的生物吸附及热力学特征研究[J].2009,29(7):1432-1441
    [171]S. Senthilkumaar, P. Varadarajan, K. Porkodi, et al. Adsorption of methylene blue onto jute fiber carbon:kinetics and equilibrium studies[J]. Journal of Colloid and Interface Science,2005,284 (1):78-82
    [172]范琼,张学亮,张弦,等.橘子皮对水中亚甲蓝的吸附性能研究[J].中国生物工程杂志,2007,27(5):85-89
    [173]郑文娟,刘珠琳,刘希涛.微波辐射回用活性炭对水中亚甲基蓝和Cd2+去除效果的研究[J].环境丁程学报,2010:2641-2646
    [174]叶琳,卢玉栋,林筱璇,等.芭蕉芋渣对亚甲基蓝的动态吸附研究[J].福建师范大学学报(自然科学版),2010,27(1):67-71
    [175]龚新怀,卢小露,林维异.柠檬酸改性竹屑吸附亚甲基蓝的动力学和热力学分析[J].宜春学院学报,2012,34(8):47-50
    [176]齐武兴,闫华.竹炭对亚甲基兰(MB)吸附的研究[J].浙江化工,2007,38(3):22-24
    [177]B. Hameed, A. Ahmad, K. Latiff. Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust[J]. Dyes and Pigments,2007,75 (1): 143-149
    [178]V. Ponnusami, K. S. Rajan, S. N. Srivastava. Application of film-pore diffusion model for methylene blue adsorption onto plant leaf powders [J]. Chemical Engineering Journal,2010,163 (3):236-242
    [179]A. M. M. Vargas, A. L. Cazetta, M. H. Kunita, et al. Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia):Study of adsorption isotherms and kinetic models[J]. Chemical Engineering Journal,2011,168 (2):722-730
    [180]B. H. Hameed, A. A. Ahmad. Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass[J]. Journal of Hazardous Materials,2009,164 (2-3):870-875
    [181]D. Pathania, S. Sharma, P. Singh. Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast[J]. Arabian Journal of Chemistry, 2013
    [182]S. Karaca, A. Gurses, M. Acikyildiz, et al. Adsorption of cationic dye from aqueous solutions by activated carbon[J]. Microporous and Mesoporous Materials,2008,115 (3): 376-382
    [183]C.-H. Weng, Y.-T. Lin, T.-W. Tzeng. Removal of methylene blue from aqueous solution by adsorption onto pineapple leaf powder[J]. Journal of Hazardous Materials, 2009,170(1):417-424
    [184]S. Karagoz, T. Tay, S. Ucar, et al. Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption[J]. Bioresource Technology, 2008,99 (14):6214-6222
    [185]O. Hamdaoui. Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick[J]. Journal of Hazardous Materials,2006,135 (1-3): 264-273
    [186]M. Dogan, H. Abak, M. Alkan. Adsorption of methylene blue onto hazelnut shell: Kinetics, mechanism and activation parameters[J]. Journal of Hazardous Materials, 2009,164(1):172-181
    [187]C. Moreno-Castilla. Adsorption of organic molecules from aqueous solutions on carbon materials[J]. Carbon,2004,42 (1):83-94
    [188]B. H. Hameed. Evaluation of papaya seeds as a novel non-conventional low-cost adsorbent for removal of methylene blue[J]. Journal of Hazardous Materials,2009,162 (2-3):939-944
    [189]D. Kavitha, C. Namasivayam. Recycling coir pith, an agricultural solid waste, for the removal of procion orange from wastewater[J]. Dyes and Pigments,2007,74 (1): 237-248
    [190]C. Hakima, B. Fatiha, H. Salah. Kinetic studies on the adsorption of methylene blue onto vegetal fiber activated carbons[J]. Applied Surface Science,2013,282:52-59
    [191]S. Wang, Z. H. Zhu. Effects of acidic treatment of activated carbons on dye adsorption[J]. Dyes and Pigments,2007,75 (2):306-314
    [192]R. Ahmad, R. Kumar. Adsorptive removal of congo red dye from aqueous solution using bael shell carbon[J]. Applied Surface Science,2010,257 (5):1628-1633
    [193]王玉环,王建庆,张玉,等.热改性凹凸棒黏土的吸附热力学和动力学研究[J].纺织学报,2012,33(5):95-100
    [194]D. M. Ruthven. Principles of adsorption and adsorption processes[M]. the United States of America:A Wiley-Interscience publication.1984.100-118
    [195]S. S. Barton. The adsorption of methylene blue by active carbon[J]. Carbon,1987,25 (3):343-350
    [196]L. Fu, J. Wang, H. Lu, et al. Comment on "The removal of phenolic compounds from aqueous solutions by organophilic bentonite" [J]. Journal of Hazardous Materials, 2008,151 (2-3):851-854
    [197]I. Tan, A. L. Ahmad, B. Hameed. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk:Equilibrium, kinetic and thermodynamic studies[J]. Journal of Hazardous Materials,2008,154 (1):337-346
    [198]B. Hameed, F. Daud. Adsorption studies of basic dye on activated carbon derived from agricultural waste:Hevea brasiliensis seed coat[J]. Chemical Engineering Journal, 2008,139(1):48-55
    [199]Q.-S. Liu, T. Zheng, N. Li, et al. Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue[J]. Applied Surface Science,2010,256 (10):3309-3315
    [200]O. Gercel, A. Ozcan, A. S. Ozcan, et al. Preparation of activated carbon from a renewable bio-plant of Euphorbia rigida by H2SO4 activation and its adsorption behavior in aqueous solutions[J]. Applied surface science,2007,253 (11):4843-4852
    [201]A. Ozer, G. Dursun. Removal of methylene blue from aqueous solution by dehydrated wheat bran carbon[J]. Journal of Hazardous Materials,2007,146 (1-2): 262-269
    [202]Z. Hu, H. Chen, F. Ji, et al. Removal of Congo Red from aqueous solution by cattail root[J]. Journal of Hazardous Materials,2010,173 (1):292-297
    [203]王文静,陈慧,胡真虎.蒲草根对阴离子染料刚果红的吸附及其机理研究[J].广东化工,2009,36(9):13-14
    [204]詹予忠,杨向东,李玉博.刚果红和结晶紫在锯末上的吸附性能研究[J].离子交换与吸附,2006,22(2):134-139
    [205]陈庆渺,韩敏敏,李寅,等.椰壳基活性炭脱除废水中刚果红染料[J].炭素,2010(1):24-27
    [206]赵二劳,王美林,范建凤.花生壳对刚果红的吸附性能[J].生态与农村环境学报, 2010,26(4):372-375
    [207]赵二劳,王欣,白建华,等.高粱秸秆对刚果红的吸附性能分析[J].湖北农业科学,2011,50(22):4562-4564
    [208]G. C. Panda, S. K. Das, A. K. Guha. Jute stick powder as a potential biomass for the removal of congo red and rhodamine B from their aqueous solution[J]. Journal of Hazardous Materials,2009,164 (1):374-379
    [209]Z. Zhang, L. Moghaddam, I. M. O' Hara, et al. Congo Red adsorption by ball-milled sugarcane bagasse[J]. Chemical Engineering Journal,2011,178:122-128
    [210]S. Dawood, T. K. Sen. Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent:Equilibrium, thermodynamic, kinetics, mechanism and process design[J]. Water Research,2012,46 (6):1933-1946
    [211]S. Reddy, L. Sivaramakrishna, A. Varada Reddy. The use of an agricultural waste material, Jujuba seeds for the removal of anionic dye (Congo red) from aqueous medium[J]. Journal of Hazardous Materials,2012,203:118-127
    [212]H. Patel, R. Vashi. Removal of Congo Red dye from its aqueous solution using natural coagulants[J]. Journal of Saudi Chemical Society,2012,16 (2):131-136
    [213]V. S. Mane, P. V. Vijay Babu. Kinetic and equilibrium studies on the removal of Congo red from aqueous solution using Eucalyptus wood (Eucalyptus globulus) saw dust[J]. Journal of the Taiwan Institute of Chemical Engineers,2013,44 (1):81-88
    [214]V. Vimonses, S. Lei, B. Jin, et al. Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials[J]. Chemical Engineering Journal,2009,148 (2):354-364
    [215]K. G. Bhattacharyya, A. Sharma. Azadirachta indica leaf powder as an effective biosorbent for dyes:a case study with aqueous Congo Red solutions[J]. Journal of Environmental Management,2004,71 (3):217-229
    [216]C. Namasivayam, D. Kavitha. Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste[J]. Dyes and Pigments,2002,54 (1):47-58
    [217]H. Zhua, Y. Fu, R. Jiang, et al. Adsorption removal of Congo red onto magnetic cellulose/Fe3O4/activated carbon composite:Equilibrium, kinetic and thermodynamic studies[J]. Chemical Engineering Journal,2011,173:494-502
    [218]K. G. Bhattacharyya, A. Sharma. Kinetics and thermodynamics of Methylene Blue adsorption on Neem Azadirachta indica leaf powder[J]. Dyes and Pigments,2005,65 (1):51-59
    [219]张继义,韩雪,武英香,等.炭化小麦秸秆对水中氨氮吸附性能的研究[J].安全 与环境学报,2012,12(1):32-36
    [220]钱福国,陈天虎,瞿丽.安徽宣城天然斜发沸石深度处理氨氮废水研究[J].非金属矿,2008,31(2):62-65
    [221]金相灿,贺凯,卢少勇,等.4种填料对氨氮的吸附效果[J].湖泊科学,2008,20(6):755-760
    [222]李山,李景哲.活性炭表面改性及其对磷(V)吸附性能的研究[J].环境科学与技术,2011,34(12):79-82
    [223]杨晶,岳钦艳,李颖,等.改性活性炭纤维在含磷废水中的应用[J].山东大学学报:工学版,2008,38(1):92-95
    [224]B. K. Biswas, K. Inoue, K. N. Ghimire, et al. Removal and recovery of phosphorus from water by means of adsorption onto orange waste gel loaded with zirconium[J]. Bioresource Technology,2008,99 (18):8685-8690
    [225]S. Benyoucef, M. Amrani. Adsorption of phosphate ions onto low cost Aleppo pine adsorbent[J]. Desalination,2011,275 (1-3):231-236
    [226]E. Oguz, A. Gurses, M. Yalcin. Removal of phosphate from waste waters by adsorption[J]. Water, Air, and Soil Pollution,2003,148 (1-4):279-287

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700