用户名: 密码: 验证码:
起重机仿生箱梁结构局部稳定性设计理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
起重机结构自重大,运行能耗高,其结构轻量化是实现节能降耗的重要手段。以往结构轻量化设计主要针对结构参数优化,或采用高强度钢进行材料替代。在现有结构设计理论基础上,要进一步降低结构件质量,提高结构件的承力性能必须找到新的结构设计方法和思路。针对起重机箱梁结构轻量化的科学问题,从结构仿生学相似性原理出发,提出叶脉加劲肋结构形式,通过研究叶脉及竹节的自然分布特性,指导加劲肋在箱梁结构中的仿生布置设计。
     针对斜向肋箱梁结构中的局部屈曲失稳问题,推导斜坐标系下简支边弯矩计算公式、纵向面内载荷作用下斜板的屈曲平衡微分方程,将调和微分求积法和边界融入法结合起来,给出调和边界融入微分求积法求解简支斜板局部稳定性的具体方法。以单向轴压和剪应力作用下简支斜板为例,研究载荷变化系数、斜板边长比和倾角同屈曲临界载荷之间的关系。结果表明:单向轴压作用下简支斜板屈曲临界载荷随载荷变化系数的增大而增大、随倾角的增大而减小、随边长比的增大先增大后减小再增大;剪应力作用下简支斜板屈曲临界载荷随边长比的增大而增大、随倾角的增大先减小后增大。以双向轴压或单向轴压与剪应力作用下简支斜板为例,研究载荷比值(1/5≤Ny/Nx≤5,或1/5≤Nxy/Nx≤5)、斜板边长比(1/2≤     针对非均布载荷作用下矩形板件的屈曲承载力问题,从几何形状、边界条件和载荷三个角度,研究局部受载弹性薄板的对称特性。运用有限元求解具有对称性矩形板的屈曲临界载荷,并通过对比DQM数值解验证有限元解的精确性。同时对比非均布载荷作用下矩形板屈曲临界载荷的传统经验公式,给出能够满足工程实际需要的修正经验公式。
     以竹子为仿生对象对正轨箱梁横向肋进行结构优化设计。通过研究竹子结构特征参数的自然分布特性与受力特性间的作用关系,发现不同受力截面对应不同的等效节间距。考虑加劲肋间距对结构刚度和强度指标的影响,设定加劲肋极限间距。建立正轨箱梁加劲肋变间距等稳定性优化策略,结合有限元弹性屈曲分析进行迭代优化,实现加劲肋变间距等稳定性设计。经实例研究表明,优化求解速率随偏差率增大而增大;仿生箱梁较传统箱梁加劲肋数量由15道减小为10道、主梁重量减轻;各截面屈曲抗失稳能力差异减小,同时满足强度和刚度指标设计要求。
     本文从理论角度、数值仿真和有限元仿真三个角度,针对仿生斜向肋箱梁结构中局部斜板的屈曲承载力问题进行了系统研究。同时,针对仿生变间距肋正轨箱梁进行了等稳定性设计。论文研究工作具有较强的理论意义和实用价值,为后续的研究工作奠定了坚实的基础。
The weight of crane's structure is heavy, which leads to great energy consumption, the lightweight design of crane's structure is an efficent method to to save energy. In the previous work on the crane's lightweight design, there are mainly about the optimum for structure parameters and using the high-strength steel as alternate material. Based on the present optimum methods about the lightweight design of crane's structure, creative method and idea is necessary to get a further light weight of the crane's structure. Aiming at the scientific problem on the lightweight design for the box girder structure, the leaf vein stiffener structure is proposed by the structure bionics similarity principle. The bionics arrangement for the leaf vein stiffener in the box girder structure is carried out by studying the natural distribution property of the leaf vein and bamboo node.
     To investigate the buckling of skew plates for the crane's box girder, the equations of moment for simply supported edges are given, besides, the bucking differential governing equations for skew plates is also given when it is subjected to the in-plane loading. And the calculation procedures are described in detail when the harmonic differential quadrature methods combining with Build-in methods are used to solve the critical buckling load of simply supported skew plates. Skew plates subjected to the uniaxial pressure or shear force is considered as the case study, the affecting relation between the critical buckling load and parameters for skew plates is discussed, and the parameters include the coefficient of linearly varying uniaxial pressure k ranging from0to2, the aspect ratio ranging from0.5to2and skew angles ranging from30°to90°. It is shown that when skew plates are subjected to the uniaxial pressure, the critical buckling load increases with the increasing of the coefficient of linearly varying uniaxial pressure k, and it increases with the decreasing of skew angles, however, it increases first and then decreases and finally increases with the increasing of the aspect ratio. When skew plates are subjected to the shear force, the critical buckling load increases with the increasing of the aspect ratio, and it decreases first and then increases with the increasing of skew angles. Skew plates subjected to the biaxial pressure or uiaxial pressure combined with shear force is considered as the case study, the affecting relation between the critical buckling load and parameters for skew plates is discussed, and the parameters include the ratio of Ny to Ax or Nxy/Nx ranging from1/5to5, the aspect ratio r ranging from0.5to2and skew angles ranging from30°to90°. For skew plates subjected to the biaxial pressure, it is shown that the critical buckling load decreases with the increasing of the ratio of Ny,to Nx, it increases with the increasing of aspect ratio, and it decreases with the increasing of the skew angle. For skew plates subjected to uiaxial pressure combined with shear force, it is shown that the critical buckling load decreases with the increasing of the ratio of Nxy/Nx, it increases or decreases with the increasing of the aspect ratio ranging from1/2to1when the skew angle is in different value, it increases with the increasing of the aspect ratio ranging from1to2, and it decreases with the increasing of the skew angles. Skew plates with the boundary condition, CCCC, CSCS or SCSC, subjected to the uniaxial pressure or shear force is considered as the case study, the affecting relation between the critical buckling load and parameters for skew plates is discussed, and the parameters include the aspect ratio and skew angles. It is shown that when skew plates with the boundary condition, CCCC or CSCS, are subjected to the uniaxial pressure, the critical buckling load increases with the increasing of the aspect ratio, and it decreases with the increasing of skew angles. However, when skew plates with the boundary condition, SCSC, are subjected to the uniaxial pressure, the critical buckling load fluctuates with the increasing of the aspect ratio, and it decreases with the increasing of skew angles. It is also shown that when skew plates with the boundary condition, SCSC, are subjected to the shear force, the critical buckling load increases with the increasing of the aspect ratio, and it decreases first and then increases with the increasing of skew angles.
     For the critical buckling load of rectangular plates subjected to nonlinear load, the asymmetrical characteristic is investigated in three ways, geometry shape, boundary and load conditions. The FEM is used to solve the critical buckling load of the rectangular plates with the asymmetrical characteristic. At the same tine, results got by FEM is compared with the DQM to verify the accuracy of the numerical solutions. A modified formula is given for the critical buckling load rectangular plates subjected to nonlinear load, which can meet the demand for the engineering design.
     The bamboo was selected as the bionics objectives, and the structure optimum was made about the transverse stiffener in the upright rail box girder. The research on the affecting relationship was made for the bamboo between the nature distribution and mechanical behaviors. It is shown that different cross sections correspond to different equivalent distances between two adjacent nodes. The effect of distances between two adjacent stiffeners on the structure rigidity and strength index was analyzed, and the maximum distances between two adjacent stiffeners can be set. The optimum law was built to make the stiffener be of the changeable distance and same stability. The iteration optimum of the buckling analysis was done by the finite method, and finally the stiffener has the changeable distance and same stability. Several conclusions are got by the case study for the bionics design. The optimum solution speed increases by the increasing of the bias proportion. As compared with the traditional box girder, the number of stiffeners in the bionics box girder decreases from15to10, which makes the weight of main beams decrease. Besides, the bionics box girder has more uniform buckling load-bearing ability, the design demand of rigidity and strength index can be met.
     By using the mechanics theory, numerical simulation and FEM simulation, respectively, the critical buckling load for skew plates in the bionics box girder is systematically analyzed, at the same time, the same stability design for the in the upright rail box girder is also made. The research work are of great value on both theory and engineering practice, and have provided a basis for our further research.
引文
[1]王金诺,于兰峰.起重运输机金属结构[M].中国铁道出版社,2002:206-207.
    [2]Hartleb J, Plischke C, Schneider F, Wagner P. Lightweight construction for heavy machinery[J]. ThyssenKrupp techforum,2004(12):70-75.
    [3]Kaiser H J, Karl P W, Tschersich H J. High-strength structural steels for mobile crane booms[J].Stahlbau,2000,69(4):306-310.
    [4]Kallage P. Herzog D. Ostendorf A, Boese B, Haferkamp H. Mechanical Properties of Laser MAG Hybrid Welded high Strength Steels[J]. Welding in the World,2008,52(9): 109-115.
    [5]Kloeppel K, Moell R, Schmied R. Investigation Of Welded Lightweight Beams With Box-like Flanges Made From Cold Work-hardened ST37 Steel[J].Stahlbau,1969,8(4): 97-106.
    [6]Sun Y W, Ze X B, Luo L W, Wang W. Optimization design and analysis of LD-A type crane crossbeam[J]. Journal of Harbin Institute of Technology (New Series).2009,17(1): 94-98.
    [7]Hummel H, Kern A, Schriever U. Fatigue behaviour of component sections of mobile cranes out of high strength steel plates[J]. Stahlbau,2006,75(11):882-888.
    [8]Cveticanin L. Dynamic behavior of the lifting crane mechanism[J]. Mechanism and Machine Theory,1995,30(l):141-151.
    [9]程文明,王金诺,邓斌.门式起重机结构参数与动态指标耦合关系[J].西南交通大学学报,2002,37(6):651-654.
    [10]郭瀚澄.16/3.2吨桥式双粱起重机小车轻量化研究[D].浙江大学硕士论文,2009:56-73.
    [11]刘哲明.30t/42m门型起重机力学分析及结构参数优化[D].中南大学硕士论文,2007:44-57.
    [12]张东宝.单梁双吊钩门式起重机结构分析与优化设计[D].长安大学硕士论文,2011:48-61.
    [13]邬钱涌,程文明,崔宝祥.岸边集装箱起重机结构轻量化设计及可靠性分析[J].机械设计,2012,29(6):40-43.
    [14]甄龙.通用桥式起重机桥架结构优化[D].大连理工大学硕士论文,2012:30-43.
    [15]Wang Q X, Zhang X F, Sun C B. Lightweight design and research of box girder for double girder bridge crane[A]. In:4th International Conference on Mechanical and Electrical Technology[C], Universiti Putra Malaysia,2012:478-481.
    [16]Rao S S. Optimum Design of Bridge Girders for Electric Overhead Travelling Cranes [J]. Journal of Engineers for Industry,1976,100(8):48-51.
    [17]Re H Z, Long K, Zuo Z X. Design Optimization of EOT Crane Bridge[A]. In: 2008-International Conference on Engineering Optimization[C], Beijing Institute of Technology,2008:1-9.
    [18]Cho S W, Kwak B M. Optimal Design of Electric Overhead Crane Girders[J]. Journal of Engineers for Industry,1984,106(7):203-208.
    [19]魏国前,叶国平.基于现代设计方法的LDA起重机主梁设计[J].机械设计与制造,2009(5):81-83.
    [20]高海龙.架桥机结构动态特性分析与动态优化设计研究[D].西南交通大学硕士论文,2009:34-48.
    [21]王铁,吴净,周淑文,张国忠.桥式起重机主梁的非保守模糊可靠度设计[J].西安建筑科技大学学报,2008,40(3):439-444.
    [22]徐格宁,陶书东,于万成.基于强优弱劣机制组合算法的机械结构优化技术[J].起重运输机械,2007(4):36-40.
    [23]Lagaros N D, Charmpis D C. Efficiency and robustness of three metaheuristics in the framework of structural optimizationfA]. In:Proceedings of the 2010 International Conference on Artificial Intelligence Applications and Innovations[C], American: Springer New York,2010:104-111.
    [24]张晓丽,杨建强,常春影,董威.多目标模糊优化方法及其在工程设计中应用[J].大连理工大学学报,2005,45(3):375-378.
    [25]刘道华,原思聪,张锦华,吴涛.粒子群参数自适应调整的优化设计[J].农业机械学报,2008,39(9):134-137.
    [26]杨春松,程文明,王小慧,唐连生.混合遗传算法在桥式起重机结构优化中的应用[J].起重运输机械,2006(10):21-23.
    [27]Kirsch U. Optimal topologies of structures[J].Applied Mechanics Review,1989,42(4): 223-249.
    [28]Zuberi R H, Zuo Z X, Long K, Li W. Topological optimization of constant beam section under moving load condition[A]. In:Proceedings of the 2010 International Conference on Mechanic Automation and Control Engineering[C],Beijing:IEEE Computer Society,2010:354-359.
    [29]Qin D C, Zhu Q. Structural topology optimization of box girder based on Method of Moving Asymptotes [A] In:proceeding of 2010 International Conference on Intelligent Computation Technology and Automation[C], Changsha:IEEE Computer Society,2010: 402-405.
    [30]秦东晨,闫利利.桥式起重机箱形主梁的结构优化设计[J].矿山机械,2010,38(12): 48-51.
    [31]杨真.桥式起重机金属结构的轻量化设计研究[D].南京理工大学硕士论文,2012:44-57.
    [32]胥志刚,林忠钦,来新民,王皓.面向车身结构轻量化设计的水平集拓扑优化[J].上海交通大学学报,2007A1(9):1393-1396.
    [33]Cheng W M, Fu W G, Zhang Z Q, Zhang M. The Bionic Lightweight Design of the Mid-rail Box Girder Based on the Bamboo Structure[J]. Przeglad Elektrotechniczny, 2012,88(9B):113-117.
    [34]Muhammad A, Muhammad H, Shahid P. Optimization of Box Type Girder of Overhead Crane[A]. Global Design to Gain a Competitive Edge:An Holistic and Collaborative Design Approach Based on Computational Tools[C], Institute of Engineering Sciences and Technology,2008:609-618.
    [35]Sharma M A, Abdel-Nasser Y A. Ultimate Strength and Load Carrying Capacity of A Telescopic Crane Boom[J]. Alexandria Engineering Journal.2002,41(2):181-187.
    [36]侯东芳,周根树,任凤章,郑茂盛.贝壳珍珠层不同取向弹性模量的研究[J].生物物理学报,2003,19(2):203-206.
    [37]张学鸯,王建方,吴文健,刘长利.贝壳珍珠层生物矿化及其对仿生材料的肩示[J].无机材料学报,2006,21(2):257-265.
    [38]黄玉松,郑威,辛培训,王玲,李宁,汪得功.贝壳珍珠层结构仿生复合材料研究[J].工程塑料应用,2008,36(10):21-25.
    [39]李恒德,冯庆玲,崔福斋,马春来,李文治,毛传斌.贝壳珍珠层及仿生制备研究[J].清华大学学报(自然科学版),2001,41(4/5):41-47.
    [40]李世红,付绍云,周本濂,曾其蕴.竹子一种天然生物复合材料的研究[J].材料研究学报,1994,8(2):188-192.
    [41]张正驰,陈妍慧,李忠明,唐建华.流动场下含∥成核剂的玻璃纤维增强聚丙烯复合材料结构与性能研究[J].中国塑料,2010,24(11):20-25.
    [42]张刚生.生物矿物材料及仿生材料工程[J].矿产与地质,2002,16(2):98-102.
    [43]Zhao F, Lu W W, Lu K D. Surface treatment of injectable strontium-containing bioactive bone cement for vertebroplasty[J]. Biomed. Mater. Res B Appl. Biomater, 2004,69(1):79-86.
    [44]赵珊,李延报,李东旭.功能性羟基磷灰石生物复合材料的研究进展[J].材料导报,2010,24(8):69-74.
    [45]Zhao F, Yin Y J, Lu W W. Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds [J]. Biomaterials.2002.23(15):27-34.
    [46]邱德华,董志围.仿生技术在建筑创作中的设计应用[J].制造业自动化,2010,32(11):194-196.
    [47]史越川,童乐为.结构仿生在钢结构建筑中的应用现状与展望[J].结构工程师,2007,23(2):5-8.
    [48]史晓君,于海业.温室结构仿生设计的可行性研究[J].农机化研究,2011(7):73-77.
    [49]卓新,董石麟.海洋贝类仿生建筑的结构形体研究[J].空间结构,2004,10(4):19-23.
    [50]向新岸,赵阳,董石麟.基于空间填充多面体的空间刚架结构几何构成[J].浙江大学学报(工学版),2008,42(1):105-110.
    [51]焦洪杰,张以都,陈五一,赵岭.低RCS立柱结构仿生设计及仿真分析[J].武汉理工大学学报,2009,31(5):83-85.
    [52]汪久根,章维明,朱聘和.机床主轴的仿生设计[J].机床与液压,2007,35(5):18-19.
    [53]岑海堂,陈五一,喻懋林,刘雪林.翼身结合框结构仿生设计[J].北京航空航天大学学报,2005,31(1):13-16.
    [54]马建峰,陈五一,赵岭,赵大海.基于蜻蜒膜翅结构的飞机加强框的仿生设计[J].航空学报,2009,30(3):562-569.
    [55]岑海堂,陈五一.小型翼结构仿生设计与实验分析[J].机械工程学报,2009,45(3):286-290.
    [56]赵岭,陈五一,马建峰.基于王莲叶脉分布的机床横梁筋板结构仿生优化[J].高技术通讯,2008,18(8):806-810.
    [57]丁晓红,陈建来,程莉抗振板壳结构的仿生拓扑优化设计方法[J].船舶力学,2008,12(1):125-130.
    [58]史姣,高红,蔡坤,刘巍.具有多约束连续体结构仿生拓扑优化方法[J].工程力学,2008,25(12):53-59.
    [59]Timoshenko S P, Gere J M. Theory of elastic stability[M].2nd ed. New York: McGraw-Hill,1961.
    [60]郭耀杰,陈焰周.压缩和弯曲共同作用下薄板屈曲分析与计算[J].武汉理工大学学报,2008,30(2):58-61.
    [61]Alinia M M, Dastfan M. Cyclic behaviour deformability and rigidity of stiffened steel shear panels[J]. Journal of Constructional Steel Research,2007,63(4):554-563.
    [62]赵伟,杨强跃,童根树.钢板剪力墙加劲肋刚度及弹性临界应力研究[J].工程力学,2010,27(6):15-23.
    [63]HOglund T. Shear buckling resistance of steel and aluminium plate girders[J]. Thin-Walled Structures,1997,29(1-4):13-30.
    [64]程斌,肖汝诚,赵金城.双轴受压小刚度加劲厚板的极限强度计算[J].土木工程学报,2010,43(6):87-93.
    [65]李立峰.正交异性钢箱梁局部稳定分析理论及模型试验研究[D].湖南大学博士论文,2005:9-10.
    [66]程晔,谢瑾荣,张乐亲.TPZ/48钢箱梁式架桥机施工状态下屈曲稳定性研究[J].中国铁道科学,2007,33(1):35-40.
    [67]周绪红,孔祥福,侯健,程德林,狄谨.波纹钢腹板组合箱梁的抗剪受力性能[J].中国公路学报,2007,20(2):77-82.
    [68]宋波,王利,罗晓玲,孙北东,许晓慧.大型反应器加劲薄钢板结构屈曲性能北京科技大学学报[J].2010,32(8):1094-1100.
    [69]Vhanmane S, Bhattacharya B. Estimation of ultimate hull girder strength with initial imperfections[J].Ships and Offshore Structures,2008,3(3):149-158.
    [70]Shu Z, Moan T. Assessment of the hull girder ultimate strength of a bulk carrier using nonlinear finite element analysis[A]. In:Proceedings 2009 International Conference on Marine Structures-Analysis and Design of Marine Structures[C], Norway:CRC Press: 173-180.
    [71]童乐为,王新毅,陈以一,顾敏,范重,彭翼.国家体育场焊接方管桁架双弦杆KK型节点实验研究[J].建筑结构学报,2007,28(2):49-53.
    [72]钱稼茹,赵作周,彭明英,范重,彭翼.国家体育场扭曲箱形构件抗弯实验[J].建筑结构学报,2007,28(2):112-119.
    [73]狄谨.钢箱梁梯形肋加劲板受力性能与设计方法研究[D].长安大学博士论文,2009:184-185.
    [74]Xiang Y, Wang C M. Buckling of skew Mindlin plates subjected to in-plane shear loading[J]. International Journal of Mechanical Sciences,1995,37(10):1089-1101.
    [75]Mizusawa T, Kajita T, Naruoka M. Analysis of Skew Plate Problems with Various Constraints[J]. Journal of Sound and Vibration,1980,73(4):575-584.
    [76]Mizusawa T, Kaiita T. Vibration and Buckling of Skew Plates with Edges Elastically Restrained Against Rotation[J]. Computers and Structures,1986,22(6):987-994.
    [77]Mizusawa T, Kajita T. Naruoka M. Buckling of skew plate structures using B-spline functions[J]. International Journal for Numerical Methods in Engineering.1980, 15(l):87-96.
    [78]Jaunky N, Knight N F, Ambur D R. Buckling of Arbitrary Quadrilateral Anisotropic Plates[J]. Aiaa Journal,1995,33(5):938-944.
    [79]Mwkhopadhyay M, Mukwerjee A. Finite Element Buckling Analysis of Stiffened Plates[J]. Computers and Structures,1990,36(4):795-803.
    [80]York C B. Influence of Continuity and Aspect Ratio on The Buckling of Skew Plates and Plate Assemblies[J]. International Journal of Solids and Structures,1996, 33(15):2133-2159.
    [81]胡华万,李俊,强士中.波形钢腹板PC组合箱梁剪切屈曲性能研究[J].铁道工程学报,2011(2):80-84.
    [82]Ahmasebinejad A, Shanmugam N E. Elastic buckling of uniaxially loaded skew plates containing openings[J]. Thin-Walled Structures,2011,49(3):1208-1216.
    [83]Wu W X, Shu C, Xiang Y Wang C M. Free Vibration and Buckling Analysis of Highly Skewed Plates by Least Squares-Based Finite Difference Method[J]. International Journal of Structural Stability and Dynamics,2010,10(2):225-252.
    [84]Wang X W, Tan M, Zhou Y. Buckling analyses of anisotropic plates and isotropic skew plates by the new version differential quadrature method[J]. Thin-Walled Structures, 2003,41 (6):15-29.
    [85]纪冬梅,胡毓仁.小波加权残值法在斜板后屈曲上的应用[J].应用力学学报,,2008,25(4):673-677.
    [86]Prakash T, Singha M K, Ganapathi M.Thermal postbuckling analysis of FGM skew plates[J]. Engineering Structures,2008,30(1):22-32.
    [87]Bandyopadhyay J N, Ramachandra L S, Singha M K. Stability and strength of composite skew plates under thermomechanical loads[J]. Aiaa Journal,2001, 39(8):1618-1623.
    [88]Liao H W, Huang H Y. Buckling and Postbuckling Analyses of A Skew Plate[J]. Journal of Mechanics,2008,24(4):347-355.
    [89]Huyton P, York C B. Buckling of Skew Plates with Continuity or Rotational Edge Restraint[J]. Journal of Aerospace Engineering,2001,47(2):92-101.
    [90]Krishna Reddy A R, Palaninathan R. Buckling of Laminated Skew Plates[J]. Thin-Walled Structures,1995,22(4):241-259.
    [91]Ganapathi M, Prakash T. Thermal buckling of simply supported functionally graded skew plates [J]. Composite Structures,2005,74(2):247-250.
    [92]Ganapathi M, Prakash T, Sundararajan N. Influence of functionally graded material on buckling of skew plates under mechanical loads [J]. Journal of Engineering Mechanics-Asce,2006,132(8):902-905.
    [93]Darilmaz, K. Influence of aspect ratio and fibre orientation on the stability of simply supported orthotropic skew plates[J]. Steel and Composite Structures,2011,11(5): 359-374.
    [94]Daripa R, Singha M K. Influence of corner stresses on the stability characteristics of composite skew plates[J]. International Journal of Non-Linear Mechanics.2009, 44(2):138-146.
    [95]Babaei H, Shahidi A R. Small-scale effects on the buckling of quadrilateral nanoplates based on nonlocal elasticity theory using the Galerkin method[J]. Archive of Applied Mechanics,2011,81(8):1051-1062.
    [96]阮苗,王忠民.功能梯度斜板的屈曲分析[J].机械工程学报,2011,47(6):57-61.
    [97]Malekzadeh P, Haghighi M R G, Beni A A. Buckling analysis of functionally graded arbitrary straight-sided quadrilateral plates on elastic foundations[J]. Meccanica.2012, 47(2):321-333.
    [98]王克林,刘俊卿.点支承四边自由各向异性平行四边形板自由振动、屈曲和弯曲分析[J].力学季刊,2006,27(1):130-136.
    [99]王克林,刘俊卿.有面内张力和剪力的四边支承各向异性平行四边形板振动、屈曲和弯曲的精确解[J].应用力学学报,2006,23(4):578-583.
    [100]王克林,刘俊卿.有面内张力和剪力作用的简支各向异性平行四边形板自由振动、屈曲和弯曲的精确解[J].振动与冲击,2006,25(2):93-97.
    [101]王克林,李璐,汤翔,王效民.有自由边的各向异性平行四边形板的弯曲、振动与屈曲的傅里叶分析[J].工程力学,2008,25(3):31-37.
    [102]李国豪.斜交各向异形板弯曲理论及其在斜桥的应用[J].力学学报,1958,2(1):77-88.
    [103]李国豪.关于斜交异性板的弯曲理论[J].同济大学学报,1997,25(2):121-126.
    [104]王磊.平行四边形板弯曲何题的康托洛维奇法[J].湖南大学学报,1983,10(4):37-48.
    [105]王磊,李兰芬.最小二乘法分析弹性薄板弯曲问题[J].湖南大学学报,1983,16(1):49-60.
    [106]毛瑞祥,刘中林.斜交构造异性斜板弯曲问题的样条最小二乘配点法静力研究[J].中国公路学报,1993,6(3):65-69.
    [107]刘俊卿,王克林,黄义.弹性地基上各向异性平行四边形板[J].中国公路学报,1993,6(3):156-160.
    [108]王荣辉,邱波,程纬.斜形板结构的平行四边形板块有限单元算法[J].华中理工大学学报,1999,27(9):7-9.
    [109]李建春,俞茂宏.简支斜板、菱形板、矩形板和方板极限荷载的统一解析解[J].土木工程学报,2000,3(5):76-80.
    [110]章顺虎,赵德文,张雷,高彩茹,王国栋.MY准则解析受均布载荷简支斜板极限载[J].材料科学与工艺,2012,20(2):65-69.
    [111]吴连元.板壳稳定性理论[M].华中理工大学出版社,1996:1-10.
    [112]曲庆璋,章权,季求知,梁兴复.弹性板理论[M].人民交通出版社.2000:9-24.
    [113]张培信.能量法理论结构力学[M].上海科学技术出版社,2010:298-301.
    [114]Lotfi S, Azhari M, Heidarpour A. Inelastic initial local buckling of skew thin thickness-tapered plates with and without intermediate supports using the isoparametric spline finite strip method[J].Thin-Walled Structures,2011,49:1475-1482.
    [115]陈炎,黄小清,马友发.单向轴压下压电矩形薄板的后屈曲问题[J].华南理工大学学报,2003,31(8):45-49.
    [116]omer C. Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns [J]. Engineering Structure,2004,26(2):171-186.
    [117]Wang X W, Wang X F, Shi X D. Differential quadrature buckling analyses of rectangular plates subjected to non-uniform distributed in-plane loadings[J]. Thin-Walled Structures,2006,44(2):837-843.
    [118]王永亮.微分求积法和微分求积单元法[D].南京航空航天大学博士学位论文,2001:11-13.
    [119]Fung T C. Generalized Lagrange functions and weighting coefficient formulae for the harmonic differential quadrature method [J].International Journal for Numerical Methods in Engineering,2003,57(4):415-440.
    [120]包日东,闻邦椿,龚斌.微分求积法分析水下输流管道的竖向动力特性[J].东北大学学报,2007,28(2):241-245.
    [121]Wang X W, Gan L F. New approaches in application of differential quadrature method to fourth-order differential equations[J]. Communications in Numerical Methods in Engineering,2005,21 (2):61-71.
    [122]谈梅兰,吴光,王鑫伟.矩形薄板面内非线性分布载荷下的辛弹性力学解[J].工程力学,2008,25(10):50-53.
    [123]Feldman E, Belostotsky I. On the response of MMC laminated plates to non-uniform temperature loading:the effect of temperature-dependent material properties [J]. Composite Structures,1997,38(1-4):83-89.
    [124]Jana P, Bhaskar K. Analytical solutions for buckling of simply supported rectangular plates due to non-linearly distributed in-plane bending stresses [J]. Structural Engineering and Mechanics,2007,26(2):151-162.
    [125]Ganapathi M, Patel B P, Boisse P, Touratier M. Non-linear dynamic stability characteristics of elastic plates subjected to periodic in-plane load[J]. International Journal of Non-Linear Mechanics,2000,35(3):467-480.
    [126]Ganapathi M, Boisse P, Solaut D. Non-linear dynamic stability analysis of composite laminates under periodic in-plane compressive loadsfJ]. International Journal for Numerical Methods in Engineering,1999,46(6):943-956.
    [127]Bedair O. Analytical effective width equations for limit state design of thin plates under non-homogeneous in-plane loading[J]. Archive of Applied Mechanics,2007, 9(12):1173-1189.
    [128]Wang X W, Gan L F, Zhang Y H. Differential quadrature analysis of the buckling of thin rectangular plates with cosine-distributed compressive loads on two opposite sides[J]. Advances in Engineering Software,2008,39(2):497-504.
    [129]Wang X W, Wang X F, Shi X D. Accurate buckling loads of thin rectangular plates under parabolic edge compressions by the differential quadrature method[J]. International Journal of Mechanical Sciences,2007,49(1):447-453.
    [130]Wang X W, Gan L F, Wang Y L. A differential quadrature analysis of vibration and buckling of an SS-C-SS-C rectangular plate loaded by linearly varying in-plane stresses[J]. Journal of Sound and Vibration,2006,298(3):420-431.
    [131]赵经文,王宏钰.结构有限元分析[M].科学出版社,2001:78-82.
    [132]赵伟,杨强跃,童根树.钢板剪力墙加劲肋刚度及弹性临界应力研究[J].工程力学,2010,27(6):15-23.
    [133]付为刚,程文明,王弘,林炳煜.起重机上翼缘仿生简支板的局部稳定性分析[J].计算机仿真,2012,29(8):396-400.
    [134]Shigeyasu A, Sun U. Fracture properties of bamboo[J]. Composites:Part B,2001, 32:451-459.
    [135]丁晓红,李国杰,张志忠.生物结构自适应性的力学研究及其应用[J].力学进展,2006,36(1):103-109.
    [136]胡巧玲,李晓东,沈家骢.仿生结构材料的研究进展[J].材料研究学报,2003,17(4):337-343.
    [137]Tan T, Rahbar N, Allameh S M, et al. Mechanical properties of functionally graded hierarchical bamboo structures[J]. Acta Biomaterialia,2011,7(2):3796-3803.
    [138]Chung K F, Yu W K. Mechanical properties of structural bamboo for bamboo scaffoldings[J]. Engineering Structures,2002,24(7):429-42.
    [139]Silva E C N, Walters M C, Paulino G H. Modeling bamboo as a functionally graded material:lessons for the analysis of affordable materials[J]. Journal of Materials Science,2006,41 (4):6991-7004.
    [140]Tommy Y L, Cui H Z, Leung H C. The effect of fiber density on strength capacity of bamboo[J]. Materials Letters,2004,58(2):2595-2598.
    [141]Zhou B L. Bio-inspired study of structural materials[J]. Materials Science and Engineering.2000,11 (6):13-18.
    [142]Su R, Fu Q A, Gao X, Ge Y A, Wang K, Zhang Z Q. Polypropylene Injection Molded Part with Novel Macroscopic Bamboo-like Bionic Structure[J]. Journal of Physical Chemistry,2010,114(31):9994-10001.
    [143]Qiao G J, Ma R, Cai N, Zhang C G, Jin Z H. Microstructure Transmissibility in Preparing SiC Ceramics from Natural Wood[J]. Journal of Materials Processing Technology,2002,120(4):107-110.
    [144]Ma J F, Chen W Y and Zhao L. Elastic Buckling of Bionic Cylindrical Shells Based onBamboo[J]. Journal of Bionic Engineering,2008,5(1):231-238.
    [145]Zhao D X, Chen W Y, Ma J F, Zhao L. Structural Bionic Design for Thin-walled Cylindrical Shell Against Buckling under Axial Compression[J]. Proceedings of The Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2011,225(C11):2619-2627.
    [146]褚洪杰,徐新生,马建青.弹性圆柱壳在轴向冲击载荷和温度耦合作用下的屈曲[J].计算力学学报,2010,27(5):759-763.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700