用户名: 密码: 验证码:
江汉平原中全新世古洪水事件环境考古研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙洋钟桥、天门石家河古城谭家岭和三房湾等遗址构成了江汉平原地区新石器时代晚期以来较为完整的考古地层年代序列,是含有中全新世晚期古洪水灾变事件信息和丰富测年材料的典型考古遗址,具备了古洪水事件环境考古研究的理想条件。通过对这三处中全新世晚期典型遗址古洪水事件考古地层学和年代学、孢粉、锆石微形态、粒度、磁化率、地球化学等多环境代用指标的综合研究,结合研究区现代洪水沉积物特征指标的对比分析、文化遗址数量变化、时空分布、地层堆积特征、区域遗址变动情况及江汉平原众多中全新世考古遗址的地理位置、年代学数据、地貌高程、古洪水层埋深和文化层厚度等资料的统计,对江汉平原中全新世古洪水事件及其与人类文明演进的互动响应关系进行系统的环境考古研究,以揭示该区中全新世古洪水事件的年代、特征过程、发生的环境背景与东亚季风降水变化的关系,并弄清古洪水事件对新石器时代各期文化和人类文明演进过程的影响。研究结果表明:
     1)钟桥遗址地层中第5层、第7层和第10层三个自然淤积层为三期古洪水沉积层;谭家岭遗址地层中第9层石家河文化早期淤积层是一种与古洪水有关大体经过较弱水动力搬运过程(物源较近)的湖沼相沉积层;三房湾遗址地层底部的第14层黄灰色土为古洪水沉积物,第15层灰色淤泥亦可能经历过洪水的影响,特别是其上部层位,而第13层青灰色淤泥应属湖沼相沉积,可能经历过流速较为缓和、有一定水面范围的浅水湖沼环境。其判别的主要依据有:①遗址古洪水层与该区现代洪水层沉积物在粒度分布频率曲线以及其它粒度参数特征方面的相似性;②古洪水层与现代洪水层磁化率值均较低,而文化层较高;③古洪水层与现代洪水层在锆石微形态特征上具有相似性,多为半浑圆状或浑圆柱状,有些已由四方双锥形被磨至近浑圆状,表明均有被流水长途搬运后留下的磨圆特征;④古洪水层的Rb/Sr值均高于文化层:⑤古洪水层的Cu含量较低,而文化层偏高;⑥与遗址的文化层相比,古洪水层所含孢粉总量比较少,经常出现水生草本和藻类,且有孢粉的远源再沉积现象,突出表现为古洪水层中松属和柏科等含量较高,可能为远距离搬运(流水或风力搬运)再沉积在新的堆积体中。
     2)结合江汉平原三个典型考古遗址文化地层对比,根据AMS14C和OSL测年结果以及考古器物断代,钟桥遗址在4800~4597cal.aBP之间、4479-4367cal. a BP之间和4168-3850cal. a BP之间分别出现三次古洪水事件;三房湾遗址古洪水事件发生在4913~4600cal.aBP之间。江汉平原及其周边地区众多文化遗址典型古洪水沉积层时代对比表明,屈家岭文化中晚期(4900~4600cal.aBP)和石家河文化末期至夏代(4100~3800cal.aBP)两次特大洪水事件在长江中游的江汉平原地区非常普遍。从106个江汉平原及其周边地区7000~3000cal.aBP考古遗址的文化层14C年代数据树轮校正结果和12个释光年代数据来看,4900-4600cal.a BP和4100~3800cal.aBP古洪水事件期与5000-3500cal. a BP考古遗址出现频数最低的两个时期相一致,这也相互映证了洪水发生年代的结论。
     3)地貌与古水文过程分析表明,钟桥遗址地层中古洪水层所反映的洪水规模至少应当与中-大洪水规模相当;三个古洪水事件沉积层可能并非由长江荆江段干流洪水直接泛滥沉积形成,应是由长江干流洪水涨水顶托冲入古扬水通道泛滥覆盖遗址所在区域而堆积形成的洪积物。天门谭家岭遗址与三房湾遗址所在的石家河古城区域现今仍属于汉江罗汉寺灌区的中心位置,因此,三房湾遗址地层底部存在的两期古洪水沉积层与史前时代汉江洪水的关系密切。对江汉平原中全新世古洪水事件发生规律、机制及其气候环境背景的进一步分析,其结果反映出5000-3000a BP气候干湿波动最大,但总体向干旱化趋势发展,本区中全新世主要的旱涝灾害、降温气候事件就发生在这一时段里,尤其是在5000-4500a BP及4000a BP前后的时段气候表现得尤其不稳定,江汉湖群也处于不稳定或持续变动期,这与屈家岭文化中晚期(4900~4600cal.a BP)和石家河文化末期至夏代(4100~3800cal.a BP)两次古洪水事件相对应,江汉平原地区5000~3000cal.a BP异常洪水事件发生与全新世大暖期后期气候逐渐恶化过程在发生时间上相吻合,表明这两次古洪水事件与气候环境变化驱动的江汉平原湖群扩张存在一定联系。
     4)江汉平原及其周边地区屈家岭文化至西周时期考古遗址总体上高程分布有逐渐降低的趋势,但在这个时段中间存在两个遗址高程增加速度较快的时期,在屈家岭文化晚期以及石家河文化晚期与夏朝时期遗址高程的增加可能预示洪水位的提高。因此,在江汉平原及其周边地区,遗址高程变化与古洪水事件、湖面变化三者间的关系是相一致的,即从屈家岭文化早期到晚期、从石家河文化晚期到夏朝时期由于洪水事件发生与湖面扩张而使这两个时期的文化遗址高程增加。屈家岭文化早期江汉湖群已开始扩张,由于气候适宜且稳定,洪涝灾害较少,人类因稻作农业生产发展的刺激而在以平原低地为主的地方生活:屈家岭文化晚期发生了分布范围较广的特大洪水事件,湖泊扩大,人类居住地仅限于地势较高的岗地与平原过渡地带;屈家岭文化末期至石家河文化中期湖群萎缩,遗址重新出现在低地平原;石家河文化晚期以后又进入了4000a BP前后的异常洪水事件期,湖群再次扩张,人类再次从低地平原迁出向高海拔区分布。夏朝时期整个江汉平原及其周边地区仅剩10处遗址,且均分布在海拔50m以上地区,表明该时期确实经历过显著的特大洪水事件,受洪水影响人类只能在海拔较高的地方生存。
     5)石家河文化早中期因人口增加和稻作农业发展刺激人类活动向地势低平的江汉平原腹地持续扩展,而至石家河文化晚期江湖水位的波动上升引起洪患加剧,人类所面对的洪水威胁也越来越大,这种社会发展过程和环境变化过程特别是古水文过程的矛盾在石家河文化末期已特别突出,这是导致该区石家河文化最终走向衰落和灭亡的主要原因。具有全球意义的4000a BP前后气候异常引起的特大洪水事件,以及石家河文化末期该地区内部或同中原以及其它地区间的冲突,都加速了石家河文化的崩溃。夏商周文明与石家河文化已属于不同渊源的社会团体,彼此之间不能衔接。
     日本学者认为4000cal.a BP前后欧亚大陆广泛发生的夏季风减弱与气候干旱事件导致新石器时代末长江中游石家河文化的衰落。本文的研究则表明,ca4000cal. a BP气候异常引起的特大洪水事件是长江中游区石家河文化消亡的重要环境因素。3500BC~1500BC中国文明形成与早期发展阶段的史前洪水及其对新石器文化终结和国家兴起的社会影响一直是历史学家关注的热点问题。然而,大多数的讨论都是基于早期青铜时代流传下来的著名神话“大禹治水”。这些洪水事件的可靠地质年代学及沉积学证据十分缺乏。江汉平原及其周边地区具有可靠年代的大洪水沉积记录增加了我们关于4000cal.a BP前后气候事件中国季风区短尺度快速气候变化的认识,同时也提供了可靠的大禹时代史前洪水证据来说明其对中国新石器文化衰落和青铜时代国家兴起的社会影响。
The Jianghan Plain lies in the northern part of the middle Yangtze River area, Central China and is a region that has recently formed from the fluvial processes of the Yangtze River and the Hanshui River, as well as from the later tectonic subsidence and lacustrine processes. It is known for its well-developed Neolithic rain-fed agriculture and for its accommodation of many historical urban and administrative centers during the last4000years. Numerous Neolithic and Bronze Age ruins have been found in and around this plain of the mainstream and tributaries. In recent years, on the protective archaeological excavation of South-to-North Water Diversion Project, archaeological departments have discovered that palaeoflood deposits exist in many archaeological ruins in the Jianghan Plain. Among them, three archaeological sites of Zhongqiao in Shayang, Tanjialing and Sanfangwan in Shijiahe townsite of Tianmen constitute a complete chronological sequence of archaeological strata in the Jianghan Plain area since the late Neolithic Age. They are typical archaeological sites with catastrophic palaeofloods information and a wealth of dating material of the late Mid-Holocene, which possess ideal conditions for environmental archaeology of Holocene palaeoflood events in the Jianghan Plain.
     Based on the detailed analyses of three typical archaeological sites, multidisciplinary approach such as the archaeological stratum, AMS14C and OSL dating, pollen, micromorphology of zircon, grain size, magnetic susceptibility and geochemistry are used to research the late Mid-Holocene palaeofloods. Then, by the integrated study with a comparative analysis for characteristics of the modern flood sediments, quantity change and spatial-temporal distribution of archaeological sites, characteristics of stratigraphic accumulation and settlement changes in the study area, as well as the geographic location, chronological data, terrain elevation, depth of palaeoflood layers and the thickness of cultural layers in numerous archaeological sites of the Jianghan Plain during the Mid-Holocene, systematic environmental archaeology of the interactive response relationships between Mid-Holocene palaeofloods and evolution of human civilization in the Jianghan Plain are conducted to reveal the chronology, features of the flood process and environment background of Mid-Holocene palaeoflood events, and to examine their relations with monsoon rainfall changes of East Asia. The impacts of palaeoflood events on the Neolithic cultures and evolution process of human civilization are also clarified.
     1) The5th,7th and10th natural layers of the Zhongqiao site are palaeoflood deposits, which represented three palaeoflood episodes. The9th early Shijiahe cultural layer of the Tanjialing site is an palaeoflood related lacustrine sediments generally after the weaker hydrodynamic transport process; the14th yellow gray soil layer in the bottom of Sanfangwan site is palaeoflood deposit, while the15th gray silt layer may also have experienced the impact of floods, especially the upper layer, but the13th cinerous mud layer shall be lacustrine sediments, which may have experienced a limnology environment with moderate flow rate and shallow water. The identifying features are as follows:①The palaeoflood sediments in the Zhongqiao and Sanfangwan site take on great similarities with modern flood sediments in the study area in frequency distribution curves and other grain size parameters;②Magnetic susceptibility values are lower than those of sediments from cultural layers;③There are some resemblance of the zircon shape characteristics between palaeoflood deposits and those of modern flood deposits, that shapes of zircon are mainly oval and nearly spheral, rounded due to long distance transport;④Rb/Sr contents are higher than those of sediments from cultural layers;⑤Cu contents are lower than those of sediments from cultural layers;⑥Compared with the site cultural layers, total amount of pollen in palaeoflood deposits is relatively less, often containing aquatic herbs and algae, and the contents of Pinus, Cupressaceae are higher due to long distance transport redeposition in new stacked body.
     2) According to the results of AMS14C, OSL and archaeological artifacts dating, combined with the cultural stratigraphic correlation of three typical archaeological sites in the Jianghan Plain, three palaeoflood episodes (i.e.4800~4597cal.a BP,4479~4367cal.a BP and4168~3850cal. a BP) occurred in the Zhongqiao site, while palaeofloods of4913~4600cal.a BP are recorded at the Sanfangwan site. From comparisons of typical palaeoflood deposit layers in numerous Neolithic sites, two Mid-Holocene extraordinary palaeoflood events occurred commonly over the Jianghan Plain area of the middle Yangtze River at approximately4900~4600cal.a BP (i.e. mid-late Qujialing cultural period) and4100~3800cal.a BP (i.e.from late Shijiahe cultural period to Xia Dynasty). From106radiocarbon data and12luminescence data dating from cultural layers in archaeological sites around the Jianghan Plain during7000~3000cal.a BP, above two palaeoflood episodes correlate well with two lowest frequency of site occurring numbers between5000~3000cal.a BP. This mutually reflected the conclusion of chronology of the palaeoflood events.
     3) Geomorphic and palaeo-hydrologic process analyses indicate that, the flood scale reflected by the palaeoflood layers in the Zhongqiao site should be at least above the moderate-large scale. These three palaeoflood layers may not be the main stream flood deposition directly; they should be diluvial sediments formed by mainstream of the Yangtze River flood water backwater into the ancient Yangshui channel and stacked to area of the site. The area of ancient Shijiahe townsite still belongs to the center position of the Luohansi Irrigated Area, Hanjiang River. Thus, there are close relationships between palaeoflood deposits at the bottom of the Sanfangwan site and the Hanjiang River floods during prehistoric era. High-resolution investigations of the cave speleothem and of the lake and subalpine peat sediments have documented prominent climatic fluctuations between5000and3000cal.a BP in Jianghan Plain and surrounding monsoonal regions of China, but, as a whole, reflecting the long drying trend. The main droughts, floods and cooling climatic events of the mid-Holocene have occurred at this time, especially between approximately5000-4500cal. a BP and4000cal. a BP, with high climate variability and obvious expansion of the Jianghan lakes. These two fluctuations were just associated with the above two identified palaeoflood events at approximately4900~4600cal.a BP and4100-3800cal.a BP, respectively. It was suggested that these two palaeoflood events have close relationships with the expansion of Jianghan lakes driven by the climatic change in this area.
     4) From the Qujialing cultural period to the Western Zhou Dynasty in and around the Jianghan Plain, elevation distribution of archaeological sites gradually decreased, but during this time there were two periods (i.e. late Qujialing cultural period, late Shijiahe cultural period to Xia Dynasty) that the sites elevation increased faster, which may indicate the rises of flood level. Therefore, in the Jianghan Plain and its surrounding area, changes of sites elevation, palaeofloods and lakes are consistent, that is, from early Qujialing cultural period to late Qujialing cultural period, and late Shijiahe cultural period to the Xia Dynasty, extensive flood events and lake expansion led to the increase of cultural sites'elevation. During the early Qujialing cultural period, the Jianghan Lakes begun expansion; due to suitable and stable climate, fewer floods occurred; as the stimulation of the development of rice agriculture production, human living places were mainly in lowland. The late Qujialing cultural period appeared an extensive flood event with lake expansion, and human habitation was limited to higher ground hillock and plain areas. From the late Qujialing cultural period to the middle Shijiahe cultural period, with the Jianghan Lakes shrinking, sites re-appeared in the lowland plains. After the late Shijiahe cultural period, extraordinary flood events occurred around4000a BP with lakes expanding again, human then move out from the lowland plains to the higher altitude areas. There were only ten sites in the Xia Dynasty all over the Hubei Province and all of them were located in areas with an altitude above50m, and this distribution trend fully demonstrated that this period must have witnessed significant catastrophic flood events, as a result, human beings affected by the flood could only survive in areas with an elevation above50m.
     5) The water level rising of lakes and intensive flood disasters in the Jianghan Plain during the late Shijiahe cultural period, and human settlements expanding into the low-lying plain during the early-middle Shijiahe cultural period, all these factors intensified the discrepancy between social development and environmental change processes (especially the hydrological process) in the late existence of Shijiahe cultural period might be the key controlling factor resulting in the collapse of Shijiahe Culture. The severe extraordinary floods related to the climatic anomaly at4000cal. a BP and political and military conflicts from internal or other cultural areas all accelerated the collapse of the Shijiahe Culture. This view provides an improved insight for the collapse of Shijiahe Culture that is different from the study results at the Chengtoushan site in Hunan Province.
     Prehistoric floods and their social impacts on the termination of Neolithic cultures and the rise of the state level society at approximately3500BC~1500BC (i.e. Chinese civilization with the early stages of development) have always been hot topics among the Chinese historians. However, most of the discussions were based on an ancient legend of Dayu Zhishui (Flood Mitigation by Great Yu) passed down from the last phase of the Neolithic Age. There is a lack of well-dated geologic and sedimentologic evidence for these floods in and around the Jianghan Plain area. This study not only increases our knowledge on rapid climate change at ca4000a BP, but also provides solid evidence for the prehistoric flood events in the Great Yu age, which is considered the turning point from the Neolithic Age to the Bronze Age in China.
引文
Achimo M, Momade F J, Haldorsen S et al., Dark Nature:Rapid natural Change and Human Responses, Bobole: ICSU,2004,1-35
    Alley R B, Mayewski P A, Sowers T et al., Holocene climatic instability:A prominent, widespread event 8200 yr ago, Geology,1997,25 (6):483-486
    An C B, Tang L Y, Barton L et al., Climate change and cultural response around 4000 cal yr B.P. in the western part of Chinese Loess Plateau, Quaternary Research,2005,63:347-352
    An Z S, Stephen C P, Zhou W J et al., Episode of strengthened summer monsoon climate of Younger Dry as Age on the Loess Plateau of Central China, Quaternary Research,1993,39 (1):45-54
    Anderson K C, Neff T, The influence of paleofloods on archaeological settlement patterns during A.D.1050-1170 along the Colorado River in the Grand Canyon, Arizona, USA, Catena,2011,85:168-186
    Andersson J G, Chinese cultures during ancient times, Geology Report,1923, (5):11-12
    Arz H, Lamy F, Patzold J, A pronounced dry event recorded around 4.2 ka in brine sediments from the northern Red Sea, Quaternary Research,2006,66 (3):432-441
    Baker V R, Geology, determinism, and risk assessment, In:National Research Council (U.S.). Geophysics Study Committee, American Geophysical Union, Scientific Basis of Water-Resource Management, Washington, D.C.:National Academy Press,1982,109-117
    Baker V R, Palaeoflood hydrology and extraordinary flood events, Journal of Hydrology,1987,96:79-99
    Baker V R, Flood geomorphology and palaeohydrology of bedrock rivers, In:Dardis G F, Moon B P (Eds.), Geomorphological Studies in Southern Africa, Rotterdam:A.A. Balkema,1988,473-486
    Baker V R, The study of superfloods, Science,2002,295:2379-2380
    Baker V R, Palaeoflood hydrology in a global context, Catena,2006,66:161-168
    Baker V R, Paleoflood hydrology:Origin, progress, prospects, Geomorphology,2008,101:1-13
    Baker V R, Ely L L, O'Connor J E, Paleoflood hydrology and design decision for high-risk projects, Proceedings, 1990 National Hydraulic Engineering Conference, N.Y.:American Society of Civil Engineers,1990,433-438
    Baker V R, Ely L L, O'Connor J E et al., Paleoflood hydrology and design applications, In:Singh V P (Eds.), Regional Flood Frequency Analysis, Boston:D. Reidel,1987,339-353
    Baker V R, Kochel R C, Patton P C, Long-term flood-frequency analysis using geological data, International Association of Hydrological Science Publication,1979,128:3-9
    Baker V R, Pickup G, Polach H A, Radiocarbon dating of flood deposits, Katherine Gorge, Northern Territory, Australia, Geology,1985,13:344-347
    Beget J E, Stone D B, Hawkins D B, Paleoclimatic forcing of magnetic susceptibility variations in Alaskan loess during the late Quaternary, Geology,1990,18(1):40-43
    Benedetti M M, Daniels J M, Ritchie J C, Predicting vertical accretion rates at an archaeological site on the Mississippi River floodplain:Effigy Mounds National Monument, Iowa, Catena,2007,69 (2):134-149
    Benito G, Baker V R, Gregory K J (Eds.), Palaeohydrology and Environmental Change, Chichester:John Wiley and Sons,1998
    Benito G, Lang M, Barriendos M et al., Use of systematic, palaeoflood and historical data for the improvement of flood risk estimation. Review of scientific methods, Natural Hazards,2004a,31:623-643
    Benito G, Rico M, Thorndycraft V R et al., Palaeoflood records applied to assess dam safety in SE Spain, In: Ferreira R, Alves E, Leal J et al (Eds.), International Conference on Fluvial Hydraulics, September 6-8, Lisbon, Portugal,2006,2113-2120
    Benito G, Sanchez-Moya Y, Soena A, Sedimentology of high-stage flood deposits of the Tagus River, central Spain, Sedimentology,2003a,157:107-132
    Benito G, Sopenab A, Sanchez-Moyac Y et al., Palaeoflood record of the Tagus River (Central Spain) during the Late Pleistocene and Holocene, Quaternary Science Reviews,2003b,22 (15-17):1737-1756
    Benito G, Thorndycraft V R, Systematic, Palaeoflood and Historical Data for the Improvement of Flood Risk Estimation:a Methodological Guide, Madrid:CSIC,2004
    Benito G, Thorndycraft V R, Palaeoflood hydrology and its role in applied hydrological sciences, Journal of Hydrology,2005,313:3-15
    Benito G, Thorndycraft V R, Enzel Y et al., Palaeoflood data collection and analysis, In:Benito G, Thorndycraft V R (Eds.), Systematic, Palaeoflood and Historical Data for the Improvement of Flood Risk Estimation:a Methodological Guide, Madrid:Centro de Ciencias Medioambientales,2004,15-28
    Berger A, Loutre M F, Insolation values for the climate of the last 10 million years, Quaternary Science Reviews, 1991,10 (4):297-317
    Blainey J B, Webb R H, Moss M E et al., Bias and information content of paleoflood data in flood-frequency analysis, In:House P K, Webb R W, Baker V R et al. (Eds.), Ancient Floods, Modern Hazards:Principles and Applications of Paleoflood Hydrology, Water Science and Application Series, vol.5, Washington D C: American Geophysical Union,2002,161-174
    Bond G, Kromer B, Beer J et al., Persistent solar influence on North Atlantic climate during the Holocene, Science, 2001,294:2130-2136
    Bond G, Showers W, Cheseby M et al., A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates, Science,2000,278:1257-1266
    Bondre N R, Kiefer T, von Gunten L, Paired perspectives on global change, PAGES news,2012,20(1):1-56
    Booth R K, Jackson S T, Forman S L et al., A severe centennial-scale drought in midcontinental North America 4200 years ago and apparent global linkages, The Holocene,2005,15 (3):321-328
    Boshoff P, Kovacs Z, Van Bladeren D et al., Potential benefits from palaeoflood investigation in South Africa, South African Engineer,1993,35:25-26
    Bowen R, Isotopes and Climates, London:Elsevier Applied Science,1991
    Brachfeld S A, Banerjee S K, Guyodo Y et al., A 13 200 year history of century to millennial-scale paleoenvironmental change magnetically recorded in the Palmer Deep, western Antarctic Peninsula, Earth and Planetary Science Letters,2002,194 (3-4):311-326
    Branson J, Brown A G, Gregory K J (Eds.), Global Continental Changes:The Context of Palaeohydrology, Geological Society of London:Special Publication,1996, vol.115
    Brown S L, Bierman P R, Lini A et al.,10000 yr record of extreme hydrologic events, Geology,2000,28 (4): 335-338
    Burke K, Francis P, Wells G, Importance of the geological record in understanding global change, Palaeogeography, Palaeoclimatology, Palaeoecology,1990,89 (3):193-204
    Carrivick J L, Hydrodynamics and geomorphic work of Jokulhlaups (glacial outburst floods) from Kverkfjoll volcano, Iceland, Hydrological Processes,2007,21:725-740
    Carroll F A, Hunt C O, Schembri P J et al., Holocene climate change, vegetation history and human impact in the Central Mediterranean:evidence from the Maltese Island, Quaternary Science Reviews,2012,52:24-40
    Chen J, An Z S, Head J, Variation of Rb/Sr ratios in the loess-paleosol sequences of Central China during the last 130,000 years and their implications for monsoon paleoclimatology. Quaternary Research,1999a,51(3): 215-219
    Chen J, An Z S, Wang Y J et al., Distribution of Rb and Sr in the Luochuan loess-paleosol sequence of China during the last 800 ka-Implications for paleomonsoon variations, Science in China Series D-Earth Sciences, 1999b,42 (3):225-232
    Chen J, Chen Y, Liu L W et al., Zr/Rb ratio in the Chinese loess sequences and its implication for changes in the East Asian winter monsoon strength, Geochimica et Cosmochimica Acta,2006,70:1471-1482
    Chen J, Li G J, Geochemical studies on the source region of Asian dust, Science China Earth Sciences,2011,54 (9):1279-1301
    Chen J, Li G J, Yang J D et al., Nd and Sr isotopic characteristics of Chinese deserts:Implications for the provenances of Asian dust, Geochimica et Cosmochimica Acta,2007,71:3904-3914
    Chen Y, Chen J, Liu L W et al., Spatial and temporal changes of summer monsoon on the Loess Plateau of Central China during the last 130 ka inferred from Rb/Sr ratios, Science in China Series D-Earth Sciences,2003,46 (10):1022-1030
    Chen Y, Ni J, Herzschuh U, Quantifying modern biomes based on surface pollen data in China, Global and Planetary Change,2010,74:114-131
    Chen Z Y, Zong Y Q, Wang Z H et al., Migration patterns of Neolithic settlements on the abandoned Yellow and Yangtze River deltas of China, Quaternary Research,2008,70:301-314
    Cohn T A, Lane W L, Baier W G, An algorithm for computing moments-based flood quantile estimates when historical flood information is available, Water Resources Research,1997,33:2089-2096
    Costa J E, Holocene stratigraphy in flood-frequency research, Water Resources Research,1978,14:626-632
    Costa J E, Baker V R, Surficial Geology: Building with the Earth, N.Y.:Wiley,1981
    Costa M L, Kern D C, Geochemical signatures of tropical soils with archaeological black earth in the Amazon, Brazil, Journal of Geochemical Exploration,1999,66 (1-2):369-385
    Cullen H M, deMenocal P B, Hemming S et al., Climate change and the collapse of the Akkadian empire: Evidence from the deep sea, Geology,2000,28 (4):379-382
    Dasch E J, Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary rocks, Geochimica et Cosmochimica Acta,1969,33 (12):1521-1552
    deMenocal P, Ortiz J, Guilderson T et al., Abrupt onset and termination of the African Humid Period:rapid climate responses to gradual insolation forcing, Quaternary Science Reviews,2000,19:347-361
    deMenocal P B, Cultural responses to climate change during the Late Holocene, Science,2001,292:667-673
    Denlinger R P, O'Connell D R H, House P K, Robust determination of stage and discharge:an example form an extreme flood on the Verde River, Arizona, In:House P K, Webb R H, Baker V R, Levish D R (Eds.), Ancient Floods, Modern Hazards:Principles and Applications of Paleoflood Hydrology, Water Science and Application, vol.5. Washington D C:American Geophysical Union,2002,127-146
    Dirszowsky R W, Desloges J R, Evolution of the Moose Lake Delta, British Columbia:implications for Holocene environmental change in the Canadian Rocky Mountains, Geomorphology,2004,57:75-93
    Dong J G, Wang Y J, Cheng H et al., A high-resolution stalagmite record of the Holocene East Asian monsoon from Mt Shennongjia, central China, The Holocene,2010,20 (2):257-264
    Dykoski C A, Edwards R L, Cheng H et al., A high- resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China, Earth and Planetary Science Letters,2005,233:71-86
    Ely L L, Response of extreme floods in the southwestern United States to climatic variations in the late Holocene, Geomorphology,1997,19:175-201
    Ely L, Enzel Y, Baker V R et al., A 5000-year record of extreme floods and climate change in the southwestern United States, Science,1993,262:410-412
    Ely L L, Enzel Y, Baker V R et al., Changes in the magnitude and frequency of late Holocene monsoon floods on the Narmada River, central India, Geological Society of America,1996,108:1134-1148
    Ely L L, Webb R H, Enzel Y, Accuracy of post-bomb 137 Cs and 14 C in dating fluvial deposits, Quaternary Research,1992,38:196-204
    Fernandez F G, Terry R E, Inomata T et al., An ethnoarchaeological study of chemical study of chemical residues in the floors and soils of Q'eqchi'Maya houses at Las Pozas, Guatemala, Geoarchaeology,2002,17:487-519
    Fleitmann D, Burns S J, Mudelsee M et al., Holocene forcing of the India monsoon recorded in a stalagmite from southern Oman, Science,2003,300:1737-1739
    Folk R L, Ward W C, Brazos River bar:A study in the significance of grain size parameters, Journal of Sedimentary Petrology,1957,27 (1):3-26
    Frances F, Salas J D, Boes D C, Flood frequency analysis with systematic and historical or paleoflood data based on the two-parameter general extreme vale models, Water Resources Research,1994,29:1653-1664
    Frances F, Flood frequency analysis using systematic and non-systematic information, In:Benito G, Thorndycraft V R (Eds.), Systematic, Paleoflood and Historical Data for the Improvement of Flood Risk Estimation: Methodological Guidelines, Madrid:CSIC,2004,55-70
    Fu X, Zhang J F, Mo D W et al., Luminescence dating of baked earth and sediments from the Qujialing archaeological site, China, Quaternary Geochronology,2010,5:353-359
    Gasse F, Hydrological changes in the African tropics since the Last Glacial Maximum, Quaternary Science Reviews,2000,19 (1-5):189-211
    Gasse F, Arnold M, Fontes J C et al., A 13,000-year climate record from western Tibet, Nature,1991,353: 742-745
    Gasse F, Campo E V, Abrupt post-glacial climate events in West Asia and North Africa monsoon domains, Earth and Planetary Science Letters,1994,126 (4):435-456
    Ge Q S, Wang S W, Wen X Y et al., Temperature and precipitation changes in China during the Holocene, Advances in Atmospheric Sciences,2007,24 (6):1024-1036
    Gillieson D, Smith D I, Greenaway M et al., Flood history of the limestone ranges in the Kimberley region, Western Australia, Applied Geography,1991,11 (2):105-123
    Glodstein S L, Decoupled evolution of Nd and Sr isotopes in the continental crust and the mantle, Nature,1988, 336:733-738
    Gosse J C, Phillips F M, Terrestrial in situ cosmogenic nuclides:theory and application, Quaternary Science Reviews,2001,20:1475-1560
    Gotanda K, Nakagawa T, Tarasov P E et al., Disturbed vegetation reconstruction using the biomization method from Japanese pollen data:Modern and Late Quaternary samples, Quaternary International,2008,184: 56-74
    Gravina B, Mellars P, Ramsey C B, Radiocarbon dating of interstratifted Neanderthal and early modern human occupations at the Chatelperronian type-site, Nature,2005,438:51-56
    Greenbaum N, Assessment of damfailure flood and a natural, high-magnitude flood in a hyperarid region using paleoflood hydrology, Water Resources Research,2007,43, doi:10.1029/2006WR004956
    Greenbaum N, Enzel Y, Schick A P, Magnitude and frequency of paleofloods and historical floods in the Arava basin, Negev Desert, Israel, Israel Journal of Earth-Sciences,2001,50:159-186
    Greenbaum N, Schick A P, Baker V R, The paleoflood record a hyperarid catchment, Nahal Zin, Negev Desert, Israel, Earth Surface Processes and Landforms,2000,25:951-971
    Gregory K. J, Benito G (Eds.), Palaeohydrology:Understanding Global Change, N.Y.:Wiley,2003
    Gregory K. J, Starkel L, Baker V R (Eds.), Global Continental Paleohydrology, Chichester:John Wiley and Sons, 1995
    Greis N P, Flood frequency analysis:a review of 1979-1982, Review of Geophysics,1983,21:699
    Grimm E C, CONISS:a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares, Computers & Geosciences,1987,13 (1):13-35
    Grossman M J, Large floods and climatic change during the Holocene on the Ara River, Central Japan, Geomorphology,2001,39 (1):21-37
    Gupta A K, Anderson D M, Overpeck J T, Abrupt changes in the Asian southwest monsoon during the Holocene and their links to North Atlantic Ocean, Nature,2003,421:354-357
    Hassan F A, Extreme Nile floods and famines in Medieval Egypt (AD 930-1500) and their climatic implications, Quaternary International,2007,173-174:101-112
    Heller F, Liu T S, Magnetism of Chinese loess deposits, Geophysical Journal of the Royal Astronomical Society, 1984,77(1):125-141
    Hirschboeck K K, Catastrophic flooding and atmospheric circulation patterns, In:Mayer L, Nash D (Eds.), Catastrophic Flooding, Boston:Allen and Unwin,1987,23-56
    Hogan C M, Respiration, In:McGinley M (Ed.), Encyclopedia of Earth, Washington:National Council for Science and the Environment,2011
    Hong Y T, Hong B, Lin Q H et al., Inverse phase oscillations between the East Asian and Indian Ocean summer monsoons during the last 12 000 years and paleo-El Nino, Earth and Planetary Science Letters,2005,231 (3-4):337-346
    Hosking J R M, Wallis J R, Paleoflood hydrology and flood frequency analysis, Water Resources Research,1986, 22:543-550
    Hoyt W G, Langbein W B, Floods, Princeton:Princeton University Press,1955
    Hu C Y, Huang J H, Fang N Q et al., Adsorbed silica in stalagmite carbonate and its relationship to past rainfall, Geochimica et Cosmochimica Acta,2005,69 (9),2285-2292
    Hu C Y, Henderson G M, Huang J H et al., Quantification of Holocene Asian monsoon rainfall from spatially separated cave records, Earth and Planetary Science Letters,2008,266,221-232
    Huang C C, Pang J L, Su H X et al., Holocene environmental change inferred from the loess-palaeosol sequences adjacent to the floodplain of the Yellow River, China, Quaternary Science Reviews,2009,28:2633-2646
    Huang C C, Pang J L, Zha X C et al., Impact of monsoonal climatic change on Holocene overbank flooding along Sushui River, middle reach of the Yellow River, China, Quaternary Science Reviews,2007,26 (17-18): 2247-2264
    Huang C C, Pang J L, Zha X C et al., Extraordinary floods of 4100-4000 a BP recorded at the late Neolithic ruins in the Jinghe River gorges, middle reach of the Yellow River, China, Palaeogeography, Palaeoclimatology, Palaeoecology,2010,289:1-9
    Huang C C, Pang J L, Zha X C et al., Extrodinary floods related to the climatic event at 4200 a BP on the Qishuihe River, middle reaches of the Yellow River, China, Quaternary Science Reviews,2011,30:460-468
    Huang C C, Pang J L, Zha X C et al., Holocene palaeoflood events recorded by slackwater deposits along the lower Jinghe River valley, middle Yellow River basin, China, Journal of Quaternary Science,2012,27 (5): 485-493
    Huntley B, Studying global change:the contribution of quaternary palynology, Global and Planetary Change, 1990,2 (1-2):53-61
    James P, Soil variability in the area of an archaeological site near Sparta, Greece, Journal of Archaeological Science,1999,26(10):1273-1288
    Jarrett R D, England Jr J F, Reliability of paleostage indicators for paleoflood studies, In:House P K, Webb R H, Baker V R et al. (Eds.), Ancient Floods, Modern Hazards:Principles and Applications of Paleoflood Hydrology, Water Science and Application, vol.5, Washington, D.C.:American Geophysical Union,2002, 91-109
    Jean-Francois B, Hydrological and post-depositional impacts on the distribution of Holocene archaeological sites: The case of the Holocene middle Rhone River basin, France, Geomorphology,2011,129:167-182
    Jiang Q F, Shen J, Liu X Q et al., A high-resolution climatic change since Holocene inferred from multi-proxy of lake sediment in westerly area of China, Chinese Science Bulletin,2007,52 (14):1970-1979
    Jimenez-Moreno G, Anderson R S, Holocene vegetation and climate change recorded in alpine bog sediments from the Borreguiles de la Virgen, Sierra Nevada, southern Spain, Quaternary Research,2012,77:44-53
    Jin M, Stedinger J R, Flood frequency analysis with regional and historical information, Water Resources Research,1989,25:925-936
    Johnson T C, Brown E T, McManus J et al., A high-resolution paleoclimate record spanning the past 25,000 years in Southern East Africa, Science,2002,296:113-132
    Jones D M, Environmental Archaeology:A guide to the theory and practice of methods, from sampling and recovery to post-excavation, Swindon:English Heritage Publications,2002
    Kale V S, Mishra S, Baker V R, A 200-year palaeoflood record from Sakarghat, on Narmada, central India, Geological Society of India,1997,50:285-288
    Kale V S, Mishra S, Baker V R, Sedimentary records of palaeofloods in the bedrock gorges of the Tapi and Narmada Rivers, central India, Current Science (India),2003,84:1072-1079
    Keely J E, Sandquist D R, Carbon:freshwater plants, Plant Cell Environment,1992,15:1021-1035
    Kiage L M, Liu K, Late Quaternary paleoenvironmental change in East Africa:a review of multiproxy evidence from palynology, lake sediments, and associated records, Progress in Physical Geography,2006,30:633-658
    Kletetschka G, Banerjee S K, Magnetic stratigraphy of Chinese Loess as a record of natural fires, Geophysical Research Letters,1995,22(11):1341-1343
    Kochel R C, Interpretation of flood paleohydrology using slackwater deposits, Lower Pecos and Devils Rivers, Southwestern Texas, Ph.D. dissertation, Austin:University of Texas,1980
    Kochel R C, Baker V R, Paleoflood hydrology, Science,1982,215:353-361
    Kochel R C, Baker V R, Paleoflood analysis using slackwater deposits, In:Baker V R, Kochel R C, Patton P C (Eds.), Flood Geomorphology, NY:Wiley,1988.357-376
    Knox J C, Responses of floods to Holocene climatic change in the upper Mississippi Valley, Quaternary Research, 1985,23 (3):287-300
    Knox J C, Large increases in flood magnitude in response to modest changes in climate, Nature,1991,361: 410-437
    Knox J C, Large increases in flood magnitude in response to modest changes in climate, Nature,1993,361: 430-432
    Knox J C, Sensitivity of modern and Holocene floods to climate change, Quaternary Science Reviews,2000,19: 439-457
    Kochel R C, Baker V R, Paleoflood hydrology, Science,1982,215:353-361
    Konrad V A, Bonnichsen R, Clay V, Soil chemical identification of ten thousand years of prehistoric human activity areas at the Munsungun Lake Throughfare, Maine, Journal of Archaeological Science,1983,10 (1): 13-28
    Kukla G, An Z S, Loess stratigraphy in Central China, Palaeogeography, Palaeoclimatology, Palaeoecology,1989, 72:203-225
    Kutija V, Hydraulic modelling of floods, In:Thorndycraft V R, Benito G, Barriendos M et al (Eds.), Palaeofloods, Historical Data and Climatic variability:Applications in Flood Risk Assessment, Madrid:CSIC,2003, 163-169
    Lane W L, Paleohydrologic data and flood frequency estimation, In:Singh V P (Ed.), Regional Flood Frequency Analysis. Dordrecht:D. Reidel,1987,287-298
    Levish D R, Paleohydrologic bounds:non-exceedance information for flood hazard assessment, In:House P K, Webb R H, Baker V R et al (Eds.), Ancient Floods, Modern Hazards:Principles and Applications of Paleoflood Hydrology, Water Science and Application, vol.5, Washington, D.C.:American Geophysical Union,2002,175-190
    Levish D R, Ostenaa D A, O'Connell D R H, Paleoflood hydrology and dam safety, WATERPOWER'97, Proceedings of the International Conference on Hydropower, Reston, VA:American Society of Civil Engineers,1997,2205-2214
    Li L, Wu L, Zhu C et al., Relationship between archaeological sites distribution and environment from 1.15 Ma BP to 278 BC in Hubei Province, Journal of Geographical Sciences,2011,21 (5):909-925
    Li Q, Wei F Y, Li D L, Interdecadal variation of East Asian summer monsoon and drought/flood distribution over eastern China in the last 159 years, Journal of Geographical Sciences,2011,21 (4):579-593
    Li Y Y, Wu J, Hou S F et al., Palaeoecological records of environmental change and cultural development from the Liangzhu and Qujialing archaeological sites in the middle and lower reaches of the Yangtze River, Quaternary International,2010,227:29-37
    Linden M, Vickery E, Charman D J et al., Effects of human impact and climate change during the last 350 years recorded in a Swedish raised bog deposit, Palaeogeography, Palaeoclimatology, Palaeoecology,2008,262: 1-31
    Liu D C, Wang X L, Gao X et al., Progress in the stratigraphy and geochronology of the Shuidonggou site, Ningxia, North China, Chinese Science Bulletin,2009,54 (21):3880-3886
    Liu F G, Zhang Y L, Feng Z D et al., The impacts of climate change on the Neolithic cultures of Gansu-Qinghai region during the late Holocene Megathermal, Journal of Geographical Sciences,2010,20 (3):417-430
    Lu H Y, An Z S, Paleoclimate significance of grain size of loess-palaeosol deposit in Chinese Loess Plateau, Science in China Series D-Earth Sciences,1998,41 (6):626-631
    Lu H Y, Sun X F, Wang S J et al., Ages for hominin occupation in Lushi Basin, middle of South Luo River, central China, Journal of Human Evolution,2011a,60:612-617
    Lu H Y, Zhang H Y, Wang S J et al., Multiphase timing of hominin occupations and the paleoenvironment in Luonan Basin, Central China, Quaternary Research,2011b,76:142-147
    Lu H Y, Zhou Y L, Liu W G et al., Organic stable carbon isotopic composition reveals late Quaternary vegetation changes in the dune fields of northern China, Quaternary Research,2012,77:433-444
    Ma C M, Zhu C, Zheng C G et al., High-resolution geochemistry records of climate changes since late-glacial from Dajiuhu peat in Shennongjia Mountains, Central China, Chinese Science Bulletin,2008,53 (Supp. Ⅰ): 28-41
    Ma C M, Zhu C, Zheng C G et al., Climate changes in East China since the Late-glacial inferred from high-resolution mountain peat humification records, Science in China Series D:Earth Sciences,2009,52 (1): 118-131
    Ma M M, Dong G H, Chen F H et al., Process of paleofloods in Guanting basin, Qinghai Province, China and possible relation to monsoon strength during the mid-Holocene, Quaternary International,2012, doi: 10.1016/j.quaint.2012.05.031
    Marchant R, Hooghiemstra H, Rapid environmental change in African and South American tropics around 4000 years before present:a review, Earth-Science Reviews,2004,66 (3-4):217-260
    Maher B A, Magnetic properties of modern soils and Quaternary loessic paleosols:paleoclimatic implications, Palaeogeography, Palaeoclimatology, Palaeoecology,1998,137 (1-2):25-54
    Maher B A, Thompson R, Mineral magnetic record of the Chinese loess and paleosols, Geology,1991,19 (1):3-6
    Martins E S, Stedinger J R, Historical information in a GMLE-GEV framework with partial duration and annual maximum series, Water Resources Research,2001,37:2551-2557
    May D W, Properties of a 5500-year-old flood-plain in the Loup River Basin, Nebraska, Geomorphology,2003,56: 243-254
    McNeil C L, Burney D A, Burney L P, Evidence disputing deforestation as the cause for the collapse of the ancient Maya polity of Copan, Honduras, PNAS,2010,107 (3):1017-1022
    Medina-Elizalde M, Rohling E J, Collapse of classic Maya civilization related to modest reduction in precipitation, Science,2012,335:956-959
    Meng X M, Derbyshire E, Kemp R A, Origin of the magnetic susceptibility signal in Chinese loess, Quaternary Science Reviews,1997,16(8):833-839
    Meyers P A, Ishiwatari R, Lacustrine organic geochemistry:an over view of indicators of organic matter sources and diagenesis in lake sediments, Organic Geochemistry,1993,20 (7):867-900
    Migliavacca M, Pizzeghello D, Busana M S et al., Soil chemical analysis supports the identification of ancient breeding structures:The case-study of Ca Tron (Venice, Italy), Quaternary International,2012,275:128-136
    Miyamoto H, Itoh K, Komatsu G, Baker V R et al., Numerical simulations of large-scale cataclysmic floodwater:a simple depth averaged model and an illustrative application, Geomorphology,2006,76:179-192
    Murray A S, Olley J M, Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz:A status review, Geochronometria,2002,21:1-16
    Murton J B, Bateman M D, Dallimore S R et al., Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean, Nature,2010,464:740-743
    Muller A, Mathesius U, The palaeoenvironments of coastal lagoons in the southern Baltic Sea, I. The application of sedimentary Corg/N ratios as source indicators of organic matter, Palaeogeography, Palaeoclimatology, Palaeoecology,1999,145 (1-3):1-16
    Nakai N, Carbon isotopic variation and paleoclimate of sediments from lake Biwa, Proceeding of the Japan Academy,1972,48:516-521
    Norton G A, Groat C G, The world's largest floods, past and present:their causes and magnitudes, Virginia:U. S. Geological Survey,2004
    O'Connell D R H, Nonparametric Bayesian flood frequency estimation, Journal of Hydrology,2005,313:79-96
    O'Connell D R H, Ostenaa D A, Levish D R et al., Bayesian flood frequency analysis with paleohydrologic bound data, Water Resources Research,2002,38, doi:10.1029/2000WR000028
    O'Connor J E, Ely L L, Wohl E E et al., A 4500-year record of large floods on the Colorado River in the Grand Canyon, Arizona, Journal of Geology,1994,102:1-9
    O'Connor J E, Webb R H, Hydraulic modeling for paleoflood analysis, In:Baker V R, Kochel R C, Patton P C (Eds.), Flood Geomorphology, NY:Wiley,1988,403-420
    Ohlwein C, Wahl E R, Review of probabilistic pollen-climate transfer methods, Quaternary Science Reviews, 2012,31:17-29
    Oonk S, Slomp C P, Huisman D J et al., Effects of site lithology on geochemical signatures of human occupation in archaeological house plans in the Netherlands, Journal of Archaeological Science,2009,36 (6):1215-1228
    Ortega-Rosas C I, Guiot J, Penalba M C et al., Biomization and quantitative climate reconstruction techniques in northwestern Mexico-With an application to four Holocene pollen sequences, Global and Planetary Change, 2008,61 (3-4):242-266
    Ostenaa D A, Levish D R, O'Connell D R H, Paleoflood study for Bradbury Dam, Cachuma Project, California, U.S. Bureau of Reclamation Seismotectonic Report 96-3, Denver:CO,1996
    Ostenaa D A, Levish D R, O'Connell D R H et al., Paleoflood study for Causey and Pineville Dams, Weber Basin and Ogden River Projects, Utah, U.S. Bureau of Reclamation Seismotectonic Report 96-6, Denver:CO,1997
    Ostenaa D A, O'Connell D R H, Walters R A et al., Holocene paleoflood hydrology of the Big Lost River, western Idaho National Engineering and Environmental Laboratory, Idaho, In:Link P K., Mink L L (Eds.), Geology, Hydrogeology, and Environmental Remediation:Idaho National Engineering Environmental Laboratory, Eastern Snake River plain, Idaho, Special Paper, vol.353, Geological Society of America,2002,91-110
    Pang K D, Extraordinary floods in early Chinese history and their absolute dates, Journal of Hydrology,1987,96 (1-4):139-155
    Parent E P, Bernier J, Bayesian POT modeling for historical data, Journal of Hydrology,2003,274:95-108
    Pelletier J D, Mayer L, Pearthree P A et al., An integrated approach to alluvial-fan flood hazard assessment with numerical modeling, field mapping, and remote sensing, Geological Society of America Bulletin,2005,117: 1167-1180
    Peng Z C, Chen T G, Nie B F et al., Coral δ18O records as an indicator of winter monsoon intensity in the South China Sea, Quaternary Research,2003,59 (3):285-292
    Perry C A, Hsu K J, Geophysical, archaeological, and historical evidence support a solar-output model for climate change, PNAS,2000,97 (23):12433-12438
    Phadtare N R, Sharp decrease in summer monsoon strength 4000-3500 cal yr B.P. in the Central Higher Himalaya of India based on pollen evidence from alpine peat, Quaternary Research,2000,53 (1):122-129
    Pierce C, Adams K R, Stewart J D, Determining the fuel constituents of ancient hearth ash via ICP-AES analysis, Journal of Archaeological Science,1998,25 (6):493-503
    Pilgrim D H, Australian rainfall and runoff. A guide to flood estimation, Institution of Civil Engineers, Australia, Barton, ACT, Australia,1987
    Prentice I C, Guiot J, Huntley B et al., Reconstructing biomes from palaeoecological data:a general method and its application to European pollen data at 0 and 6 ka, Climate Dynamics,1996,12:185-194
    Qin J G, Taylor D, Atahan P et al., Neolithic agriculture, freshwater resources and rapid environmental changes on the lower Yangtze, China, Quaternary Research,2011,75:55-65
    Rajaguru S N, Gupta A, Kale V S et al., Channel form and processes of the flood-dominated Narmada River, India, Earth Surface Processes and Landforms,1995,20:407-421
    Redmond K T, Enzel Y, House P K et al., Climate impact on flood frequency at decadal to millennial time scales, In:House P K, Webb R W, Baker V R, Levish D R (Eds.), Ancient Floods, Modern Hazards:Principles and Applications of Paleoflood Hydrology, Water Science and Application Series, vol.5, Washington, DC: American Geophysical Union,2002,21-45
    Reimer P J, Baillie M G L, Bard E et al., IntCa109 and Marine09 radiocarbon age calibration curves,0-50,000 years cal BP. Radiocarbon,2009,51 (4):1111-1150
    Reimer P J, Brown T A, Reimer R W, Discussion:Reporting and calibration of post-bomb 14C data, Radiocarbon, 2004,46(3):1299-1304
    Reis Jr D S, Stedinger J R, Bayesian MCMC flood frequency analysis with historical information, Journal of Hydrology,2005,313:97-116
    Rius D, Vanniere B, Galop D, Holocene history of fire, vegetation and land use from the central Pyrenees (France), Quaternary Research,2012,77:54-64
    Rosenmeier M F, Hodell D A, Brenner M et al., A 4000-year lacustrine record of environmental change in the southern Maya lowlands, Peten, Guatemala, Quaternary Research,2002,57:183-190
    Saint-Laurent D, Palaeoflood hydrology:an emerging science, Progress in Physical Geography,2004,28 (4): 531-543
    Salas J D, Wohl E E, Jarrett R D, Determination of flood characteristics using systematic, historical and paleoflood data, In:Rossi G, Harmancioglu G N, Yevjevich V (Eds.), Coping with Floods, Netherlands:Kluwer Academic Publishers,1994,111-134
    Saurer M, Sigenthaler U, The climate-carbon isotope relationship in tree rings and the significance of site conditions, Tellus,1995,47:320-330
    Sheffer N A, Enzel Y, Benito G, Paleofloods in southern France-the Ardeche River, In:Thorndycraft V R, Benito G, Barriendos M et al. (Eds.), Palaeofloods, Historical Floods and Climatic Variability:Applications in Flood Risk Assessment (Proceedings of the PHEFRA Workshop, Barcelona,16-19th October,2002),2003
    Shen J, Liu X Q, Wang S M et al., Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years, Quaternary International,2005,136:131-140
    Shi F C, Yi Y J, Han M H, Investigation and verification of extraordinary large floods of the Yellow River in China, Proceedings of the U.S. China Bilateral Symposium on the Analysis of Extraordinary Flood Events. Nanjing, China,1985
    Shi F C, Yi Y J, Han M H, Investigation and verification of extraordinarily large floods on the Yellow River, Journal of Hydrology,1987,96 (1-4):69-78
    Smith A M, Paleoflood hydrology of the lower Umgeni River from a reach south of the Inanda Dam, Natal, South African Geographical Journal,1992,74:63-68
    Smith A M, Zawada P K, Palaeoflood hydrology:a tool for South Africa-an example from the Crocodile River near Brits, Transvaal, South Africa, Water South Africa,1990,16:195-200
    Smith B N, Epstein S, Two categories of 13C/12C ratios for higher plants, Plant Physiology,1971,47:380-384
    Smith D N, Roseff R and Butler S, The sediments, pollen, plant macro- fossils and insects from a Bronze Age Channel Fill at Yoxall Bridge, Staffordshire, The Journal of Human Palaeoecology,2006,6:1-12
    Spaulding W G, Pluvial climatic episodes in North America and Africa:types and correlation with global climate, Palaeogeography, Palaeoclimatology, Palaeoecology,1991,84 (1-4):217-227
    Stanley J, Krom M D, Cliff R A et al., Short contribution:Nile flow failure at the end of the Old Kingdom, Egypt: Strontium isotopic and petrologic evidence, Geoarchaeology,2003,18 (3):395-402
    Staubwasser M, Sirocko F, Grootes P M et al., Climate change at the 4.2 ka BP termination of Indus valley civilization and Holocene south Asian monsoon variability. Geophysical Research Letters,2003,30: 1425-1429
    Stedinger J R, Baker V R, Surface water hydrology:historical and paleoflood information, Reviews of Geophysics, 1987,25:119-124
    Stedinger J R, Cohn T A, Flood frequency analysis with historical and paleoflood information, Water Resources Research,1986,22:785-793
    Stedinger J R, Therivel R, Baker V R, Flood frequency analysis with historical and paleoflood information, U.S. Committee on Large Dams, Eighth Annual Lecture Series Notes, Salt River Project, Phoenix, Arizona,1988, 4.1-4.31
    Stedinger J R, Vogel R M, Foufoula-Georgiou E, Frequency analysis of extreme events, In:Maidment D (Eds.), Handbook of Hydrology, New York:McGraw-Hill,1993
    Stevens E W, Multilevel model for gage and paleoflood data, Journal of Water Resources Planning and Management,1994,120:444-457
    Stokes S, Walling D E, Radiogenic and isotopic methods for the direct dating of fluvial sediments, In:Kondolf G M, Piegay H (Eds.), Tools in Fluvial Geomorphology, Chichester:Wiley,2003,233-267
    Stuiver M, Climate versus changes in 13C content of the organic component of lake sediments during the Late Quaternary, Quaternary Research,1975,5 (2):251-262
    Stuiver M, Braziunas T F, Tree cellulose 13C/12C isotope ratios and climatic change, Nature,1987,328:58-60
    Stuiver M, Reimer P J. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon, 1993,35(1):215-230
    Stuiver M, Reimer P J, Bard E, Beck J W, Burr G S, Hughen K A, Kromer B, McCormac G, Plicht J, Spurk M. INTCAL98 radiocarbon age calibration,24,000-0 cal BP. Radiocarbon,1998,40(3):1041-1083
    Sullivan K A, Kealhofer L, Identifying activity areas in archaeological soils from a colonial Virginia house lot using phytolith analysis and soil chemistry, Journal of Archaeological Science,2004,31:1659-1673
    Sun X F, Mercier N, Falgueres C et al., Recuperated optically stimulated luminescence dating of middle-size quartz grains from the Palaeolithic site of Bonneval (Eure-et-Loir, France), Quaternary Geochronology,2010, 5:342-347
    Terry R E, Fernandez F G, Parnell J J et al., The story in the floors:chemical signatures of ancient and modern Maya activities at Aguateca, Guatemala, Journal ofArchaeological Science,2004,31 (9):1237-1250
    Thompson L G, Yao T D, Davis M E et al., Tropical climate instability:the last glacial cycle from a Qinghai-Tibetan ice core, Science,1997,276:1821-1825
    Thompson R, Oldfield F, Environmental Magnetism, London:Allen & Unwin,1986
    Thompson R, Stober J C, Turner G M et al., Environmental applications of magnetic measurements, Science,1980, 207:481-486
    Thorndycraft V R, Benito G, Barriendos M et al., Palaeofloods, Historical Data and Climatic variability: Applications in Flood Risk Assessment, Madrid:CSIC,2003
    Thorndycraft V R, Benito G, Rico M et al., A long-term flood discharge record derived from slackwater flood deposits of the Llobregat River, NE Spain, Journal of Hydrology,2005a,313:16-31
    Thorndycraft V R, Benito G, Walling D E et al., Cesium-137 dating applied to slackwater flood deposits of the Llobregat River, N.E. Spain, Catena,2005b,59:305-318
    Tian X S, Zhu C, Sun Z B et al., Carbon and nitrogen stable isotope analyses of mammal bone fossils from the Zhongba site in the Three Gorges Reservoir region of the Yangtze River, China, Chinese Science Bulletin, 2011,56(2):169-178
    Tian X S, Zhu C, Xu X W et al., Reconstructing past subsistence patterns on Zhongba Site using stable carbon and oxygen isotopes of fossil tooth enamel, Chinese Science Bulletin,2008,53 (Supp. Ⅰ):87-94
    Tripati S, Mudholkar A, Vora K H et al., Geochemical and mineralogical analysis of stone anchors from west coast of India:provenance study using thin sections, XRF and SEM-EDS, Journal of Archaeological Science, 2010,37:1999-2009
    Turney C S M, Brown H, Catastrophic early Holocene sea level rise, human migration and the Neolithic transition in Europe, Quaternary Science Reviews,2007,26:2036-2041
    UNESCO, The role of Holocene environmental catastrophes in human history, Joint meeting of IGCP 490 and ICSU/IUGS:www.brunel.ac.uk/depts/geo/igcp490/igcp490home.html,2005
    United States Water Resources Council, Guidelines for Determining Flood Flow Frequency, Bulletin, vol.17B. Washington, D.C.:Hydrology Committee,1982
    Verhaar P M, Biron P M, Ferguson R I et al., A modified morphodynamic model for investigating the response of rivers to short-term climate change, Geomorphology,2008,101 (4):674-682
    Vinther B M, Buchardt S L, Clausen H B et al., Holocene thinning of the Greenland ice sheet. Nature,2009,461: 385-388
    Vott A, Bruckner H, Brockmuller S et al., Traces of Holocene tsunamis across the Sound of Lefkada, NW Greece, Global and Planetary Change,2009,66:112-128
    Wang F B, Yan G, Han H Y et al., Paleovegetational and paleoclimatic evolution series on northeastern Qinghai-Xizang Plateau in the last 30 ka, Science in China (Series D),1996,39 (6):640-649
    Wang L J, Sarnthein M, Erlenkeuser H et al., Holocene variations in Asian monsoon moisture:A bidecadal sediment record from the South China Sea, Geophysical Research Letters,1999,26 (18):2889-2892
    Wang P X, Clemens S, Beaufort L et al., Evolution and variability of the Asian monsoon system:state of the art and outstanding issues, Quaternary Science Reviews,2005,24 (5-6):595-629
    Wang Y J, Cheng H, Edwards R L et al., A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China, Science,2001,294:2345-2348
    Wang Y J, Cheng H, Edwards R L et al., The Holocene Asian monsoon:links to solar changes and North Atlantic climate, Science,2005,308:854-857
    Wang Y J, Cheng H, Edwards R L et al., Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years, Nature,2008,451:1090-1093
    Webb R H, Betancourt J, Climatic variability and flood frequency of the Santa Cruz River, Pima County, Arizona, U.S. Geological Survey Water-Supply Paper, vol.2379,1992
    Webb R H, Jarrett R D, One-dimensional estimation techniques for discharges of paleofloods and historical floods, In:House P K, Webb R H, Baker V R et al. (Eds.), Ancient Floods, Modern Hazards:Principles and Applications of Paleoflood Hydrology, Water Science and Application, vol.5. Washington D C:American Geophysical Union,2002,111-125
    Webb R H, Rathburn S L, Paleoflood hydrologic research in the southwestern United States, Transportation Research Record,1988,1201:9-21
    Weiss H, Courty M A, Wetterstrom W et al., The genesis and collapse of third millennium north Mesopotamian civilization, Science,1993,261:995-1004
    Well L E, Holocene history of the El Nino phenomenon as recorded in flood sediments of northern coastal Peru, Geology,1990,18(11):1134-1137
    Wilson C A, Bacon J R, Cresser M S et al., Lead isotope ratios as a means of sourcing anthropogenic Lead in archaeological soils:A pilot study of an abandoned Shetland croft, Archaeometry,2006,48 (3):501-509
    Wilson C A, Davidson D A, Cresser M S, An evaluation of multielement analysis of historic soil contamination to differentiate space use and former function in and around abandoned farms, The Holocene,2005,15: 1094-1099
    Wilson C A, Davidson D A, Cresser M S, Multi-element soil analysis:an assessment of its potential as an aid to archaeological interpretation, Journal ofArchaeological Science,2008,35 (2):412-424
    Wintle A G, Murray A S, A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols, Radiation Measurements,2006,41 (4):369-391
    Wohl E E, Greenbaum N, Schick A P et al., Controls on bedrock channel morphology along Nahal Paran, Israel, Earth Surface Processes and Landforms,1994,19:1-13
    Woodward J C, Tooth S, Brewer P A et al., The 4th International Palaeoflood Workshop and trends in palaeoflood science, Global and Planetary Change,2010,70:1-4
    Wu J L, Lin L, Michae G G et al., Organic matter stable isotope (δ13C,δ15N) response to historical eutrophication of Lake Taihu, China, Hydrobiologia,563 (1):19-29
    Wu L, Li F, Zhu C et al., Holocene environmental change and archaeology, Yangtze River Valley, China:Review and prospects. Geoscience Frontiers,2012a,3 (6):875-892
    Wu L, Li F, Zhu C et al., Geochemistry records of palaeoenvironment from Sanfangwan Neolithic Site in Jianghan Plain, Central China, Lecture Notes in Electrical Engineering,2013,211 (2):81-87
    Wu L, Wang X Y, Zhou K S et al., Transmutation of ancient settlements and environmental changes between 6000-2000 aBP in the Chaohu Lake Basin, East China, Journal of Geographical Sciences,2010,20 (5): 687-700
    Wu L, Wang X Y, Zhu C et al., Ancient culture decline after the Han Dynasty in the Chaohu Lake basin, East China:A geoarchaeological perspective, Quaternary International,2012b,275:23-29
    Wu W X, Liu T S, Possible role of the "Holocene Event 3" on the collapse of Neolithic Cultures around the Central Plain of China, Quaternary International,2004,117:153-166
    Wu Y H, Liu E F, Bing H J et al., Geochronology of recent lake sediments from Longgan Lake, middle reach of the Yangtze River, influenced by disturbance of human activities, SCIENCE CHINA Earth Sciences,2010,53 (8):1188-1194
    Wu Y H, Wang S M, Hou X H, Chronology of Holocene lacustrine sediments in Co Ngoin, central Tibetan Plateau, Science in China Series D-Earth Sciences,2006,49 (9):991-1001
    Wiinnemann B, Demske D, Tarasov P et al., Hydrological evolution during the last 15 kyr in the Tso Kar lake basin (Ladakh, India), derived from geomorphological, sedimentological and palynological records, Quaternary Science Reviews,2010,29:1138-1155
    Wunnemann B, Mischke S, Chen F H, A Holocene sedimentary record from Bosten Lake, China, Palaeogeography, Palaeoclimatology, Palaeoecology,2006,234:223-238
    Xia Z K, Wang Z H, Zhao Q C, Extreme flood events and climate change around 3500 aBP in the Central Plains of China, Science in China Ser. D Earth Sciences,2004,47 (7):599-606
    Xia Z K, Zhang J N, Liu J et al., Analysis of the ecological environment around 10000 a BP in Zhaitang area, Beijing:A case study of the Donghulin Site, Chinese Science Bulletin,2012,57 (4):360-369
    Xiao J L, Xu Q H, Nakamurad T et al., Holocene vegetation variation in the Daihai Lake region of North-central China:a direct indication of the Asian monsoon climatic history, Quaternary Science Reviews,2004,23: 1669-1679
    Xu L B, Sun L G, Wang Y H et al., Prehitoric culture, climate and agriculture at Yuchisi, Anhui Province, China, Archaeometry,2011,53 (2):396-410
    Yan G, Wang F B, Shi G R et al., Palynological and stable isotopic study of palaeoenvironmental changes on the northeastern Tibetan plateau in the last 30,000 years, Palaeogeography, Palaeoclimatology, Palaeoecology, 1999,153:147-159
    Yancheva G, Nowaczyk N R, Mingram J et al., Influence of the intertropical convergence zone on the East Asian monsoon, Nature,2007,445:74-77
    Yang D Y, Yu G, Xie Y B et al., Sedimentary records of large Holocene floods from the middle reaches of the Yellow River, China, Geomorphology,2000,33:73-88
    Yasuda Y, Fujiki T, Nasu H et al., Environmental archaeology at the Chengtoushan site, Hunan Province, China, and implications for environmental change and the rise and fall of the Yangtze River civilization, Quaternary International,2004,123-125:149-158
    Yevjevich V, Harmancioglu N B, Research needs on flood characteristics, In:Singh V P (Eds.), Applications of Frequency and Risk in Water Resources, Boston:Reidel,1987,1-21
    Yi S, Yang D, Jia H, Pollen record of agricultural cultivation in the west-central Korean Peninsula since the Neolithic Age, Quaternary International,2012,254:49-57
    Yi S W, Lu H Y, Stevens T, SAR TT-OSL dating of the loess deposits in the Horqin dunefield (northeastern China), Quaternary Geochronology,2012,10:56-61
    Yu S Y, Colman S M, Lowell T V et al., Freshwater outburst from Lake Superior as a trigger for the cold event 9300 years ago, Science,2010,328:1262-1266
    Yu S Y, Zhu C, Song J et al., Role of climate in the rise and fall of Neolithic cultures on the Yangtze Delta, Boreas, 2000,29:157-165
    Yu S Y, Zhu C, Wang F B, Radiocarbon constraints on the Holocene flood deposits of the Ning-Zheng Mountains, lower Yangtze River area of China, Journal of Quaternary Science,2003,18 (6):521-525
    Zawada P K, Palaeoflood hydrology of the Buffels River, Laingsburg, South Africa:was the 1981 flood the largest? South African Journal of Geology,1994,97:21-32
    Zawada P K, Palaeoflood hydrology:method and application in flood-prone southern Africa, South Africa Journal of Science,1997,93:111-132
    Zawada P K, Palaeoflood hydrology of selected South African rivers, South African Geological Survey Memoir, 2000,87:173
    Zawada P, Hattingh J, Studies on the palaeoflood hydrology of South African rivers, South African Journal of Science,1994,90:567-568
    Zha X C, Huang C C, Pang J L et al., Sedimentary and hydrological studies of the Holocene palaeofloods in the middle reaches of the Jinghe River, Journal of Geographical Sciences,2012,22 (3):470-478
    Zhang F, Wang T, Yimit H et al., Hydrological changes and settlement migrations in the Keriya River delta in central Tarim Basin ca.2.7-1.6 ka BP:Inferred from 14C and OSL chronology, Science China Earth Sciences, 2011a,54(12):1971-1980
    Zhang H Y, Lu H Y, Jiang S Y et al., Provenance of loess deposits in the Eastern Qinling Mountains (central China) and their implications for the paleoenvironment, Quaternary Science Reviews,2012,43:94-102
    Zhang J W, Chen F H, Holmes J A et al., Holocene monsoon climate documented by oxygen and carbon isotopes from lake sediments and peat bogs in China:a review and synthesis, Quaternary Science Reviews,2011 b,30: 1973-1987
    Zhang Q, Chen J, Becker S, Flood/drought change of last millennium in the Yangtze Delta and its possible connections with Tibetan climatic changes, Global and Planetary Change,2007,57:213-221
    Zhang Q, Zhu C, Liu C L et al., Environmental change and its impacts on human settlement in the Yangtze Delta, P.R. China, Catena,2005,60:267-277
    Zhang Y, Zhu C, Environmental archaeology of the Dachang region in the Daning Valley, the Three Gorges reservoir region of the Yangtze River, China, Chinese Science Bulletin,2008,53 (Supp.1):140-152
    Zhang Z K, Wang S M, Wu R J, Environmental evolution and southwest monsoon changes in mid-Holocene recorded by lake sediments in Erhai Lake, Chinese Science Bulletin,1999,44 (I):94-96
    Zhao H, Lu Y C, Wang C M et al., ReOSL dating of aeolian and fluvial sediments from Nihewan Basin, northern China and its environmental application, Quaternary Geochronology,2010,5 (2-3):159-163
    Zheng Y H, Zhou L P, Zhang J F, Optical dating of the upper 22 m of cored sediments from Daihai Lake, northern China, Quaternary Geochronology,2010,5 (2-3):228-232
    Zhou B, Shen C D, Zheng H B et al., Vegetation evolution on the central Chinese Loess Plateau since late Quaternary evidenced by elemental carbon isotopic composition, Chinese Science Bulletin,2009,54 (12): 2082-2089
    Zhu C, Ma C M, Xu W F et al., Characteristics of paleoflood deposits archived in unit T0403 of Yuxi Site in the Three Gorges reservoir areas, China, Chinese Science Bulletin,2008,53(Supp. Ⅰ):1-17
    Zhu C, Ma C M, Yu S Y et al., A detailed pollen record of vegetation and climate changes in Central China during the past 16 000 years, Boreas,2010,39:69-76
    Zhu C, Zheng C G, Ma C M et al., On the Holocene sea-level highstand along the Yangtze Delta and Ningshao Plain, East China, Chinese Science Bulletin,2003,48 (24):2672-2683
    Zhu C, Zheng C G, Ma C M et al., Identifying paleoflood deposits archived in Zhongba Site, the Three Gorges reservoir region of the Yangtze River, China, Chinese Science Bulletin,2005,50 (21):2493-2504
    Zhu Y, Chen F H, Cheng B et al., Pollen assemblage features of modern water samples from the Shiyang River drainage, arid region of China, Acta Botanica Sinica,2002,44 (3):367-372
    Zhu Y X, Wang S M, Wu R J, Sedimentologic evidence for date of southward moving of the Yangtze River in the Jianghan Plain since the Holocene, Chinese Science Bulletin,1998,43 (8):659-662
    Zong Y, Chen Z, Innes J B et al., Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China, Nature,2007,449:459-462
    白九江,邹后曦,朱诚,玉溪遗址古洪水遗存的考古发现和研究,科学通报,2008,53(增刊Ⅰ):17-25
    白雁,刘春莲,郑卓等,海南岛双池玛珥湖沉积中的碳、氮地球化学记录及其环境意义,古地理学报,2003,5(1):87-93
    白旸,王乃昂,何瑞霞等,巴丹吉林沙漠湖相沉积的探地雷达图像及光释光年代学证据,中国沙漠,2011,31(4):842-847
    北京大学考古系碳十四实验室,碳十四年代测定报告(八),文物,1989,(11):90-92
    曹琼英,沈德勋等编,第四纪年代学及实验技术,南京:南京大学出版社,1988
    陈道公编著,地球化学(第2版),合肥:中国科学技术大学出版社,2009
    陈国金,长江中游地区江湖综合整治环境地质研究,地球科学-中国地质大学学报,1999,24(1):89-97
    陈建强,周洪瑞,王训练编,沉积学及古地理学教程,北京:地质出版社,2004
    陈铁梅编著,科技考古学,北京:北京大学出版社,2008
    陈铁梅,Hedges R E M,彭头山等遗址的陶片和我国最早的水稻遗存的加速器质谱14C测年,文物,1994,(3):88-94
    陈铁梅,原思训,王良训等,碳十四年代测定报告(三),文物,1979,(12):77-80
    陈铁梅,原思训,王良训等,碳十四年代测定报告(六),文物,1984,(4):92-96
    陈星灿,中国史前考古学史研究(1895-1949),上海:生活·读书·新知三联书店,1997
    陈志清,黄河龙门-三门峡段河漫滩组成物质的粒度特征,地理学报,1997,52(4):308-315
    程功弼,江汉-洞庭湖区新石器遗址分布于河湖演变的联系性分析,安徽师范大学学报(自然科学版),2005,28(2):218-221
    笪浩波,长江中游新石器时代文化与生态环境关系研究,博士学位论文,武汉:华中师范大学,2009
    邓宏兵,江汉湖群演化与湖区可持续发展研究,北京:经济科学出版社,2005
    邓辉,陈义勇,贾敬禹等,8500 a BP以来长江中游平原地区古文化遗址分布的演变,地理学报,2009,64(9):1113-1125
    董进国,孔兴功,汪永进,神农架全新世东亚季风演化及其热带辐合带控制,第四纪研究,2006,26(5):827-834
    范国昌,李荣森,李小刚等,我国趋磁细菌的分布及其磁小体的研究,科学通报,1996,41(4):349-352
    樊启顺,赖忠平,刘向军等,晚第四纪柴达木盆地东部古湖泊高湖面光释光年代学,地质学报,2010,84(11):1652-1660
    高华中,朱诚,孙智彬,三峡库区中坝遗址考古地层土壤有机碳的分布及其与人类活动的关系,土壤学报,2005,42(3):518-522
    [英]格林·丹尼尔著,黄其煦译,考古学一百五十年,北京:文物出版社,1987
    葛兆帅,长江上游全新世特大洪水对西南季风变化的响应,地理研究,2009,28(3):592-600
    顾延生,蔡述明,武汉部分先秦遗址考古土壤中的植硅石组合及其环境意义,武汉大学学报(人文科学版),2001,54(2):167-172
    顾延生,葛继稳,黄俊华等,2万年来气候变化人类活动与江汉湖群演化,北京:地质出版社,2009
    国家文物局主编,中国文物地图集·湖北分册(上,下),西安:西安地图出版社,2003
    郭立新著,长江中游地区初期社会复杂化研究(4300B.C.—2000B.C.),上海:上海古籍出版社,2005
    郭其蕴,气候变化与东亚季风,见:施雅风主编,中国气候与海而变化及其趋势和影响(1)—中国历史气候变化,济南:山东科学技术出版社,1996,468-483
    郭伟民著,新石器时代澧阳平原与汉东地区的文化和社会,北京:文物出版社,2010
    韩家懋,HusJJ,刘东生等,马兰黄土和离石黄土的磁学性质,第四纪研究,1991,(4):310-325
    何报寅,江汉平原湖泊的成因类型及其特征,华中师范大学学报(自然科学版),2002,36(2):241-244
    侯亮亮,王宁,吕鹏等,申明铺遗址战国至两汉先民食物结构和农业经济的转变,中国科学:地球科学,2012,42(7):1018-1025
    湖北省博物馆编,屈家岭——长江中游的史前文化,北京:文物出版社,2007
    湖北省地方志编纂委员会编,湖北省志·地理(上,下),武汉:湖北人民出版社,1997
    湖北省荆州地区博物馆,湖北松滋县桂花树新石器时代遗址,考古,1976,(3):187-196
    湖北省荆州地区博物馆,湖北京山油子岭新石器时代遗址的试掘,考古,1994,(10):865-876,918
    湖北省水利志编纂委员会编,湖北水利志,北京:中国水利水电出版社,2000
    湖北省文物考古研究所,孝感市博物馆,孝南区博物馆,湖北孝感市叶家庙新石器时代城址发掘简报,考古,2012,(8):3-28
    湖南省文物考古研究所,国际日本文化研究中心,澧县城头山——中日合作澧阳平原环境考古与有关综合研究,北京:文物出版社,2007
    黄春长,庞奖励,查小春等,黄河流域关中盆地史前大洪水研究——以周原漆水河谷地为例,中国科学:地球科学,2011,41(11):1658-1669
    黄健民,徐之华,气候变化与自然灾害,北京:气象出版社,2005
    黄铿,朱诚,马春梅等,苏北梁王城遗址黄泛层初步研究,地层学杂志,2009,33(4):398-406
    黄锂,湖北武汉地区发现的红陶系史前文化遗存,考古,1996,(12):25-31,35
    季峻峰,陈骏,Balsam W等,黄土剖面中赤铁矿和针铁矿的定量分析与气候干湿变化研究,第四纪研究,2007,27(2):221-229
    贾蓉芬,颜备战,李荣森等,陕西段家坡黄土剖面中趋磁细菌特征与环境意义,中国科学(D辑),1996,26(5):411-416
    江林昌,中国早期文明的起源模式与演进轨迹,学术研究,2003,(7):86-93
    姜晓宇,考古地层学的环境考古研究,硕士学位论文,长春:吉林大学,2007
    金伯欣主编,江汉湖群综合研究,武汉:湖北科学技术出版社,1992
    [英]Jones T P,[法]Rowe N P主编,王怿,刘陆军等译,植物化石和孢粉的现代分析技术,合肥:中国科学技术大学出版社,2005
    科技部社会发展科技司,国家文物局博物馆与社会文物司编,中华文明探源工程文集环境卷(Ⅰ),北京:科学出版社,2009
    孔屏,r林,来庆州等,南极格罗夫山地表岩石样品中宇宙成因21Ne的含量及暴露年龄,中国科学地球科学,2010,40(1):45-49
    雷生学,陈杰,刘进峰等,南京长江全新世河流阶地的年代及其意义,地震地质,2011,33(2):391-401
    李冰,朱诚,吴立等,江汉平原谭家岭遗址孢粉记录的石家河文化早期古环境研究,地理学核心问题与主线——中国地理学会2011年学术年会暨中国科学院新疆生态与地理研究所建所五十年庆典论文摘要集,北京:中国知网(CNKI)中国学术期刊(光盘版)电子杂志社,2011,72-73
    李枫,吴立,朱诚等,江汉平原12.76 cal.ka B.P.以来环境干湿变化的高分辨率研究,地理科学,2012,32(7):878-884
    李杰,郑卓,邹后曦等,重庆阿蓬江涪碛口遗址近3000年来环境变化研究,第四纪研究,2011,31(3):554-565
    李兰,朱诚,姜逢清等,连云港藤花落遗址消亡成因研究,科学通报,2008,53(增刊Ⅰ):139-152
    李兰,朱诚,林留根等,江苏宜兴骆驼墩遗址地层全新世沉积环境研究,第四纪研究,2010,30(2):393-401
    李晓刚,黄春长,庞奖励等,黄河壶口段全新世古洪水事件及其水文学研究,地理学报,2010,65(11):1371-1380
    李晓刚,黄春长,庞奖励等,汉江上游白河段万年尺度洪水水文学研究,地理科学,2012,32(8):971-978
    李宜垠,侯树芳,莫多闻,湖北屈家岭遗址孢粉、炭屑记录与古文明发展,古地理学报,2009,11(6):702-710
    李瑜琴,泾河流域全新世环境演变及特大洪水水文学研究,博士学位论文,西安:陕西师范大学,2009
    李元芳,西汉古黄河三角洲初探,地理学报,1994,49(6):543-550
    李中轩,中全新世环境演变对汉水流域新石器文化发展的影响研究,博士学位论文,南京:南京大学,2009
    李中轩,朱诚,张广胜等,湖北辽瓦店遗址地层记录的环境变迁与人类活动的关系研究,第四纪研究,2008,28(6):1145-11S9
    梁美艳,郭正堂,顾兆炎,中新世风尘堆积的地球化学特征及其与上新世和第四纪风尘堆积的比较,第四纪研究,2006,26(4):657-664
    梁思永,后冈发掘小记,见:梁思永著,梁思永考古学论文集,北京:科学出版社,1959
    刘东生,第四纪科学发展展望,第四纪研究,2003,23(2):165-176
    刘光琇,江汉平原晚冰期及冰期后的植被与环境,植物学报,1991,33(8):581-588
    刘进峰,陈杰,王昌盛,新疆叶尔羌河上游全新世阶地的释光年代与河流下切速率,地震地质,2011,33(2):421-429
    刘明光主编,中国自然地理图集,北京:中国地图出版社,2010
    刘沛林,长江流域历史洪水的周期地理学研究,地球科学进展,2000,15(5):503-508
    刘庆柱主编,中国考古发现与研究(1949-2009),北京:人民出版社,2010
    刘晓东,安芷生,李小强等,最近18ka中国夏季风气候变迁的数值模拟研究,见:刘东生,安芷生,吴锡浩主编,黄土·第四纪地质·全球变化(第四集),北京:科学出版社,1996,142-150
    刘秀铭,刘东生,Shaw J,中国黄土磁性矿物特征及其古气候意义,第四纪研究,1993,(3):281-287
    龙翼,张信宝,李敏等,陕北子洲黄土丘陵区古聚湫洪水沉积层的确定及其产沙模数的研究,科学通报,2009,54(1):73-78
    鹿化煜,张红艳,孙雪峰等,中国中部南洛河流域地貌、黄土堆积与更新世古人类生存环境,第四纪研究,2012,32(2):167-177
    闾国年,长江中游湖盆三角洲的形成与演变及地貌的再现与模拟,北京:测绘出版社,1991
    吕厚远,刘东生,C3,C4植物及燃烧对土壤磁化率的影响,中国科学(D辑),2001,31(1):43-53
    马春梅,近1.6万年来神农架大九湖泥炭高分辨率环境演变记录研究,博士学位论文,南京:南京大学,2006
    马春梅,朱诚,郑朝贵等,晚冰期以来神农架大九湖泥炭高分辨率气候变化的地球化学记录研究,科学通报,2008,53(增刊Ⅰ):26-37
    茂林,天门谭家岭遗址发掘简讯,江汉考古,1985,(3):82
    孟华平著,长江中游史前文化结构,武汉:长江文艺出版社,1997
    孟华平,屈家岭文化——长江中游史前文化发展的重要界标,见:湖北省博物馆编,屈家岭——长江中游的史前文化,北京:文物出版社,2007,12-19
    孟华平,黄文新,张成明,大洪山南麓史前聚落调查—以石家河为中心,江汉考古,2009,(1):3-23
    孟华平,刘辉,邓振华等,湖北天门市石家河古城三房湾遗址2011年发掘简报,考古,2012,(8):29-41
    莫多闻,李非,李水城等,甘肃葫芦河流域中全新世环境演变及其对人类活动的影响,地理学报,1996,57(1):56-69
    莫多闻,杨晓燕,王辉等,红山文化牛河梁遗址形成的环境背景与人地关系研究,第四纪研究,2002,22(2):174-181
    莫多闻,赵志军,夏正楷等,中华文明探源工程环境课题主要进展,见:科技部社会发展科技司,国家文物局博物馆与社会文物司编,中华文明探源工程文集环境卷(Ⅰ),北京:科学出版社,2009,1-27
    庞奖励,黄春长,周亚利等,汉江上游谷地全新世风成黄土及其成壤改造特征,地理学报,2011,66(11):1562-1573
    彭锦华,湖北沙市李家台遗址发掘简报,考古,1995,(3):203-208
    乔晶,庞奖励,黄春长等,汉江上游郧县段全新世古洪水滞流沉积物特征,地理科学进展,2012,31(11): 1467-1474
    秦伯强,许海,董百丽著,富营养化湖泊治理的理论与实践,北京:高等教育出版社,2011
    覃嘉铭,林玉石,张美良等,桂林全新世石笋高分辨率δ13C记录及其古生态意义,第四纪研究,2000,20(4):351-358
    覃嘉铭,袁道先,程海等,新仙女木及全新世早中期气候突变事件;贵州茂兰石笋氧同位素记录,中国科学D辑:地球科学,2004,34(1):69-74
    邱维理,李容全,殷春敏,华北平原全新世古洪水及其对古代人类活动的影响,见:王昌燧主编,科技考古论丛(第三辑),合肥:中国科学技术大学出版社,2003,165-168
    屈家岭考古发掘队,屈家岭遗址第三次发掘,考古学报,1992,(1):63-96
    任晓华,长湖地区全新世环境变迁与古气候,中国科学院研究生院硕上学位论文,武汉:中国科学院测量与地球物理研究所,1990
    邵晓华,汪永进,程海等,全新世季风气候演化与干早事件的湖北神农架石笋记录,科学通报,2006,51(1):80-86
    沈吉,刘兴起,R. Matsumoto等,晚冰期以来青海湖沉积物多指标高分辨率的古气候演化,中国科学D辑:地球科学,2004,34(6):582-589
    沈吉,薛滨,吴敬禄等编著,湖泊沉积与环境演化,北京:科学出版社,2010
    沈强华,油子岭一期遗存试析,考古,1998,(9):53-63
    申洪源,张红梅,赵海英,全新世古洪水研究进展与趋势,地球与环境,2010,38(1):117-121
    申洪源,朱诚,贾玉连,太湖流域地貌与环境变迁对新石器文化传承的影响,地理科学,2004,24(5):580-585
    史辰羲,莫多闻,刘辉等,江汉平原北部汉水以东地区新石器晚期文化兴衰与环境的关系,第四纪研究,2010,30(2):335-343
    石河联合考古队,石河遗址群1987年考古发掘的主要收获,江汉考古,1989,(2):1-4
    石家河考古队编著,肖家屋脊:天门石家河考古发掘报告之一,北京:文物出版社,1999
    石家河考古队编著,邓家湾:天门石家河考古发掘报告之二,北京:文物出版社,2003
    施少华,中国全新世高温期环境与新石器时代古文化的发展,见:施雅风主编,中国全新世大暖期气候与环境,北京:海洋出版社,1992,185-191
    史威,8ka~2kaBP长江三峡库区典型遗址的环境考古研究,博士学位论文,南京:南京大学,2008
    史威,朱诚,李世杰等,长江三峡地区全新世环境演变及其古文化响应,地理学报,2009,64(11):1303-1318
    史威,朱诚,马春梅等,中坝遗址约4 250 aB.P.以来古气候和人类活动记录,地理科学,2008,28(5):703-708
    史威,朱诚,王富葆等,宁镇及宜溧地区全新世中晚期典型沉积相与5 700 a B.P.前后的气候突变事件,2007a,27(4):512-518
    史威,朱诚,徐伟峰等,重庆中坝遗址剖面磁化率异常与人类活动的关系,地理学报,2007b,62(3):257-267
    史威,朱诚,焦锋等,长江上游玉溪地层6567-6489aBP洪水频发事件的历史文献考证分析,长江流域资源与环境,2011,20(2):251-256
    施雅风,孔昭宸,王苏民等,中国全新世大暖期的气候波动与重要事件,中国科学:化学,1992,22(12):1300-1308
    水利部长江水利委员会编,长江流域地图集,北京:中国地图出版社,1999
    宋春青,邱维理,张振春编著,地质学基础(第四版),北京:高等教育出版社,2005
    谈广鸣,罗景,98长江洪水位特点及其对策研究,水利水电科技进展,1999,19(2):12-13
    谭亮成,安芷生,蔡演军等,4200a BP气候事件在中国的降雨表现及其全球联系,地质论评,2007,53(6):1-11
    谭其骧,云梦与云梦泽,复旦大学学报(社会科学版),1980,历史地理专辑(S1):1-11
    汤卓炜,环境考古学,北京:科学出版社,2004
    田国珍,刘新立,王平等,中国洪水灾害风险区划及其成因分析,灾害学,2006,21(2):1-6
    田明中,程捷主编,第四纪地质学与地貌学,北京:地质出版社,2009
    天门市博物馆,湖北省文物考古研究所,湖北省天门市张家山新石器时代遗址发掘简报,江汉考古,2004,(2):3-18
    田晓四,朱诚,孙智彬等,长江三峡库区中坝遗址哺乳动物骨骼化石C和N稳定同位素分析,科学通报,2010,55(34):3310-3319
    童潜明,长江中游地区地质构造及其对洪灾治理的影响,湖南地质,2000,19(1):13-18
    王从礼,何万年,江陵太湖港古遗址与墓葬调查清理简报,江汉考古,1988,(2):12-22
    王风竹,黄文新,罗运兵,湖北秭归县柳林溪遗址1998年发掘简报,考古,2000,(8):13-22
    王富葆,阎革,林本海,若尔盖高原泥炭δ13C的初步研究,科学通报,1993,38(1):65-67
    王恒松,黄春长,周亚利等,关中西部千河流域全新世古洪水事件光释光测年研究,中国科学:地球科学,2012,42(3):390-401
    王红星,长江中游地区新石器时代遗址分布规律、文化中心的转移与环境变迁的关系,江汉考古,1998,(1):53-61
    王红亚,石元春,于澎涛等,河北平原南部曲周地区早、中全新世冲积物的分析及古环境状况的推测,第 四纪研究,2002,22(4):381-393
    王晖,尧舜大洪水与中国早期国家的起源,陕西师范大学学报(哲学社会科学版),2005,34(3):76-86
    王慧亮,王学雷,厉恩华等,江汉平原主要气候变化特征,2009,31(6):1130-1133
    王建,刘泽纯,姜文英等,磁化率与粒度、矿物的关系及其古环境意义,地理学报,1996,51(2):155-163
    王开发,徐馨,第四纪孢粉学,贵阳:贵州人民出版社,1988
    王龙升,黄春长,庞奖励等,汉江上游旬阳段古洪水水文学研究,陕西师范大学学报(自然科学版),2012,40(1):88-93
    王善才,香炉石遗址与香炉石文化,四川文物,2001,(2):22-28
    王绍武,14C年代学,气候变化研究进展,2007,3(2):122-123
    王苏民,王富葆,全新世气候变化的湖泊记录,见:施雅风主编,中国全新世大暖期气候与环境,北京:海洋出版社,1992,146-152
    王夏青,黄春长,庞奖励等,黄河中游北洛河宜君段全新世特大洪水及其气候背景研究,湖泊科学,2011,23(6):910-918
    王晓翠,朱诚,吴立等,湖北江汉平原JZ-2010剖面沉积物粒度特征与环境演变,湖泊科学,2012,24(3):480-486
    王心源,吴立,吴学泽等,巢湖凌家滩遗址古人类活动的地理环境特征,2009,28(5):1208-1216
    王心源,吴立,张广胜等,安徽巢湖全新世湖泊沉积物磁化率与粒度组合的变化特征及其环境意义,地理科学,2008,28(4):548-553
    文物保护科学技术研究所碳十四实验室,碳十四年代测定报告(四),文物,1982,(4):88-93
    吴敬禄,蒋雪中,夏威岚,云南程海近500年来湖泊初级生产力的演化,海洋地质与第四纪地质,2002,22(2):95-98
    吴立,巢湖流域新石器至汉代古聚落变更与环境变迁,硕士学位论文,芜湖:安徽师范大学,2010
    吴立,王心源,张广胜等,安徽巢湖湖泊沉积物孢粉-炭屑组合记录的全新世以来植被与气候演变,古地理学报,2008,10(2):183-192
    吴立,朱诚,李枫等,江汉平原钟桥遗址地层全新世古洪水沉积特征研究,地理学核心问题与主线——中国地理学会2011年学术年会暨中国科学院新疆生态与地理研究所建所五十年庆典论文摘要集,北京:中国知网(CNKI)中国学术期刊(光盘版)电子杂志社,2011,77
    吴立,朱诚,郑朝贵等,全新世以来浙江地区史前文化对环境变化的响应,地理学报,2012,67(7):903-916
    吴庆龙,张培震,张会平等,黄河上游积石峡古地震堰塞溃决事件与喇家遗址异常古洪水灾害,中国科学D辑:地球科学,2009,39(8):1148-1159
    吴文祥,葛全胜,夏朝前夕洪水发生的可能性及大禹治水真相,第四纪研究,2005,25(6):741-749
    吴文祥,刘东生,4000aB.P.前后东亚季风变迁与中原周围地区新石器文化的衰落,第四纪研究,2004,24(3):278-284
    吴锡浩,安芷生,王苏民等,中国全新世气候适宜期东亚夏季风时空变迁,第四纪研究,1994,(1):24-37
    吴小红,李水城,付罗文等,重庆忠县中坝遗址的碳十四年代,考古,2007,(7):80-91
    夏鼐,齐家期墓葬的新发现及其年代之改订,中国考古学报,1948,(3):101-117
    夏正楷,邓辉,武弘麟等,内蒙西拉木伦河流域考古文化演变的地貌背景分析,地理学报,2000,55(3):329-336
    夏正楷,杨晓燕,叶茂林,青海喇家遗址史前灾难事件,科学通报,2003,48(11):1200-1204
    肖平,江汉平原全新世环境演变,博士学位论文,北京:北京师范大学,1991
    谢红霞,张卫国,顾成军等,巢湖沉积物磁性特征及其对沉积动力的响应,湖泊科学,2006,18(1):43-48
    谢又予等著,沉积地貌分析,北京:海洋出版社,2000
    谢远云,江汉平原江陵地区9 kaBP以来的气候演化,博士学位论文,武汉:中国地质大学,2004
    谢远云,李长安,王秋良等,江汉平原近3000年来古洪水事件的沉积记录,地理科学,2007,27(1):81-84
    谢远云,李长安,王秋良等,全新世以来江陵地区气候变化与人类活动的沉积记录,地理与地理信息科学,2008,24(1):85-90
    谢悦波,姜洪涛,古洪水研究——挖掘河流大洪水的编年史,南京大学学报(自然科学版),2001,37(3):390-304
    谢志仁,袁林旺,间国年等著,海面-地面系统变化:重建·监测·预估,北京:科学出版社,2012
    许靖华,太阳、气候、饥荒与民族大迁移,中国科学:地球科学,1998,28(4):366-384
    徐利斌,孙立广,张居中等,公元前2500年:中国进入铜石并用时代的汞记录,第四纪研究,2008,28(6):1070-1080
    徐茂泉,李超,九龙江口沉积物中重矿物组成及其分布特征,海洋通报,2003,22(4):32-40
    徐瑞瑚,谢双玉,赵艳,江汉平原全新世环境演变与湖群兴衰,地域研究与开发,1994,13(4):52-56
    许清海,李润兰,朱峰等,华北平原冲积物孢粉沉积相研究,古地理学报,2001,3(2):55-63
    许清海,阳小兰,杨振京等,孢粉分析定量重建燕山地区5000年来的气候变化,地理科学,2004,24(3):339-345
    徐馨,何才华, 沈志达等编著,第四纪环境研究方法,贵阳:贵州科技出版社,1992
    徐馨,张树维,周曙,芜湖-江阴地区三万年来的植被、气候与环境的初步研究,南京大学学报(自然科学版),1987,23(3):556-577
    杨定爱,麻城县谢家墩后岗新石器时代遗址,见:中国考古学会编,中国考古学年鉴1985,北京:文物出版社,1985,181-182
    羊向东,朱育新,蒋雪中等,沔阳地区一万多年来孢粉记录的环境演变,湖泊科学,1998,10(2):23-29
    杨用钊,李福春,金章东等,绰墩农业遗址中存在中全新世水稻土的新证据,第四纪研究,2006,26(5):864-871
    姚高悟,沔阳月洲湖遗址调查,江汉考古,1986,(3):5-8
    姚檀栋,Thompson L G,敦德冰芯记录的过去5ka温度变化,中国科学:化学,1992,22(10):1089-1093
    易光曙编著,四湖——江汉平原的一颗明珠,北京:中国水利水电出版社,2008
    尹弘兵,禹征三苗与楚蛮的起源,武汉科技大学学报(社会科学版),2011,13(2):136-142
    于革,刘健,薛滨编著,古气候动力模拟,北京:高等教育出版社,2007
    原思训,陈铁梅,胡艳秋等,碳十四年代测定报告(九),文物,1994,(4):93
    原思训,陈铁梅,马力等,碳十四年代测定报告(七),文物,1987,(11):89-92
    原思训,陈铁梅,王良训等,碳十四年代测定报告(五),文物,1982,(6):92-94
    查小春,黄春长,庞奖励等,汉江上游郧西段全新世古洪水事件研究,地理学报,2012,67(5):671-680
    詹道江,谢悦波著,古洪水研究,北京:中国水利水电出版社,2001
    展望,杨守业,刘晓理等,长江下游近代洪水事件重建的新证据,科学通报,2010,55:1908-1913
    张秉伦,方兆本主编,淮河和长江中下游旱涝灾害年表与早涝规律研究,合肥:安徽教育出版社,1998
    张秉伦,孙关龙,高建国等,中国古代自然灾异群发期,合肥:安徽教育出版社,2002
    张广胜,朱诚,王吉怀等,安徽蚌埠禹会村遗址4.5-4.0 ka BP龙山文化的环境考古,地理学报,2009,64(7):817-827
    张宏彦编著,中国史前考古学导论(第二版),北京:科学出版社,2011
    张家富,莫多闻,夏正楷等,沉积物的光释光测年和对沉积过程的指示意义,第四纪研究,2009,29(1):23-33
    张俊娜,夏正楷,中原地区4 ka BP前后异常洪水事件的沉积证据,地理学报,2011,66(5):685-697
    张兰生,方修琦,任国玉,我国北方农牧交错带的环境演变,地学前缘,1997,4(1-2):127-136
    张理华,朱诚,张强,苏皖沿江平原全新世气候变化与洪水事件研究,武汉大学学报(理学版),2002,48(6):709-714
    张强,朱诚,姜逢清等,重庆巫山张家湾遗址2000年来的环境考古,地理学报,2001,56(3):353-362
    张婷,祝一志,杨亚长等,陕西蓝田全新世黄土AMS-14C侧年与环境变迁,中国沙漠,2011,31(3):678-682
    张文翔,张虎才,雷国良等,柴达木贝壳堤剖面元素地球化学与环境演变,第四纪研究,2008,28(5): 917-928
    张西营,马海洲,谭红兵,青藏高原东北部黄土沉积化学风化程度及古环境,海洋地质与第四纪地质,2004,24(2):43-47
    张绪球著,长江中游新石器时代文化概论,武汉:湖北科学技术出版社,1992
    张绪球著,屈家岭文化,北京:文物出版社,2004
    张瑛,陈隆勋,何金海等,1998年夏季亚洲地区低频大气环流的特征及其与长江中下游降水的关系,气象学报,2008,66(4):577-591
    张玉芬,李长安,陈国金等,江汉平原湖区周老镇钻孔磁化率和有机碳稳定同位素特征及其古气候意义,地球科学——中国地质大学学报,2005,30(1):114-120
    张玉芬,李长安,陈亮等,基于磁组构特征的江汉平原全新世古洪水事件,地球科学——中国地质大学学报,2009,34(6):985-992
    张玉柱,黄春长,庞奖励等,汉江与渭河大洪水滞流沉积物性质对比分析,水土保持学报,2012,26(1):101-105
    张芸,朱诚,于世永,长江三峡大宁河流域3000年来的环境演变与人类活动,地理科学,2001,21(3):267-271
    张芸,朱诚,张强等,长江三峡大宁河流域的沉积环境与古洪水研究,中国历史文物,2004,(2):83-88
    张之恒著,中国新石器时代考古,南京:南京大学出版社,2004
    张祖陆,鲁北平原黄河古河道初步研究,地理学报,1990,45(4):457-466
    赵春燕,杨杰,袁靖等,河南省偃师市二里头遗址出土部分动物牙釉质的锶同位素比值分析,中国科学:地球科学,2012,42(7):1011-1017
    赵华,卢演俦,王成敏等,水成沉积物释光测年研究进展与展望,核技术,2011,34(2):82-86
    赵珊茸,边秋娟,凌其聪编著,结晶学及矿物学,北京:高等教育出版社,2004
    赵艳,杜耘,人类活动与武汉市自然地理环境,长江流域资源与环境,1998,7(3):278-283
    郑朝贵,朱诚,钟宜顺等,重庆库区旧石器时代至唐宋时期考古遗址时空分布与自然环境的关系,科学通报,2008,53(增刊Ⅰ):93-111
    中国科学院地学部地球科学发展战略研究组,21世纪中国地球科学发展战略报告,北京:科学出版社,2009
    中国社会科学院考古研究所编著,中国考古学·新石器时代卷,北京:中国社会科学出版社,2010
    中国社会科学院考古研究所考古科技实验研究中心,放射性碳素测定年代报告(二三),考古,1996,(7):66-70
    中国社会科学院考古研究所考古科技实验研究中心,放射性碳素测定年代报告(二四),考古,1997,(7): 35-52
    中国社会科学院考古研究所考古科技实验研究中心,放射性碳素测定年代报告(二六),考古,2000,(8):70-74
    中国社会科学院考古研究所实验室,放射性碳素测定年代报告(三),考古,1974,(5):333-338
    中国社会科学院考古研究所实验室,放射性碳素测定年代报告(五),考古,1978,(4):280-243
    中国社会科学院考古研究所实验室,放射性碳素测定年代报告(六),考古,1979,(1):89-96
    中国社会科学院考古研究所实验室,放射性碳素测定年代报告(七),考古,1980,(4):372-377
    中国社会科学院考古研究所实验室,放射性碳素测定年代报告(八),考古,1981,(4):363-369
    中国社会科学院考古研究所实验室,用热释光测出的关庙山遗址陶片的年龄,考古,1982a,(4):416-417
    中国社会科学院考古研究所实验室,放射性碳素测定年代报告(九),考古,1982b,(6):657-662
    中国社会科学院考古研究所实验室,放射性碳素测定年代报告(一○),考古,1983,(7):646-658
    中国社会科学院考古研究所实验室,放射性碳素测定年代报告(一二),考古,1985,(7):654-658
    中国社会科学院考古研究所实验室,放射性碳素测定年代报告(一七),考古,1990,(7):663-668
    中国社会科学院考古研究所实验室,放射性碳素测定年代报告(一八),考古,1991,(7):657-663
    中国社会科学院考古研究所实验室,放射性碳素测定年代报告(一九),考古,1992,(7):655-662
    中国社会科学院考古研究所实验室,放射性碳素测定年代报告(二○),考古,1993,(7):645-649
    中国社会科学院考古研究所实验室,放射性碳素测定年代报告(二二),考古,1995,(7):655-659
    钟祥市博物馆,湖北钟祥崔家台新石器时代遗址调查简报,江汉考古,2010,(2):3-9
    周凤琴,荆江近5000年来洪水位变迁的初步探讨,见:中国地理学会历史地理专业委员会《历史地理》编辑委员会编,历史地理(第四辑),上海:上海人民出版社,1986,46-53
    周凤琴,荆江历史变迁的阶段性特征,见:中国地理学会历史地理专业委员会《历史地理》编辑委员会编,历史地理(第十辑),上海:上海人民出版社,1992,273-287
    周凤琴,云梦泽与荆江三角洲的历史变迁,湖泊科学,1994,6(1):22-32
    周凤琴,唐从胜编著,长江泥沙来源与堆积规律研究,武汉:长江出版社,2008
    周昆叔著,环境考古,北京:文物出版社,2007
    周昆叔,鲍贤伦名誉主编,莫多闻,曹锦炎,郑文红等主编,环境考古研究(第四辑),北京:北京大学出版社,2007
    周昆叔,莫多闻,佟佩华等主编,环境考古研究(第三辑),北京:北京大学出版社,2006
    朱诚,对长江流域新石器时代以来环境考古研究问题的思考,自然科学进展,2005a,15(2):149-153
    朱诚,李兰,林留根等,江苏全新世灾变事件考古地层学若干问题探讨,地层学杂志,2009,33(4):413-419
    朱诚,马春梅,李兰等,长江三峡库区全新世环境考古研究进展,地学前缘,2010,17(3):222-232
    朱诚,马春梅,王慧麟等,长江三峡库区玉溪遗址T0403探方古洪水沉积特征研究,科学通报,2008,53(增刊Ⅰ):1-16
    朱诚,马春梅,张文卿等,神农架大九湖15.753kaB.P.以来的孢粉记录和环境演变,第四纪研究,2006,26(5):814-826
    朱诚,宋健,尤坤元等,上海马桥遗址文化断层成因研究,科学通报,1996,41(2):148-152
    朱诚,谢志仁,李枫等编著,全球变化科学导论(第三版),北京:科学出版社,2012
    朱诚,于世永,卢春成,长江三峡及江汉平原地区全新世环境考古与异常洪涝灾害研究,地理学报,1997,52(3):268-278
    朱诚,赵宁曦,张强等,江苏龙虬庄新石器遗址环境考古研究,南京大学学报(自然科学),2000,36(3):286-292
    朱诚,郑朝贵,马春梅等,长江三峡库区中坝遗址地层古洪水沉积判别研究,科学通报,2005b,50(20):2240-2250
    朱诚,郑朝贵,马春梅等,华东沿海地区全新世初灾变事件对人类文明演进影响的探讨,见:周昆叔,鲍贤伦名誉主编,莫多闻,曹锦炎,郑文红等主编,环境考古研究(第四辑),北京:北京大学出版社,2007a,164-169
    朱诚,钟宜顺,郑朝贵等,湖北旧石器至战国时期人类遗址分布与环境的关系,地理学报,2007b,62(3):227-242
    朱光耀,朱诚,凌善金等,安徽省新石器和夏商周时代遗址时空分布与人地关系的初步研究,地理科学,2005,25(3):346-352
    竺可桢,中国近五千年来气候变迁的初步研究,中国科学:数学,1973,16(2):168-189
    朱育新,王苏民,羊向东等,中晚全新世江汉平原沔城地区古人类活动的湖泊沉积记录,湖泊科学,1999,11(1):33-39
    朱育新,薛滨,羊向东等,江汉平原沔城M1孔的沉积特征与古环境重建,地质力学学报,1997,3(4):77-84
    邹逸麟编著,中国历史地理概述,上海:上海教育出版社,2007
    邹志强,锆石鉴定方法,海洋地质,1997,(2):93-94

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700