用户名: 密码: 验证码:
水稻紫叶性状遗传和基因定位的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻紫叶性状是一种在水稻整个生育期都能识别的明显标记,是一类特殊的稻种资源,由于受环境影响小,性状表现稳定,因而在水稻分类、遗传研究和育种实践上具有重要价值。利用易于识别的紫叶标记不育系是解决杂交水稻繁制种纯度降低和快速简便鉴定杂种F_1种子纯度的最有效途径。本研究利用来自国际水稻研究所的紫叶稻特异种质资源进行遗传分析和基因定位,弄清其遗传规律,探索紫叶基因及紫叶抑制基因的数量及其在染色体上的位置和相互关系,探讨紫叶性状导入不育系后对不育系生育后期叶片光合和衰老生理以及杂种F_1植株生长发育、籽粒灌浆和产量的影响,明确该紫叶稻在杂交水稻育种中利用的可能性,从而为紫叶标记性状的育种应用提供理论依据和实践基础。主要研究结果如下:
     1.以紫叶稻IR1552与22个不同遗传背景和恢保关系的绿叶稻品种杂交,通过对杂种F_1、F_2、BCF_1、BCF_2和F_3群体植株叶色的分离进行调查和遗传分析,结果表明,紫叶稻IR1552的紫叶性状由核内一对隐性紫叶基因(pl-pl)和一对显性紫叶抑制基因(Ipl-Ipl)控制,同时也受紫叶调节基因(C_i-C_i)的作用,而紫叶调节基因数目的多少与双亲之间存在差异的基因数目有关,即与亲本的遗传背景有关。并推断,紫叶稻IR1552的紫叶色素遗传模式为:plplIplIplC_iC_i。
     2.以先红A与广恢128 BCF_2为定位群体,利用SSR分子标记对紫叶基因及紫叶抑制基因进行定位的结果表明,紫叶基因位于第6染色体短臂端距SSR标记RM587和RM584分别为3.1 cM和2.2 cM的区域内,暂命名为pl_1。紫叶抑制基因位于第1染色体长臂端距离SSR标记RM9和RM488分别1.2 cM和0.8 cM的区域内,暂命名为Ipl_1。
     3.通过对紫叶标记不育系及其杂种F_1生育后期叶片光合及衰老生理指标进行研究,发现水稻紫叶标记不育系先红A、知红A和桂紫-1S生育后期剑叶中叶绿素含量、光合速率、可溶性蛋白含量和SOD活性均高于对照不育系博A和GD-1S,而MDA含量和POD活性却低于对照;紫叶不育系所配杂种F_1生育后期剑叶中叶绿素含量、光合速率、可溶性蛋白含量、MDA含量、SOD活性和POD活性则与对照品种博优253相当,无明显差异。表明水稻紫叶标记不育系先红A、知红A、桂紫-1S及其杂种F_1叶片功能正常,具有良好的光合性能,后期不早衰。紫叶性状对水稻紫叶标记不育系及杂种F_1的农艺性状和产量无不良影响,是一理想的紫叶标记供体,在育种实践上具有重要的应用价值。
     4.用不同类型的籼型三系不育保持系、两系不育系与紫叶稻IR1552杂交,导入这一优异紫叶标记性状,育成带紫叶标记的籼型三系不育系和两系不育系。实践证明,该紫叶性状不仅能导入籼型的三系不育系、两系不育系中,还能有效地选育出符合育种目标的紫叶标记三系不育系和两系不育系,转育效果良好。现已育成5个带紫叶标记的籼型三系不育系和两系不育系,其中籼型紫叶标记三系不育系先红A和知红A均已于2007年8月通过了广西农作物品种审定委员会组织的专家鉴定,可以在生产上应用。
     5.籼型紫叶标记三系不育系先红A和知红A是广西最早育成的紫叶标记的野败型水稻三系不育系,紫叶标记特征明显,繁茂性好,柱头外露率高,易于恢复,一般配合力强,所配组合株叶形态好,优势强,应用前景广阔。
     6.用育成的水稻紫叶三系不育系先红A、紫叶两系不育系桂紫-1S分别与不同类型恢复系测交配组的结果表明,所有组合杂种F_1育性均能恢复,但不同组合之间主要农艺性状和产量差异较大,部分组合主要农艺和产量性状优于对照特优63,最大增产幅度达8.61%,表现出明显的杂种优势。这表明通过渗入广亲和基因和粳稻血缘,聚合抗病性和广适性性状,扩大亲本遗传距离,强化恢复系改良,经广泛测交筛选,是可以选育出强优势杂交稻组合供生产应用的。
Purple leaf of rice is a significant mark and could be recognized in its whole life. Purple leaf rice is a special type of rice germplasm. The purple leaf character has important value in genetic study and breeding practice as well as taxonomy due to its stability and not greatly affected by environment. By use of purple leafed male sterile line is the most effective way to solve seed purity problems in hybrid rice seed production and parental line multiplication, and the fast and simple way to identify the purity of F_1 seed. This study is to conduct genetic analysis and gene locating, to understand the rule of inheritance, and to know the number of expression and control gene (s), the gene location on chromosome, and interaction of the genes of purple leaf character and its effects on the photosynthetic and senescence physiology of male sterile lines during the late stages of growth and development, and its effects on the consequence of growth, development, seed filling and yield of the hybrid F_1 plants by use of purple leafed rice germplasm introduced from the International Rice Research Institute (IRRI) to explore the possibility of using purple leafed rice in hybrid rice breeding, and provide theoretical and practical bases for purple leaf character of rice in breeding program. The major results are shown as follows:
     1. Hybridization was made between purple leafed line IR1552 and 22 green leaf varieties with different genetic backgrounds and restoring-maintaining relationship, and investigation and genetic analysis were done for leaf color segregation on F_1, F_2, BCF_1 and BCF_2 populations. The results showed that the purple leaf character from IR1552 was controlled by a pair of recessive gene (pl-pl) and a pair of dominant gene (Ipl-Ipl), while also affected by the purple regulation gene (Ci-Ci). The amount of regulation gene is related to the gene number difference between the two parents, i.e. related to their genetic backgrounds. It was concluded that the inheritance model of the purple pigment was plplIplIplCiCi.
     2. The purple gene and control gene were mapped in the BCF_2 population of Xianhong A and Guanghui 128 found by using SSR molecular markers. The result showed as follows: the purple gene was flanked by SSR markers RM587 and RM584 on the short arm of chromosome 6 with a genetic distance of 3.1 cM and 2.2 cM, respectively, while the purple control gene was flanked by RM9 and RM488 on the long arm of chromosome 1 with a distance of 1.2 cM and 0.8 cM, respectively. The two pairs of genes were tentatively named pl_1 and Ipl_1.
     3. Studies on physiological indexes of leaf photosynthesis and aging in the late stage of growth of purple leafed male sterile line and its F_1 hybrids were done and showed that the chlorophylls contents, photosynthetic rate, soluble protein and activity of SOD of flag leaf in the late growth stage of purple leafed male sterile lines Xiahong A, Zhihong A and Guizhi-1S were higher than the controls Bo A and GD-1S, while MDA content and activity of POD were lower than the controls. The chlorophyll contents, photosynthetic rate, soluble protein content, MDA content, activity of SOD and POD in the flag leaf during the late growth stage of F_1 hybrids by use of purple leafed male sterile lines were similar to those of CK Boyou 253, not significantly different. All the results showed that the leaf function of purple leafed male sterile lines Xianhong A, Zhihong A, Guizhi-1S and their F_1 hybrids is normal with good photosynthesis, no early aging, and there is no negative effect on the agronomic traits and yield of IR1552 and derived male sterile lines and F_1 hybrids. It is a good donor of purple leaf mark for rice breeding practice and has important use value.
     4. Through hybridization between purple leafed IR1552 and different indica three-line sterile maintainers, two-line sterile lines, the ideal purple leaf mark was introduced into three-line and two-line male sterile lines. The results showed that the purple leaf character not only could be introduced into indica type of three and two lines sterile lines, but also could be used to develop breeding goals' purple leafed three and two lines sterile lines with good transferring results. So far five purple leafed three and two line sterile lines have been developed, among which both Xianhong A and Zhihong A have passed the experts' evaluation organized by Guangxi Crop Variety Registration Committee (GCVRC) in August, 2007, and ready for commercial use.
     5. Indica type purple leafed three-line male sterile lines Xianhong A and Zhihong A are the first wild abortion (WA) type three-line male sterile lines bred in Guangxi with significant purple leaf mark, vigorous plant, high stigma exertion ratio, easy to be restored, strong general combining ability (GCA), good plant type and strong heterosis. It is promising for use of their hybrids.
     6. The results of test crosses of different R lines with three-line Xianhong A and two-line Guizhi-1S, respectively, showed that the sterility could be restored in all F_1 hybrids, but there were differences in the agronomic traits and yield among the hybrids. The agronomic traits and yield components of some hybrids are better than the CK Teyou 63, and the highest yield increased by 8.61%, showing significant heterosis. This suggested that, through adding WC gene (s) and japonica rice germplasm, combining disease resistances and wide adaptability, widening genetic distance of the parental lines, enhancing R line improvement, widely test crossing and screening, it is possible to develop hybrid rice with very strong heterosis for commercial production.
引文
1.Rgensen JHJ,Jensen HP.The spontaneous chlorophyll mutation frequency in barley[J].Hereditas,1986,105:71-72
    2.吴殿星,夏英武,舒庆尧.植物叶绿素突变体的研究及应用探讨[J].中国农学通报,1995,11(4):36-39v3.Nasyrov YS.Genetic control of photosynthesis and improving of crop productivity[J].Ann Rev Plant Physiol,1978,29:215-237
    4.Kirchhoff WR,Hall AE,Thomson WW.Gas exchange,carbon isotope discrimination,and chloroplast ultrastructure of a chlorophyll-deficient mutant of cowpea[J].Crop sci,1989,29(11):109-115
    5.Gan S,Amasino RM.Inhibition of leaf senescence by autoregulated production of cytokinin[J].Science,1995,270(5244):1986-1988
    6.Terry MJ,Kendrick RE.Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato[J].Plant Physiol,1999,119:143-152
    7.Kumar AM,Soll D.Antisense HEMA 1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis[J].Plant Physiol,2000,122:49-56
    8.Zhao Y,Wang ML,Zhang YZ,et al.Chlorophyll-reduced seedling mutant in oil seed rape,Brassica napus,for utilization in F_1 hybrid production[J].Plant Breed,2000,119(2):131-135
    9。 何冰,刘玲珑,张文伟,等.植物叶色突变体[J].植物生理学通讯,2006,42(1):1-9
    10.Huq E,Al-Sady B,Hudson M,et al.Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis[J].Science,2004,305:1937-1941
    11.Nakanishi H,Nozue H,Suzuki K,et al.Characterization of the Arabidopsis thaliana mutant pcb2which accumulates divinyl chlorophylls[J].Plant Cell Physiol,2005,46(3):467-473
    12.Rzeznicka K,Walker CJ,Westergren T,et al.Xantha-1 encodes a membrane subunit of the aerobic Mg-protoporphyrin Ⅸ monomethyl ester cyclase involved in chlorophyll biosynthesis[J].Proc Natl Acad Sci USA,2005,102(16):5886-5891
    13.Shoemaker RC,Cody AM,Palmer RG.Characterization of a cytoplasmically inherited yellow foliar mutant(cyt-I13)in soybean[J].Theor Appl Genet,1985,69:279-284
    14.Ray DT,McCreight JD.Yellow-tip:a cytoplasmically inherited trait in melon(Cucumis melo L)[J].J Hered,1996,87:245-247
    15.Beale SI.Green genes gleaned[J].Tre Plant Sci,2005,10(7):301-312
    16.Oster U,Tanaka R,Tanaka A,et al.Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis(CAO)from Arabidopsis thaliana[J].J Plant,2000,21(3):305-310
    17.Jung KH,Hur J,Ryu CH,et al.Characterization of a rice chlorophylldeficient mutant using the T-DNA gene-trap system[J].Plant Cell Physiol,2003,44(5):463-472
    18.Petersen BL,Moiler MG,Jensen PE,et al.Identification of the Xan-g gene and expression of the Mg chelatase encoding genes Xan-f,-g and -h in mutant and wild type barley(Hordeum vulgare L)[J].Hereditas,1999,131:165-170
    19.Frick G,Su QX,Apel K,et al.An Arabidopsis porB porC double mutant lacking light-dependent NADPH:Protochlorophyllide oxidoreductase B and C is highly chlorophyll-deficient and developmentally arreste[J].J Plant,2003,35(2):141-153
    20.Gaubier P,Wu HJ,Laudie M,et al.A chlorophyll synthetase gene from Arabidopsis thaliana[J].Mol Gen Genet,1995,249:58-64
    21.Terry MJ.Phytochrome chromophore-deficient mutants[J].Plant Cell Environ,1997,20:740-745
    22.Sato S,Nakamura Y,Kaneko T,et al.Complete structure of the chloroplast genome of Arabidopsis thaliana[J].DNA Res,1999,6:283-290
    23.Yaronskaya E,Ziemann V,Walter G,et al.Metabolic control of the tetrapyrrole biosynthetic pathway for porphyrin distribution in the barley mutant albostrians[J].J Plant,2003,35(4):512-522
    24.Reinbothe S,Pollmann S,Springer A,et al.A role of Toc33 in the protochlorophyllide -dependent plastid import pathway of NADPH:protochlorophyllide oxidoreductase(POR)A[J].J Plant,2005,42(1):1-12
    25.Chen G,Bi YR,Li N.EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development[J].J Plant,2005,41(3):364-375
    26.Kushnir S,Babiychuk E,Storozhenko S,et al.A mutation of the mitochondrial ABC transporterStal leads to dwarfism and chlorosis in the Arabidopsis mutantstarik[J].Plant Cell,2001,13:89-100
    27.Robson PRH,Donnison IS,Wang K,et al.Leaf senescence is delayed in maize expressing the Agrobacterium IPT gene under the control of a novel maize senescence-enhanced promoter[J].J Plant Biotechnol,2004,2:101-112
    28.ISTA.International rules for seed testing,Chapter 8:Verification of species and cultivars[M].ISTA,2003
    29.Sung AO,Joo-Hyun P,Gyu IL,et al.Identification of three loci controlling leaf senescence in Arabidopsis thaliana[J].J Plant,1997,12:527-535
    30.王勤华,曹春英,孙日波,等.红叶椿的组织培养和快速繁殖[J].植物生理学通讯,2004,40(1):73
    31.Reyes-Arribas T,Barrett JE,Huber D J,et al.Leaf senescence in a non-yellowing cultivar of chrysanthemum(Dendranthema grandiflora)[J].Plant Physiol,2001,111(4):540-544
    32.Schultes NP,Sawers RJH,Brutnell TP,et al.Maize high chlorophyll fluorescent 60 mutation is caused by an Ac disruption of the gene encoding the chloroplast ribosomal small subunit protein 17[J].J Plant,2000,21(4):317-327
    33.Lopez-Juez E,Jarvis RP,Takeuchi A,et al.New Arabidopsis cue mutants suggest a close connection between plastid and phytochrome regulation of nuclear gene expression[J].Plant Physiol,1998,118:803-815
    34.Barak S,Heimer Y,Nejidat A,et al.The peroxisomal glycolate oxidase gene is differenttially expressed in yellow and white sectors of the DP1 variegated tobacco mutant[J].Plant Physiol,2000,110(1)):120-126
    35.Kurata N,Miyoshi K,Nonomura KI,et al.Rice mutants and genes related to organ development,morphogenesis and physiological traits[J].Plant Cell Physiol,2005,46(1):48-62
    36.Lee S,Kim JH,Yoo ES,et al.Differential regulation of chlorophyll a oxygenase genes in rice[J].Plant Mol Biol,2005,57:805-818
    37.朱丽,刘文真,吴超,等.水稻着丝粒附近一个淡绿叶突变相关基因的定位分析[J].中国水稻科学,2007,21(3):228-234
    38.王军,王宝和,周丽慧,等.一个水稻新黄绿叶突变体基因的分子定位[J].中国水稻科学,2006,20(5):455-459
    39.余庆波,江华,米华玲,等.水稻白化突变体alb21生理特性和基因定位[J].上海师范大学学报,2005,34(1):70-75
    40.Xia JC,Wang YP,Ma BT,et al.Ultrastructure and Gene Mapping of the Albino Mutant all2 in Rice(Oryza sativa L.)[J].Acta Genetica Sinica,2006,33(12):1112-1119
    41.Chen T,Zhang YD,Zhao L,et al.Physiological character and gene mapping in a new green revertible albino mutant in rice[J].J Genet Genom,2007,34(4):331-338
    42.Nagao S.Genie analysis and linkage relationship of characters in rice[J].Adv Genet,1951,4:181-212
    43.Takahashi M.Analysison apiculus color genes essential to anthocyanin coloration in rice[J].J Fac Agr Hokkaido Univ,1957,50:266-362
    44.Kinoshita T.In:S Tsunoda,N Takahashi eds.Biology of Rice[M].Tokyo:JSSP/Elsevier,1984,pp.187-274
    45.闵绍楷,申宗坦,熊振民,等.水稻育种学[M].北京,中国农业出版社,1996
    46.钱前,唐绿清,林建荣,等.一种具有遗传特异性的紫叶稻及其在两系法杂:交稻中的应用[J].浙江农业学报,1995,7(4):259-262
    47.牟同敏,李春海,杨国才,等.紫叶水稻苗期叶色的遗传研究[J].中国水稻科学,1995,9(1):45-48
    48.潘学彪,陈宗祥,董桂春,等.一种紫色水稻的遗传及其在光敏不育系育种中应用的研究[J].遗传,1995,17(3):31-34
    49.曾大力,钱前,朱旭东,等.紫叶稻遗传的特异性及其在诱导孤雌生殖中的作用[J].作物品种资源,1997,(4):5-7
    50.谢国生,蔡得田,马平福,等.水稻显性紫色基因的遗传分析[J].湖北农业科学,1997,(3):3-5
    51.李维明,潘润森,林光霖,等.水稻叶色与若干农艺性状连锁遗传的分析[J].遗传,1994,16(5):35-39
    52.吴关庭,王贤裕,金卫.水稻温敏型紫叶突变体PLM12及其遗传研究[J].核农学报,2001,15(2):70-74
    53.石帮志,孙灿慧,陈丽平,等.贵州紫香稻紫色性状的遗传规律及其在育种中的应用初探[J].种子,2002,2:29-30
    54.彭长连,林植芳,林桂珠,等.富含花色素苷的紫色稻叶片的抗光氧化作用[J].中国科学C辑,2006,36(3):209-216
    55.余显权,赵福胜.紫绿叶稻与F_1光合色素的差异及其产量的关系[J].贵州大学学报,2002,21(1):6-10
    56.曹立勇,钱前,朱旭东,等.紫色标记籼型光-温敏核不育系中紫S的选育及其配组的杂种优势 [J].作物学报,1999,25(1):44-49
    57.杨腾帮,许旭明,张受刚.具有隐性紫叶标记性状的籼型光敏核不育系明紫02S的选育[J].福建农业科技,2005,(1):3-5
    58.杨腾帮,许旭明,张受刚.隐性紫叶光温敏核不育水稻明紫03S的选育[J].福建农业科技,2005,(5):54-56
    59.余显权,吴平理,赵福胜,等.隐性紫叶水稻的改良及其应用探讨[J].贵州农业科学,2003,31(3):3-6
    60.向关伦,黄宗洪,杨占烈,等.水稻不育系紫ⅡA的选育[J].种子,2007,26(1):93-95
    61.Howard T.Stoddart JL.Leaf senescence[J].Ann Rev Plant physiol,1980,31:83-111
    62.Thimann KV.The senescence of leaves.In:Senescence in plants[M].CRC Press,Boca Raton,Florda,1978,pp:85-115
    63.Nooden LD,Guiamet JJ,John I.Senescence mechanisms[J].Plant Physiol,1997,101:746-753
    64.Christensen S,Weigel D.Plant development:The making of a leaf[J].Curr Biol,1998,8:643-645
    65.Gan S,Amasino RM.Making sense of senescence[J].Plant Physiol,1997,113:313-319
    66.Lim PO,Kim HJ,Nam HG.Leaf Senescence[J].Annu rev plant boil,2007,58:115-136
    67.Himelblau E,Amasino M.Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence[J].J Plant Physiol,2001,158:1317-1323
    68.Fang ZY,Bouwkamp JC,Solomos T.Chlorophyllase activities and chlorophyll degradation during leaf senescence in non-yellowing mutant and wild type of Phaseolus vulgaris L[J].J Exp Bot,1998,49(320):503-510
    69.Smart CM.Gene expression during leaf senescence[J].New Phytol,1994,126:419-448
    70.Lin JF,Wu SH.Molecular events in senescing Arabidopsis leaves[J].J Plant,2004,39:612-628
    71.Van Doorn WG,Woltering EJ.Senescence and programmed cell death:substance or semantics?[J].J Exp Bot,2004,55:2147-2153
    72.Leshem YY.Oxygen free radicals and plant senescence[J].Ann Rev Plant Physiol,1981,127:1-4
    73.Martin C,Thimann KV.The role of protein synthesis in the senescence of leaves[J].Plant Physiol,1972,49:64-71
    74.Partier B.Gerontoplasts-the yellow end in the ontogenesis of chloroplasts[J].Endocytobiosis Cell Res,1988,5:163-190
    75.Peoples MB,Beilharz VC.Nitrogen redistribution during grain growth in wheat(Triticum aestivum L.)Ⅱ.Chloroplast senescence and degradation of ribulose-1,5-bisphosphate carboxylase[J].Planta,1980,149:241-251
    76.Grover A,Mohanty P.Leaf senescence-induced alterations in structure and function of high plant chloroplasts[M].Kluwer Acedmic Publishers,1992,pp:225-255
    77.Park SY,Yu JW,Park JS,et al.The senescence-induced staygreen protein regulates chlorophyll degradation[J].Plant Cell,2007,19(5):1649-166
    78.Matile P,Duggelin T,Schellenberg M,et al.How and why is chlorophyll broken down in senescent leaves?[J].Plant Physiol Biol,1989,27:595-604
    79.Matile P,Schellenberg M,Vicentini F.Localization ofchlorophylllase in the chloroplast envelope [J].Planta,1997,201:96-99
    80.Hendry GAF,Houghton J,Brown SB.The degradation of chlorophyll:a biological enigma[J].New Phytol,1987,107:255-302
    81.Minguez-Mosquera MI,Gallardo-Guerrero L.Role of chlorophyllase in chlorophyll metabolism in olives cv.Grodal[J].Phytochemistry,1996,41:691-697
    82.Scheumann V,Ito H,Tanaka A,et al.Substrate specificity of chlorophyll(ide)b reductase in etioplasts of barley(Hordeum vulgare L.)[J].Eur J Biochem,1996,242:163-170
    83.Ito H,Ohtsuka T,Tanaka A.Conversion of chlorophyll b to chlorophyll a via 7-Hydroxymethyl chlorophyll[J].J Biol Chem,1996,271:1475-1479
    84.Owens TG,Falkowski PG.Enzymatic degradation of chlorophyll a by marine phytoplankton in vitro[J].Phytochemistry,1982,21:979-84
    85.Langmeier M,Ginsburg S,Matile P.Chlorophyll breakdown in senescent leaves:demonstration of Mg-dechelatase activity[J].Physiol Plantarum,1993,89:347-53
    86.Ginsburg S,Matile P.Identification of catabolites of chlorophyll-porphyrin in senescent rape cotyledons[J].Plant Physiol,1993,102:521-527
    87.Roca M,James C,Pruzinska A,et al.Analysis of the chlorophyll catabolism pathway in leaves of an introgression senescence mutant of Loliumtem ulentum[J].Phytochemistry,2004,65:1231-1238
    88.Matile P,Hortensteiner,Thomas H,et al.Chlorophyll breakdown in senescent leaves[J].Plant Physiol,1996,112:1403-1409
    89.Hortensteiner S,Vicentini F,Matile P.Chlorophyll breakdown in senescent cotyledons of rape,Brassica napus L:enzymatic cleavage of phaeophorbide a in vitro[J].New Phytol,1995, 129:237-246
    90.Hortensteiner S,FellerU.Nitrogen metabolism and remobilization during senescence[J].J Exp Bot,2002,53:927-937
    91.Hinder B,Schellenberg M,Rodoni S,et al.How plants dispose of chlorophyll catabolites[J].J Biol Chem,1996,271:27233-27236
    92.Matsuda R,Ohashi-Kaneko K,Fujiwara K,et al.Photosynthetic characteristics of rice leaves grown under red light with or without supplemental blue light[J].Plant CellPhysiol,2004,45:1870-1874
    93.Miyashita K,Tanakamaru S,Maitani T,et al.Recovery responses of photosynthesis,transpiration,and stomatal conductance in kidney bean following drought stress[J].Environ Exp Bot,2005,53(2):205-214
    94.Grover A,Mohanty P.Leaf senescence-induced alterations in structure and function of high plant chloroplasts[J].Kluwer Acedmic Publishers,1992,pp.225-255
    95.Lu QT,Lu CM,Zhang JH,et al.Photosynthesis and chloroplyll a flueorescence during flag leaf senescence of field-grown wheat plants[J].J Plant Physiol,2002,159:1173-1178
    96.Grover A,Sabat SC,Mohanty P.Effect of temperature on photosynthetic activity of senescent detached wheat leaves[J].Plant Cell Physiol,1986,27:117-126
    97.Markino A,Mac T,Ohiro K.Relation between nitrogen and ribulose-1,5-bisphosphate carboxylase in rice leaves from emergence through senescence[J].Plant Cell Physiol,1984,25:429-437
    98.Quirino BF,Reiter WD,Amasino RD.One of two tandem Arabidopsis genes homologous to monosaccharide transporters is senescence-associated[J].Plant Mol Biol,2001,46:447-457
    99.Noh YS,Amssino RM.Identification of a promoter regeion responsible for the senescence-specific expression of SAG 12[J].Plant Mol Biol,1999,41:181-194
    100.Fujiki Y,Yoshikawa Y,Sato T.Dark-inducible genes from Arabidopsis thaliana are associated with leaf and repressed by sugars[J].Plant Physiol,2001,111:345-352
    101.Stessman D,Miller A,Spalding M.Regulation of photosynthesis during Arabidopsis leaf development in continuous light[J].Photosyn Res,2002,72:27-37
    102.Buchanan-Wollaston V,Page T,Harrison E,et al.Comparative transcriptome analysis reveals significant differences ingene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis[J].J Plant,2005,42:567-585
    103.Yoshida S.Molecular regulation of leaf senescence[J].Curr Opin Plant Biol,2003,6:79-84
    104. Wingler A, Purdy S, Jamie A, et al. The role of sugars in integrating environmental signals during the regulation of leaf senescence [J]. J Exp Bot, 2006, 57(2):391-399
    
    105. Huffaker EC, Peterson LW. Protein turnover in plants and possible means of its regulation [J]. Ann Rev Plant Physiol, 1974, 25:363-392
    
    106. Otegui MS, NohYS, Martinez DE, et al. Senescence associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean [J]. J Plant, 2005,41:831-844
    
    107. Brouquisse R, Evrard A, Rolin D, et al. Regulation of protein degradation and protease expression by mannose in maize root tips Pi sequestration by mannose may hinder the study of its signaling properties [J]. Plant Physiol, 2001, 125:1485-1498
    
    108. Ryan CA. Proteolytic enzymes and their inhibitors in plants [J]. Ann Rev Plant Physiol, 1973, 24:173-196
    
    109. Matile P, Winkenbach F. Function of lysosomal enzymes in the senescing corolla of the morning glory (Ipomoea purpura) [J]. J Exp Bot, 1971, 22:759-771
    
    110. Wilson KA, McManus MT, GordonME, et al. The proteomics of senescence in leaves of white clover Trifolium repens L [J]. Proteomics, 2002, 2:1114-1122
    
    111. Solomon M, Belenghi B, Delledonne M, et al. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants [J]. Plant Cell, 1999, 11:431-443
    
    112. Beyene G, Foyer CH, Kunert KJ. Two new cysteine proteinases with specific expression patterns in mature and senescent tobacco (Nicotiana tabacum L.) leaves [J]. J Exp Bot, 2006, 57(6): 1431-1443
    
    113. Tadamasa U, Shigemi S, Yuko O, et al. Circadian and senescence enhanced expression of a tobacco cysteineprotease gene [J]. Plant Mol Biol, 2000, 44:649-65
    
    114. Renu KC, Srivalli B, Ahlawat YS. Drought induces many forms of cysteine proteases not observed during natural senescence [J]. Biochem Bioph Res Commun, 1999, 255 (2):324-327
    
    115. Bhalerao R, Keskitalo J, Sterky K, et al. Gene expression in autumn leaves [J]. Plant Physiol, 2003, 131:430-442
    
    116. Yamauchi Y, Sugimoto T, Sueyoshi K, et al. Appearance of endopeptidases during the senescence of cucumber leaves [J]. Plant Sci, 2002, 162:615-619
    
    117. Zhang JX, Kirkham MB. Antioxidant responses to drought in sunflower and sorghum seedlings [J]. New Phytol,1996,132:361-373
    118.Bowler C,Van-Montagu M,Inze D.Superoxide dismutase and stress tolerance[J].Ann Rev Plant Physiol,I992,43:83-116
    119.Mehdy MC.Active oxygen species in plant defense against pathogens[J].Plant Physiol,1994,105:467-472
    120.Smironoff N.The role of active oxygen in the response of plants to water deficit and desiccation[J].New Phytol,1993,125:27-58
    121.Palma JM,Jimenez A,Sandalio LM,et al.Antioxidative enzymes from chloroplasts,mitochondria,and peroxisomes during leaf senescence of nodulated pea plants[J].J Exp Bot,2006,57(8):1747-1758
    122.Palma JM,Sandalio LM,Corpas F J,et al.Plant proteases,protein degradation and oxidative stress:role of peroxisomes[J].Plant Physiol Biochem,2002,40:521-530
    123.Cabriela M,Pastori,Luis A,et al.Natural senescence of pea leaves:an activated oxygen-mediated function for peroxisomes[J].Plant Physiol,1997,113:411-418
    124.Zhang JX,Kirkham MB.Drought-stress-induced changes in activities of superoxide dismutase,catalase,and peroxidase in wheat species[J].Plant Cell Physiol,1994,35(5):785-791
    125.Xu QZ,Huang BR.Antioxidant metabolism associated with summer leaf senescence and turf quality decline for creeping bentgrass[J].Crop Sci,2004,44:553-560
    126.Noctor G,Foyer CH.Ascorbate and glutathione:keeping active oxygen under control[J].Annu Rev Plant Phys,1998,49:249-279
    127.Asada K.The water-water cycle as alternative photon and electron sinks[J].Philos TRoy Soc B:Biol Sci,2000,355,1419-1431
    128.Halliwell B,Gutteridge JMC.Free radicals in biology and medicine[M].3rd edn.Oxford,UK:Oxford University Press,2000
    129.del Rio LA,Sandalio LM,Altomare DA,et al.Mitochondrial and peroxisomal manganese superoxide dismutase:differential expression during leaf senescence[J].J Exp Bot,2003,54(384):923-933
    130.Alscher RG,Erturk N,Heath LS.Role of superoxide dismutases(SODs)in controlling oxidative stress in plants[J].JExp Bot,2002,53:1331-1341
    131.Luis A,del Rio,Gabriela M,et al.The activated oxygen role of peroxisomes in senescence[J]. PlantPhysiol,1998,116:1195-1200
    132.Baker A,Graham IA.Plant peroxisomes,biochemistry,cell biology and biotechnological applications[M].Dordrecht,The Netherlands:Kluwer Academic Publishers,2002
    133.del Rio LA,Pastori GM,Palma JM,et al.The activated oxygen role of peroxisomes in senescence [J].Plant Physiol,1998,116:1195-1200
    134.Nishimura M,Hayashi M,Kato A,et al.Functional transformation of microbodies in higher plant cells[J].Cell Struct Funct,1996,21:387-393
    135.Pastori GM,del Rio LA.Natural senescence of pea leaves an activated oxygen-mediated function for peroxisomes[J].Plant Physiol,1997,113:411-418
    136.John CF,Morris K,Jordan BR,et al.Ultraviolet-B exposure leads to up regulation of senescence associated genes in Arabidopsis thaliana[J].JExp Bot,2001,52:1367-1373
    137.Prochazkova D,Sairam RK,Srivastava GC,et al.Oxidative stress and antioxidant activity as the basis of senescence in maize leaves[J].Plant Sci,2001,161:765-771
    138.Graham I A,Eastmond P J.Pathways of straight and branched chain fatty acid catabolism in higher plants[J].Prog Lipid Res,2002,41:156-181
    139.Himelblau E,Amasino RM.Delivering copper within plant cells[J].Current Opin Plant Biol,2000,3:205-210
    140.Lee RH,Chen SCG.Programmed cell death during rice leaf senescence is nonapop totic[J].New Phytol,2002,155:25-32
    141.He Y,Tang W,Swain JD,et al.Networking senescence regulating pathways by using Arabidopsis enhancer trap lines[J].Plant Physiol,2001,126:707-716
    142.Park JH,Oh SA,Kim YH,et al.Differential expression of senescence-associated mRNAs during leaf senescence induced by different senescence inducing factors in Arabidopsis[J].Plant Mol Biol,1998,37:445-454
    143.Dai N,Schaffer A,Petreikov M,et al.Overexpression ofArabidopsis hexokinase in tomato plants inhibits growth,reduces photosynthesis,and induces rapid senescence[J].Plant Cell,1999,11:1253-1266
    144.Jang JC,Leon P,Zhou L,et al.Hexokinase as a sugar sensor in higher plants[J].Plant Cell,1997,9:5-19
    145.Moore B,Zhou L,Rolland F,et al.Role of the Arabidopsis glucose sensor HXK1 in nutrient,light, and hormonal signaling[J].Science,2003,300:332-336
    146.Quirino BF,Normanly J,Amasino RM.Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defenserelated genes[J].Plant Mol Biol,1999,40:267-78
    147.Kimura KD,Tissenbaum HA,Liu Y,et al.daf-2,an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans[J].Science,1997,277:942-946
    148.Ewbank JJ,Barnes TM,Lakowski B,et al.Structural and functional conservation of the Caenorhabditis elegans timing gene clk-1[J].Science,1997,275:980-983
    149.Woo HR,Goh CH,Park JH,et al.Extended leaf longevity in the ore4-1 mutant of Arabidopsis with a reduced expression of a plastid ribosomal protein gene[J].J Plant,2002,31:331-340
    150.Nooden LD.The phenomenon of senescence[M].In Nooden LD and Leopold AC.Senescence and aging in plants.Academic press,San diego,1988,pp:1-50
    151.McCabe MS,Garratt LC,Schepers F,et al.Effects of PSAG12-IPT gene expression on development and senescence in transgenic lettuce[J].Plant Physiol,2001,127:505-516
    152.Ori N,Juarez MT,Jackson D,et al.Leaf senescence is delayed in tobacco plants expressing the maize homeobox gene knottedl under the control of a senescence-activated promoter[J].Plant Cell,1999,11:1073-1080
    153.He P,Osaki M,Takebe M,et al.Endogenous hormones and expression of senescence-related genes in different senescent types of maize[J].J Exp Bot,2005,56(414):1117-1128
    154.Zeevaart JAD,Creelman RA.Metabolism and physiology of abscisic acid[J].Annu Rev Plant Physiol,1988,39:439-73
    155.Mason TG,Maskell EJ.Studies on the transport of carbohydrates in the cotton plant:Ⅱ.The factors determining the rate and the direction of movement of sugars[J].Ann Bot,1928,42:571-636
    156.Lafitte HR.Photosynthesis and assimilate partitioning and closely related lines of rice exhibiting different source-sink relationships[J].Crop Sci,1984,24:447-452
    157.Venkateswarlu B,Visperas RM.Source-sink relationships in crop plants:a review[J].IRPS,IRRI,1987,125:2-19
    158.Botstein D,White RL,Skolnick M,et al.Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J].Am J Hum Genet,1980,32(3):314-331
    159.Caetano-Anolles G,Brant BJ,Peter GM,et al.DNA amplification fingerprinting using very short arbitrary oligonucleotide primers[J].Nat Biotechnol,1991,9:553-557
    160.Litt M,Luty JA.A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat with in the cardiac muscle actingene[J].Am J Hum Genet,1989,44:397-401
    161.Naqvi NI,Chattoo BB.Development of a sequence characterized amplified region(SCAR)based indirect selection method for a dominant blast-resistance gene in rice[J].Genome,1996,39(1):26-30
    162.Palazzolo MJ,Sawyer SA,Martin CH,et al.Optimized strategies for sequence-tagged-site selection in genome mapping[J].Proc Natl Acad Sci USA,1991,88:8034-8038
    163.Vos P,Hogers R,bleeker M,et al.AFLP:a new technique for DNA fingerprinting[J].Nucleic Acids Res,1995,23:4407-4414
    164.Lai E,Riley JH,Purvis I,et al.A4Mb high-density single nucleotide polymorphism-based map around human apo[J].E.Genomics,1998,54:31-38
    165.Welsh J,McClelland M.Fingerprinting genomes using PCR with arbitrary primers[J].Nucl Acids Res,1990,8:7213-7218
    166.Ziekiewicz E,Rafalski A,Labuda D,et al.Genome fingerpringting by simple sequence repeat (SSR)-anchored polymerase chain reaction[J].Genomics,1994,20:176-183
    167.Li YC,Abraham B,Korol,et al.Microsatellites:genomic distribution,putative functions and mutational mechanisms:a review[J].Mol Ecol,2002,11:2453-2465
    168.Paran I,Michelmore RW.Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce[J].Theor Appl Genet,1993,85:985-993
    169.Torney DC.Mapping using unique sequences[J].J mol Biol,1991,217:259-264
    170.McCouch S,Kochert G,Yu Z,et al.Molecular mapping of rice chromosomes[J].Theor Appl Genet,1988,76:815-829
    171.CausseM A,Fulton TM,Cho YG,et al.Saturated molecular map of the rice genome based on an interspecifie backcross population[J].Genetics,1994,138:1251-1274
    172.Kurat N,NagamuraY,Yamamoto K.A 300 kilo base intervalgentic mapofriceincluding 883expressed sequences[J].Nat Genet,1994,18:365-372
    173.Temnykh S,Declerck G,Luashova A,et al.Computational and experimental analysis of microsatellites in rice(Oryza sativa L.):frequency,length variation,transposon associations,and genetic marker potential[J].Genome Res,2001,11(8):1441-1452
    174.Harushima Y,Yano M,Shomura A,et al.A high-density rice genetic linkage map with 2275 markers using a single F2 population[J].Genetics,1998,148:479-494
    175.Yu J,Hu S,Wang J,et al.A draft sequence of the rice genome(Oryza sativa L ssp indica)[J].Science,2002,296:79-92
    176.Tanksley SD,Ganal MW,Martin GB.Chromosome landing:a paradigm for map-baded cloning in plants with large genomes[J].Trends Genet,1995,11:63-68
    177.Young ND,Zamir D,Canal MW,et al.Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the Tm-2a gene in tomato[J].Genetics,1988,120:579-585
    178.Miehelmore RW,Paran I,Kesseli RV.Identification of marker linked to diseaseresistance gene by bulked segregant analysis.A rapid method detect markers in specific genomic regions by using segregating populations[J].Proc Natl Acad Sci USA,1991,88:9828-9832
    179.Coulson A,Sulston J,Brenner S,et al.Toward a physical map of the genome of the nematode Caenorhabditis elegans[J].Proc Natl Acad Sci USA,1986,83(20):7821-7825
    180.Meinke DW,Meinke LK,Showalter TC,et al.A sequence-based map of Arabidopsis genes with mutant phenotypes[J].Plant Physiol,2003,131:409-418
    181.Sasaki A,Ashikari M,Ueguchi-Tanaka M,et al.The genome sequence and structure of rice chromosome[J].Nature,2002,416:701-702
    182.Wang ZH,Zou Y J,Li XY,et al.Cytoplasmic male sterility of rice with boro Ⅱ cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA Silencing[J].Plant Cell 2006,18:676-687
    183.Li XY,Qian Q,Fu ZM,et al.Control of tillering in rice[J].Nature,2003,422:618-621
    184.Li YH,Qian Q,Zhou YH,et al.Brittle culm,which encodes a COBRA-Like protein,affects the mechanical properties of rice plants[J].Plant Cell,2003,15:2020-2031
    185.Hirochika H,Guiderdoni E,An G,et al.Rice mutant resources for gene discovery[J].Plant Mol Biol,2004,54:325-334
    186.Huang N,Angeles ER,Domingo J,et al.Pyramiding of bacterial blight resistance genes in rice:marker-assisted selection using RFLP and PCR[J].Theor Appl Genet,1997,95:313-320
    187.Hittalmani S,Parco A,Mew TV,et al.Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice[J].Theor Appl Genet,2000,100:1121-1128
    188.蔡立湘,彭新德,邓文,等.中国杂交水稻技术出口战略研究[J].杂交水稻,2004,19(2):1-5
    189.曾千春,周开达,朱祯,等.中国水稻杂种优势利用现状[J].中国水稻科学,2000, 14(4):243-246
    190.Kinoshita T,Maekawa M.Genetical studies on rice plants XCIV.Inheritance of purple leaf color found in indica rice[J].J Fac Agr Hokkaido Univ,1986,62:453-467
    191.Feild TS,Lee DW,Holbrook NM.Why Leaves turn red in autumn.the role of anthocyanins in senescing leaves of red-osier dogwood[J].Plant Physiol,2001,127:566-574
    192.Holton TA,Cornish EC.Genetics and biochemistry of anthocyanin biosynthesis[J].Plant Cell,1995,7(7):1071-1083
    193.Goff SA,Klein TM,Roth BA,et al.Transactivation of anthocyanin biosynthetic genes following transfer of B regulatory genes into maize tissues[J].EMBO J,1990,9:2517-2522
    194.Bodeau JP,Walbot V.Structure and regulation of the maize Bronze2 promoter[J].Plant Mol Biol,1996,32:599-609
    195.Selinger DA,Chandler VL.A mutation in the pale aleurone colorl gene identifies a novel regulator of the maize anthocyanin pathway[J].Plant Cell,1999,11:5-14
    196.Spelt C,Quattrocchio F,Mol JNM,et al.Anthocyaninl of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin cenes[J].Plant Cell,2000,12:1619-1631
    197.Robbins MP,Paolocci F,Hughes JW,et al.Sn,a maize bHLH gene,modulates anthocyanin and condensed tannin pathways in Lotus corniculatus[J].J Exp Bot,2003,381(54):239-248
    198.Hattori T,Vasil V,Rosenkrans L,et al.The Viviparous-1 gene and abscisic acid activate the C1regulatory gene for anthocyanin biosynthesis during seed maturation in maize[J].Genes Dev,2007,6:609-618
    199.Ludwig SR,Wessler SR.Maize R gene family:tissue-specific helix-loop-helix proteins[J].Cell,1990,62:849-851
    200.Chang SM,Lu YQ,Rausher MD.Neutral evolution of the nonbinding region of the anthocyanin regulatory gene Ipmybl in Ipomoea[J].Genetics,2005,170:1967-1978
    201.Sakamoto W,Ohmori T,Kageyama K,et al.The purple leaf(P1)locus of rice:the PI(w)allele has a complex organization and includes two genes encoding basic helix-loop-helix proteins involved in anthocyanin biosynthesis[J].Plant Cell Physiol,2001,42(9):982-991
    202.Doyle J J,Doyle JL.Isolation of plant DNA from fresh tissue[J].Focus,1990,12:13-15
    203.朱诚,傅亚萍,孙宗修.超高产水稻开花结实期间叶片衰老与活性氧代谢的关系[J].中国水 稻科学,2002,16(4):326-330
    204.Himelblau E,Amasino M.Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence[J].J Plant Physiol,2001,158:1317-1323
    205.刘辉,徐孟亮,陈良碧.高产杂交稻品系“两优培九”生育后期的衰老生理特性[J].植物生理学通讯,2004,40(3):326-328
    206.聂军,郑圣先,戴平安,等.控释氮肥调控水稻光合功能和叶片衰老的生理基础[J].中国水稻科学,2005,19(3):255-261
    207.李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2001
    208.张志良.植物生理学实验指导[M].北京:高等教育出版社,1998
    209.赵世杰,许长成,邹琦,等.植物组织中丙二醛测定方法的改进[J].植物生理学通讯,1994,30(3):207-210
    210.Tang Y,Wen X,Lu C.Differential changes in degradation of chlorophyll-protein complexes of photosystem Ⅰ and photosystem Ⅱ during flag leaf senescence of rice[J].Plant Physiol Bioch,2005,43(2):193-201
    211.李奕松,黄丕生,黄仲青,等.两系籼型杂交水稻齐穗后光合作用和衰老特性的研究[J].中国水稻科学,2002,16(2):141-145
    212.Matsuda R,Ohashi-Kaneko K,Fujiwara K,et al.Photosynthetic characteristics of rice leaves grown under red light with or without supplemental blue light[J].Plant Cell Physiol,2004,45:1870-1874
    213.林植芳,李双顺,林桂株.水稻叶片的衰老与超氧化物岐化酶活性及脂质过氧化作用的关系[J].植物学报,1984,26(6):605-615
    214.王荣富,张云华,钱立生,等.超级杂交稻两优培九及其亲本的光氧化特性[J].应用生态学报,2003,14(8):1309-1312
    215.Hang J X,Kirkham M B.Drought-stress-induced changes in activities of superoxide dismutase,catalase,and peroxidase in wheat species[J].Plant Cell Physiol,1994,35(5):785-791
    216.Lafitte H,Travis R.Photosynthesis and assimilate parti- tioning in closely related lines of rice exhibiting different sink-source relationships[J].Crop Sci,1984,24:447-452
    217.Cakmak I.Activity of ascorbate-dependent H_2O_2 scavenging enzymes and leaf chlorosis are enhanced in magnesium- and potassium-deficient leaves,but not in phosphrus-deficient leaves[J].J Exp Bot,1994,45:1259-1266
    218.Araus JL,Tapia L.Photosynthetic gas exchange characteristics of wheat flag blades and sheaths during grain filling[J].Plant Physiol,1987,85:667-673
    219.Crafts-Brandner SJ,Egli DB.Sink removal and leaf senescence in soybean[J].Plant Physiol,1987,85:662-666
    220.舒庆尧,陈善福,吴殿星,等.带叶色标记三系不育系龙特甫A-全龙A[J].福建稻麦科技,1999,(4):18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700