用户名: 密码: 验证码:
尼罗罗非鱼GATA因子表达及其功能的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GATA因子是一类具有保守锌指结构域的转录因子,GATA家族成员具有2个C-X2-C-X17-C-X2-C (C为半胱氨酸,X为可变氨基酸,数值为氨基酸个数)锌指结构,并分别命名为氨基端(N)锌指和羧基端(C)锌指。GATA因子能结合位于靶基因启动子和增强子部位上的一段共同核苷酸序列[T/A(GATA)A/G],因而这类转录因子被命名为GATA转录因子。根据GATA因子的基因结构和功能,哺乳动物GATA家族的6个成员可以分为2个亚家族,即GATA1/2/3亚家族和GATA4/5/6亚家族;其中GATA1/2/3亚家族包括GATA1,2,3; GATA4/5/6亚家族包括GATA4,5,6。哺乳动物的研究表明GATA家族对类固醇发生,性别决定和分化等过程中有着不可或缺的作用。因此,本研究拟通过对尼罗罗非鱼不同时期性腺的8个转录组分析并结合Real-time PCR、原位杂交、启动子报告基因检测系统等实验方法初步研究GATA因子在尼罗罗非鱼性腺发育过程中的表达模式以及生物学功能。
     本研究采用生物信息学分析与转录组数据相结合的方法,以尼罗罗非鱼为研究对象,分离获得了GATA1,2a,2b,3,4,5,6,共7个GATA成员,其cDNA分别是1275、1748、1569、1841、1691、1850和3260bp;分别编码了425、463、456、444、393、384、495个氨基酸;其中GATA2a和GATA2b为硬骨鱼类特有的复制基因。对GATA家族各成员的基因结构分析发现GATA1/2/3亚家族包含5个外显子,GATA4/5/6亚家族包含6个外显子。通过生物信息学分析,我们在已公布了基因组序列的后口类非脊椎动物中只分离获得了GATA123和GATA456两类GATA基因;系统发生分析表明,GATA123与脊椎动物GATA1/2/3亚家族聚类在一起,而GATA456与脊椎动物GATA4/5/6亚家族聚类在一起;这暗示了后口动物的祖先至少具有2个分别与GATA123和GATA456直系同源的GATA基因;在进化过程中,由于脊椎动物基因组复制而产生了新的GATA家族成员。除此之外,系统发生分析还发现GATA1/2/3亚家族中脊椎动物GATA2和GATA3进化关系更为接近,而GATA4/5/6亚家族中GATA5与GATA6的进化关系更为接近。共线性分析表明在脊椎动物中GATA2和GATA3附近存在保守的共线性基因位点,同样的GATA5和GATA6附近也存在保守的共线性基因位点。因此,我们推测GATA2与GATA3以及GATA5与GATA6可能分别由一个祖先基因复制产生。
     通过5,30,90和180dah (days after hatching,孵化后天数)尼罗罗非鱼性腺转录组分析表明GATA家族7个成员均在5dah性腺表达,而且GATA2b,GATA4和GATA6在5dah XX性腺的表达水平明显高于在XY性腺的表达量;但是在30、90和180dah的尼罗罗非鱼性腺转录组,除了GATA6以外的其它GATA家族各成员的表达量均开始下调。5-30dah为尼罗罗非鱼性别决定和分化的关键时期,这暗示了GATA家族对尼罗罗非鱼性腺的早期发育起着重要的作用。鉴于GATA4对性别决定和分化有着重要作用,同时也为了进一步验证转录组数据的真实性,本研究采用Real-time PCR研究了GATA4在5、10、20、30、50、70dah尼罗罗非鱼性腺的表达情况,结果基本与转录组数据吻合。原位杂交结果表明GATA6在雌、雄性腺的间质细胞中表达,而已有的研究表明GATA2a、GATA2b和GATA4均在雌、雄性腺的间质细胞中表达,这表明GATA家族成员可能具有类似的细胞表达模式。有趣的是,性别分化的重要基因AMH以及类固醇合成酶基因,如CYP19、STAR1和STAR2等均在性腺的间质细胞中表达,这暗示了GATA因子可能与AMH、CYP19ala、STAR1和STAR2的表达相关。哺乳动物中的研究表明GATA4能和SF1协同作用,调控AMH、CYP19和STAR的表达。因此,本研究选取了GATA4为研究对象,通过用启动子报告基因研究GATA4对AMH、 CYP19ala、STAR1和STAR2启动子的调控作用,结果表明GATA4能激活AMH和STAR1的转录,抑制CYP19ala的转录;但是对STAR2却没有调控作用。AMH为雄性通路上的重要基因,而CYP19ala是雌雄通路上的重要基因;GATA4对AMH和CYP19ala的调控方式也进一步说明了GATA4可能在雄性通路上起着重要的作用。
     综上所述,本研究从尼罗罗非鱼中分离获得了7个GATA转录因子,通过生物信息学,转录组分析,原位杂交以及转录调控分析获得以下结论:1)脊椎动物的GATA因子可能由原口动物共同祖先的2个GATA基因进化而来;2)GATA2与GATA3以及GATA5与GATA6可能分别由同一个祖先基因进化产生;3)GATA4能上调雄性相关基因AMH的表达,抑制雌雄通路相关基因CYP19ala的表达,从而表明GATA4可能是雄性通路上的重要基因;4)GATA家族对尼罗罗非鱼性腺的早期发育起着重要的作用;
GATA factors are important transcription factors, which have two highly conserved zinc finger domains, C-X2-C-X17-C-X2-C (C, cysteine residues; X, variable amino acid; numbers, the numbers of amino acid residues). These two zinc fingers were designated as N-terminal (N) and C-terminal (C) fingers. The GATA family was named from zinc finger binding to the consensus nucleotide sequence [T/A(GATA)A/G] in the promoter and enhancer regions of the target genes. In mammals, the GATA family consists of six members, and can be divided into two subfamily families, GATA1/2/3and GATA4/5/6, based on the structure and function. Recent studies showed that the members of the GATA factors are emerging as mediators of steroidogenesis, sex determination and differenationation during development in mammals. Therefore, this study intends to investigate the expression patterns and biological functions of GATA factors during tilapia gonadal development by transcriptome analysis, Real-time PCR, in situ hybridization and the luciferase assay.
     In the present study, we isolated7members of GATA family in the Nile tilapia by bioinformatic and transcriptome analysis. Noticeablely, GATA2a and GATA2b were probably derived from the additional genome duplication (the fish-specific genome duplication, FGSD) that occurred at the emergence of actinopterigians. The length cDNA of GATA1,2a,2b,3,4,5,6are1275,1748,1569,1841,1691,850and3260bp, with open reading frames (ORFs) encoding425,463,456,444,393,384and495putative amino acids (aa), respectively. The GATA1/2/3subfamily members comprise five exons and four introns, while GATA4/5/6subfamily members comprise six exons and five introns. Only one GATA123gene and one GATA456gene were isolated in each published invertebrate deuterostome genome. The phylogenetic analysis showed that GATA123s from invertebrate deuterostome were clustered with GATA1/2/3subfamily, while GATA456s were clustered with GATA4/5/6subfamily. These data suggested that the last common ancestor of deuterostome contained at least two GATA genes, with both a GATA123and a GATA456ortholog. The GATA family may have expanded in vertebrates accompanied with whole genome duplication events. Furthermore, a closer relationship between GATA2and GATA3was observerd, and so was between GATA5and GATA6by phylogenetic analysis..Syntenic analysis of vertebrate GATA2,3,5and6demonstrated that GATA2and GATA3might have arisen from a common ancestral gene, while GATA5and GATA6might be derived from aonther ancestral gene.
     Through the analysis of5,30,90and180dah XX and XY gonad transcriptomes of the Nile tilapia, we found that all the GATA family members except GATA5were highly expressed in5dah gonad. It was also found that the expressions of GATA2b, GATA4and GATA6in were obviously sexual dimorphic, with higher expression in XX gonads than in XY gonads. However, the expressions of all GATA family members except GATA6decreased gradually at30,90and180dah. These results suggested that the GATA family may play important roles in the early development of Nile tilapia gonad. As GATA4played critical role in sex determination and differentiation, and verifying the authenticity of the transcriptome data, Real-time PCR was performed to investigate the expression of GATA4in5,10,20,30,50,70dah gonad. The results were consistent with the transcriptome data. In this study, GATA6was detected in interstitial cells of both male and female gonads by in situ hybridization. Recent studies had shown that GATA2a, GATA2b and GATA4were also expressed in interstitial cells of both male and female gonads, suggesting that GATA family members may have similar cellular expression pattern in the Nile tilapia. Interestingly, the AMH which thought to be associated with gonadal sex differentiation and the steroidogenic genes, such as CYP19ala, the STAR1, and STAR2were expressed in interstitial cells of both male and female gonads, which implies that GATA4may be associated with the expression of AMH, CYP19ala, STAR1and STAR2. In mammal, GATA4and SF1synergistically regulated the CYP19a1a, STAR and AMH, Therefore, luciferase assay were performed to confirm whether GATA4could regulae the CYP19ala, STAR1and STAR2. Our results show that GATA4can increase AMH and STAR1but supress the transcription of CYP19a1a. However GATA4has no effect on the transcription of STAR2. The regulation of GATA4to AMH and CYP19a1a was further illustrated that GATA4may play an important role in the male pathway.
     In summary,7GATA factors were isolated from Nile tilapia. Through bioinformatics, transcriptome analysis, in situ hybridization and luciferase assay, we got the following conclusions:1) the GATA genes of vertebrates might be derived from the two GATA genes of the last common ancestor of deuterostome;2) GATA2and GATA3might have arisen from a common ancestral gene, while GATA5and GATA6might be derived from aonther ancestral gene;3) GATA4could increase AMH and supress the CYP19a1a transcription which indicated that GATA4may play an important role in the male pathway;4) GATA family might play an important roles in the early development of Nile tilapia gonad by transcriptome analysis.
引文
孟安明,林硕.1999.利用GATA-2调控成分制备组织特异性表达GFP的转基因斑马鱼.科学通报,44(21):2283-2286.
    何远清,储明星,刘荣志,王金玉.2007GATA家族与哺乳动物繁殖.中国畜牧兽医,第34卷第11期.
    景彩霞,杨加周,艾庆燕,苗乃周.2009GATA家族与生殖.中华男科学杂志.5(10):932-936.
    周林燕,张修月,王德寿.2004.脊椎动物性别决定和分化的分子机制研究进展.动物学研究,25(1):81~88
    张未丽,刘智皓,吴风瑞,黄宝锋,韩飞,孙运侣,王德寿.2009.转录因子GATA-2在脊椎动物发育过程中的作用.四川动物,第28卷第6期.
    黄宝锋.2011.诱导3月龄罗非鱼卵巢性逆转模型的转录组学研究.西南大学博士论文.
    张未丽.2009.罗非鱼GATA-2和P450(11 β)基因克隆、表达及在性腺分化和配子发生中作用的初步研究.西南大学硕士毕业论文.
    Bell, E., Lumsden, A., and Graham, A. (1999). Expression of GATA-2 in the developing avian rhombencephalon. Mechanisms of development 84,173-176.
    Bielinska, M., Parviainen, H., Porter-Tinge, S.B., Kiiveri, S., Genova, E., Rahman, N., Huhtaniemi, I.T., Muglia, L.J., Heikinheimo, M., and Wilson, D.B. (2003). Mouse strain susceptibility to gonadectomy-induced adrenocortical tumor formation correlates with the expression of GATA-4 and luteinizing hormone receptor. Endocrinology 144,4123-4133.
    Bielinska, M., Seehra, A., Toppari, J., Heikinheimo, M., and Wilson, D.B. (2007). GATA-4 is required for sex steroidogenic cell development in the fetal mouse. Developmental dynamics: an official publication of the American Association of Anatomists 236,203-213.
    Blobel, G.A., Simon, M.C., and Orkin, S.H. (1995). Rescue of GATA-1-deficient embryonic stem cells by heterologous GATA-binding proteins. Molecular and cellular biology 15,626-633.
    Bresnick, E.H., Lee, H.Y., Fujiwara, T., Johnson, K.D., and Keles, S. (2010). GATA switches as developmental drivers. The Journal of biological chemistry 285,31087-31093.
    Briegel, K., Lim, K.C., Plank, C., Beug, H., Engel, J.D., and Zenke, M. (1993). Ectopic expression of a conditional GATA-2/estrogen receptor chimera arrests erythroid differentiation in a hormone-dependent manner. Genes & development 7,1097-1109.
    Charles, M.A., Saunders, T.L., Wood, W.M., Owens, K., Parlow, A.F., Camper, S.A., Ridgway, E.C., and Gordon, D.F. (2006). Pituitary-specific Gata2 knockout:effects on gonadotrope and thyrotrope function. Molecular endocrinology (Baltimore, Md) 20,1366-1377.
    Crispino, J.D., Lodish, M.B., Thurberg, B.L., Litovsky, S.H., Collins, T., Molkentin, J.D., and Orkin, S.H. (2001). Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors. Genes & development 15,839-844.
    Daniel, P.B., Walker, W.H., and Habener, J.F. (1998). Cyclic AMP signaling and gene regulation. Annual review of nutrition 18,353-383.
    Dasen, J.S., O'Connell, S.M., Flynn, S.E., Treier, M., Gleiberman, A.S., Szeto, D.P., Hooshmand, F., Aggarwal, A.K., and Rosenfeld, M.G. (1999). Reciprocal interactions of Pitl and GATA2 mediate signaling gradient-induced determination of pituitary cell types. Cell 97,587-598.
    de Santa Barbara, P., Moniot, B., Poulat, F., and Berta, P. (2000). Expression and subcellular localization of SF-1, SOX9, WT1, and AMH proteins during early human testicular development. Developmental dynamics:an official publication of the American Association of Anatomists 217,293-298.
    Detrich, H.W.,3rd, Kieran, M.W., Chan, F.Y., Barone, L.M., Yee, K., Rundstadler, J.A., Pratt, S., Ransom, D., and Zon, L.I.(1995). Intraembryonic hematopoietic cell migration during vertebrate development. Proceedings of the National Academy of Sciences of the United States of America 92,10713-10717.
    Gao, X., Sedgwick, T., Shi, Y.B., and Evans, T. (1998). Distinct functions are implicated for the GATA-4, -5, and -6 transcription factors in the regulation of intestine epithelial cell differentiation. Molecular and cellular biology 18,2901-2911.
    Gillis, W.Q., Bowerman, B.A., and Schneider, S.Q. (2008). The evolution of protostome GATA factors:molecular phylogenetics, synteny, and intron/exon structure reveal orthologous relationships. BMC evolutionary biology 8,112.
    Giuili, G., Shen, W.H., and Ingraham, H.A. (1997). The nuclear receptor SF-1 mediates sexually dimorphic expression of Mullerian Inhibiting Substance, in vivo. Development (Cambridge, England) 124,1799-1807.
    Hammer, G.D., Krylova, I., Zhang, Y., Darimont, B.D., Simpson, K., Weigel, N.L., and Ingraham, H.A. (1999). Phosphorylation of the nuclear receptor SF-1 modulates cofactor recruitment: integration of hormone signaling in reproduction and stress. Molecular cell 3,521-526.
    Heicklen-Klein, A., McReynolds, L.J., and Evans, T. (2005). Using the zebrafish model to study GATA transcription factors. Seminars in cell & developmental biology 16,95-106.
    Heikinheimo, M., Ermolaeva, M., Bielinska, M., Rahman, N.A., Narita, N., Huhtaniemi, I.T., Tapanainen, J.S., and Wilson, D.B. (1997). Expression and hormonal regulation of transcription factors GATA-4 and GATA-6 in the mouse ovary. Endocrinology 138,3505-3514.
    Hossain, A., and Saunders, G.F. (2003). Role of Wilms tumor 1 (WT1) in the transcriptional regulation of the Mullerian-inhibiting substance promoter. Biology of reproduction 69, 1808-1814.
    Ijiri, S., Kaneko, H., Kobayashi, T., Wang, D.S., Sakai, F., Paul-Prasanth, B., Nakamura, M., and Nagahama, Y. (2008). Sexual dimorphic expression of genes in gonads during early differentiation of a teleost fish, the Nile tilapia Oreochromis niloticus. Biology of reproduction 78,333-341.
    Imai, T., Kawai, Y., Tadokoro, Y., Yamamoto, M., Nishimune, Y., and Yomogida, K. (2004). In vivo and in vitro constant expression of GATA-4 in mouse postnatal Sertoli cells. Molecular and cellular endocrinology 214,107-115.
    Ketola, I., Pentikainen, V., Vaskivuo, T., Ilvesmaki, V., Herva, R., Dunkel, L., Tapanainen, J.S., Toppari, J., and Heikinheimo, M. (2000). Expression of transcription factor GATA-4 during human testicular development and disease. The Journal of clinical endocrinology and metabolism 85,3925-3931.
    Ketola, I., Rahman, N., Toppari, J., Bielinska, M., Porter-Tinge, S.B., Tapanainen, J.S., Huhtaniemi, I.T., Wilson, D.B., and Heikinheimo, M. (1999). Expression and regulation of transcription factors GATA-4 and GATA-6 in developing mouse testis. Endocrinology 140,1470-1480.
    Kiiveri, S., Liu, J., Westerholm-Ormio, M., Narita, N., Wilson, D.B., Voutilainen, R., and Heikinheimo, M. (2002). Differential expression of GATA-4 and GATA-6 in fetal and adult mouse and human adrenal tissue. Endocrinology 143,3136-3143.
    Kiiveri, S., Liu, J., Westerholm-Ormio, M., Narita, N., Wilson, D.B., Voutilainen, R., and Heikinheimo, M. (2002). Transcription factors GATA-4 and GATA-6 during mouse and human adrenocortical development. Endocrine research 28,647-650.
    Kitajima, K., Masuhara, M., Era, T., Enver, T., and Nakano, T. (2002). GATA-2 and GATA-2/ER display opposing activities in the development and differentiation of blood progenitors. The EMBO journal 21,3060-3069.
    Ko, L.J., and Engel, J.D. (1993). DNA-binding specificities of the GATA transcription factor family. Molecular and cellular biology 13,4011-4022.
    Koutsourakis, M., Langeveld, A., Patient, R., Beddington, R., and Grosveld, F. (1999). The transcription factor GATA6 is essential for early extraembryonic development. Development (Cambridge, England) 126,723-732.
    Kuo, C.T., Morrisey, E.E., Anandappa, R., Sigrist, K., Lu, M.M., Parmacek, M.S., Soudais, C., and Leiden, J.M. (1997). GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes & development 11,1048-1060.
    Laitinen, M.P., Anttonen, M., Ketola, I., Wilson, D.B., Ritvos, O., Butzow, R., and Heikinheimo, M. (2000). Transcription factors GATA-4 and GATA-6 and a GATA family cofactor, FOG-2, are expressed in human ovary and sex cord-derived ovarian tumors. The Journal of clinical endocrinology and metabolism 85,3476-3483.
    LaVoie, H.A. (2003). The role of GATA in mammalian reproduction. Experimental biology and medicine (Maywood, NJ) 228,1282-1290.
    Lavoie, H.A., McCoy, G.L., and Blake, C.A. (2004). Expression of the GATA-4 and GATA-6 transcription factors in the fetal rat gonad and in the ovary during postnatal development and pregnancy. Molecular and cellular endocrinology 227,31-40.
    Liang, Q., Wiese, R.J., Bueno, O.F., Dai, Y.S., Markham, B.E., and Molkentin, J.D. (2001). The transcription factor GATA4 is activated by extracellular signal-regulated kinase 1-and 2-mediated phosphorylation of serine 105 in cardiomyocytes. Molecular and cellular biology 21, 7460-7469.
    Lourenco, D., Brauner, R., Rybczynska, M., Nihoul-Fekete, C., McElreavey, K., and Bashamboo, A. (2011). Loss-of-function mutation in GATA4 causes anomalies of human testicular development. Proceedings of the National Academy of Sciences of the United States of America 108,1597-1602.
    Lowry, J.A., and Atchley, W.R. (2000). Molecular evolution of the GATA family of transcription factors:conservation within the DNA-binding domain. Journal of molecular evolution 50, 103-115.
    Lu, J.R., McKinsey, T.A., Xu, H., Wang, D.Z., Richardson, J.A., and Olson, E.N. (1999). FOG-2, a heart- and brain-enriched cofactor for GATA transcription factors. Molecular and cellular biology 19,4495-4502.
    Ma, G.T., Roth, M.E., Groskopf, J.C., Tsai, F.Y., Orkin, S.H., Grosveld, F., Engel, J.D., and Linzer, D.I. (1997). GATA-2 and GATA-3 regulate trophoblast-specific gene expression in vivo. Development (Cambridge, England) 124,907-914.
    Matsushita, A., Sasaki, S., Kashiwabara, Y., Nagayama, K., Ohba, K., Iwaki, H., Misawa, H., Ishizuka, K., and Nakamura, H. (2007). Essential role of GATA2 in the negative regulation of thyrotropin beta gene by thyroid hormone and its receptors. Molecular endocrinology (Baltimore, Md) 21,865-884.
    Mayr, B., and Montminy, M. (2001). Transcriptional regulation by the phosphorylation-dependent factor CREB. Nature reviews Molecular cell biology 2,599-609.
    McCoard, S.A., Wise, T.H., and Ford, J.J. (2002). Expression levels of Mullerian-inhibiting substance, GATA4 and 17alpha-hydroxylase/17,20-lyase cytochrome P450 during embryonic gonadal development in two diverse breeds of swine. The Journal of endocrinology 175, 365-374.
    Meyers-Wallen, V.N. (2005). Sfl and Mis expression:molecular milestones in the canine sex determination pathway. Molecular reproduction and development 70,383-389.
    Miyamoto, Y., Taniguchi, H., Hamel, F., Silversides, D.W., and Viger, R.S. (2008). A GATA4/WT1 cooperation regulates transcription of genes required for mammalian sex determination and differentiation. BMC molecular biology 9,44.
    Molkentin, J.D., Tymitz, K.M., Richardson, J.A., and Olson, E.N. (2000). Abnormalities of the genitourinary tract in female mice lacking GATA5. Molecular and cellular biology 20, 5256-5260.
    Morrisey, E.E., Ip, H.S., Tang, Z., and Parmacek, M.S. (1997). GATA-4 activates transcription via two novel domains that are conserved within the GATA-4/5/6 subfamily. The Journal of biological chemistry 272,8515-8524.
    Morrisey, E.E., Tang, Z., Sigrist, K., Lu, M.M., Jiang, F., Ip, H.S., and Parmacek, M.S. (1998). GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes & development 12,3579-3590.
    Nakagawa, R., Sakai, Y., Takashima, A., Terada, T., Kobayashi, A., and Maeda, M. (2001). GATA DNA-binding protein expressed in mouse I-10 Leydig testicular tumor cells. Biochemical and biophysical research communications 283,412-416.
    Nardelli, J., Thiesson, D., Fujiwara, Y., Tsai, F.Y., and Orkin, S.H. (1999). Expression and genetic interaction of transcription factors GATA-2 and GATA-3 during development of the mouse central nervous system. Developmental biology 210,305-321.
    Nichols, K.E., Crispino, J.D., Poncz, M., White, J.G., Orkin, S.H., Maris, J.M., and Weiss, M.J. (2000). Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nature genetics 24,266-270.
    Nishida, H., Miyagawa, S., Vieux-Rochas, M., Morini, M., Ogino, Y., Suzuki, K., Nakagata, N., Choi, H.S., Levi, G., and Yamada, G. (2008). Positive regulation of steroidogenic acute regulatory protein gene expression through the interaction between Dlx and GATA-4 for testicular steroidogenesis. Endocrinology 149,2090-2097.
    Oreal, E., Mazaud, S., Picard, J.Y., Magre, S., and Carre-Eusebe, D. (2002). Different patterns of anti-Mullerian hormone expression, as related to DMRT1, SF-1, WT1, GATA-4, Wnt-4, and Lhx9 expression, in the chick differentiating gonads. Developmental dynamics:an official publication of the American Association of Anatomists 225,221-232.
    Pandolfi, P.P., Roth, M.E., Karis, A., Leonard, M.W., Dzierzak, E., Grosveld, F.G., Engel, J.D., and Lindenbaum, M.H. (1995). Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nature genetics 11, 40-44.
    Pask, A.J., Whitworth, D.J., Mao, C.A., Wei, K.J., Sankovic, N., Graves, J.A., Shaw, G., Renfree, M.B., and Behringer, R.R. (2004). Marsupial anti-Mullerian hormone gene structure, regulatory elements, and expression. Biology of reproduction 70,160-167.
    Patient, R.K., and McGhee, J.D. (2002). The GATA family (vertebrates and invertebrates). Current opinion in genetics & development 12,416-422.
    Pevny, L., Simon, M.C., Robertson, E., Klein, W.H., Tsai, S.F., D'Agati, V., Orkin, S.H., and Costantini, F. (1991). Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349,257-260.
    Ramos-Vara, J.A., and Miller, M.A. (2009). Immunohistochemical evaluation of GATA-4 in canine testicular tumors. Veterinary pathology 46,893-896.
    Rev, R., Lukas-Croisier, C., Lasala, C., and Bedecarras, P. (2003). AMH/MIS:what we know already about the gene, the protein and its regulation. Molecular and cellular endocrinology 211, 21-31.
    Richards, J.S. (2001). New signaling pathways for hormones and cyclic adenosine 3',5'-monophosphate action in endocrine cells. Molecular endocrinology (Baltimore, Md) 15, 209-218.
    Robert, N.M., Tremblay, J.J., and Viger, R.S. (2002). Friend of GATA (FOG)-1 and FOG-2 differentially repress the GATA-dependent activity of multiple gonadal promoters. Endocrinology 143,3963-3973.
    Shi, Y., Schonemann, M.D., and Mellon, S.H. (2009). Regulation of P450c17 expression in the early embryo depends on GATA factors. Endocrinology 150,946-956.
    Silverman, E., Eimerl, S., and Orly, J. (1999). CCAAT enhancer-binding protein beta and GATA-4 binding regions within the promoter of the steroidogenic acute regulatory protein (StAR) gene are required for transcription in rat ovarian cells. The Journal of biological chemistry 274, 17987-17996.
    Steger, D.J., Hecht, J.H., and Mellon, P.L. (1994). GATA-binding proteins regulate the human gonadotropin alpha-subunit gene in the placenta and pituitary gland. Molecular and cellular biology 14,5592-5602.
    Suh, H., Gage, P.J., Drouin, J., and Camper, S.A. (2002). Pitx2 is required at multiple stages of pituitary organogenesis:pituitary primordium formation and cell specification. Development (Cambridge, England) 129,329-337.
    Svensson, E.C., Huggins, G.S., Dardik, F.B., Polk, C.E., and Leiden, J.M. (2000). A functionally conserved N-terminal domain of the friend of GATA-2 (FOG-2) protein represses GATA4-dependent transcription. The Journal of biological chemistry 275,20762-20769.
    Svensson, E.C., Tufts, R.L., Polk, C.E., and Leiden, J.M. (1999). Molecular cloning of FOG-2:a modulator of transcription factor GATA-4 in cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America 96,956-961.
    Tevosian, S.G., Albrecht, K.H., Crispino, J.D., Fujiwara, Y., Eicher, E.M., and Orkin, S.H. (2002). Gonadal differentiation, sex determination and normal Sry expression in mice require direct interaction between transcription partners GATA4 and FOG2. Development (Cambridge, England) 129,4627-4634.
    Tremblay, J.J., Hamel, F., and Viger, R.S. (2002). Protein kinase A-dependent cooperation between GATA and CCAAT/enhancer-binding protein transcription factors regulates steroidogenic acute regulatory protein promoter activity. Endocrinology 143,3935-3945.
    Tremblay, J.J., and Viger, R.S. (1999). Transcription factor GATA-4 enhances Mullerian inhibiting substance gene transcription through a direct interaction with the nuclear receptor SF-1. Molecular endocrinology (Baltimore, Md) 13,1388-1401.
    Tremblay, J.J., and Viger, R.S. (2001). Nuclear receptor Dax-1 represses the transcriptional cooperation between GATA-4 and SF-1 in Sertoli cells. Biology of reproduction 64, 1191-1199.
    Tremblay, J.J., and Viger, R.S. (2003). A mutated form of steroidogenic factor 1 (SF-1 G35E) that causes sex reversal in humans fails to synergize with transcription factor GATA-4. The Journal of biological chemistry 278,42637-42642.
    Tremblay, J.J., and Viger, R.S. (2003). Novel roles for GATA transcription factors in the regulation of steroidogenesis. The Journal of steroid biochemistry and molecular biology 85,291-298.
    Tsai, F.Y., and Orkin, S.H. (1997). Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood 89,3636-3643.
    Viger, R.S., Guittot, S.M., Anttonen, M., Wilson, D.B., and Heikinheimo, M. (2008). Role of the GATA family of transcription factors in endocrine development, function, and disease. Molecular endocrinology (Baltimore, Md) 22,781-798.
    Viger, R.S., Mertineit, C., Trasler, J.M., and Nemer, M. (1998). Transcription factor GATA-4 is expressed in a sexually dimorphic pattern during mouse gonadal development and is a potent activator of the Mullerian inhibiting substance promoter. Development (Cambridge, England) 125,2665-2675.
    Viger, R.S., Taniguchi, H., Robert, N.M., and Tremblay, J.J. (2004). Role of the GATA family of transcription factors in andrology. Journal of andrology 25,441-452.
    Visvader, J.E., Crossley, M., Hill, J., Orkin, S.H., and Adams, J.M. (1995). The C-terminal zinc finger of GATA-1 or GATA-2 is sufficient to induce megakaryocytic differentiation of an early myeloid cell line. Molecular and cellular biology 15,634-641.
    Vizziano, D., Baron, D., Randuineau, G., Mahe, S., Cauty, C., and Guiguen, Y. (2008). Rainbow trout gonadal masculinization induced by inhibition of estrogen synthesis is more physiological than masculinization induced by androgen supplementation. Biology of reproduction 78, 939-946.
    Watanabe, K., Clarke, T.R., Lane, A.H., Wang, X., and Donahoe, P.K. (2000). Endogenous expression of Mullerian inhibiting substance in early postnatal rat sertoli cells requires multiple steroidogenic factor-1 and GATA-4-binding sites. Proceedings of the National Academy of Sciences of the United States of America 97,1624-1629.
    Wang DS, Kobayashi T, Zhou LY, Paul-Prasanth B, Ijiri S, Sakai F, Okubo K, Morohashi K, Nagahama Y (2007) Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1. Molecular endocrinology (Baltimore, Md) 21:712-725
    Wang DS, Zhou LY, Kobayashi T, Matsuda M, Shibata Y, Sakai F, Nagahama Y (2010) Doublesex-and Mab-3-related transcription factor-1 repression of aromatase transcription, a possible mechanism favoring the male pathway in tilapia. Endocrinology 151:1331-1340
    Yamamoto, M., Ko, L.J., Leonard, M.W., Beug, H., Orkin, S.H., and Engel, J.D. (1990). Activity and tissue-specific expression of the transcription factor NF-E1 multigene family. Genes & development 4,1650-1662.
    Yang, H.Y., and Evans, T. (1992). Distinct roles for the two cGATA-1 finger domains. Molecular and cellular biology 12,4562-4570.
    Yoshinaga, N., Shiraishi, E., Yamamoto, T., Iguchi, T., Abe, S., and Kitano, T. (2004). Sexually dimorphic expression of a teleost homologue of Mullerian inhibiting substance during gonadal sex differentiation in Japanese flounder, Paralichthys olivaceus. Biochemical and biophysical research communications 322,508-513.
    Zhou, L.Y., Wang, D.S., Kobayashi, T., Yano, A., Paul-Prasanth, B., Suzuki, A., Sakai, F., and Nagahama, Y. (2007). A novel type of P450c17 lacking the lyase activity is responsible for C21-steroid biosynthesis in the fish ovary and head kidney. Endocrinology 148,4282-4291.
    Li, J., Chen, W., Wang, D., Zhou, L., Sakai, F., Guan, G., and Nagahama, Y. (2011). GATA4 is Involved in the Gonadal Development and Maturation of the Teleost Fish Tilapia, Oreochromis niloticus. The Journal of reproduction and development.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700