用户名: 密码: 验证码:
磷酸法自成型木质颗粒活性炭的制备过程与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于物理法制备成型颗粒活性炭需要使用粘结剂,生产能耗高、成本高、操作繁杂;化学法颗粒活性炭难于同时满足高吸附性和高强度的问题。论文提出以植物原料中纤维素、木质素和半纤维素的模型物为实验参照物,采用比表面积分析仪、X-射线衍射仪、红外光谱仪和气相色谱-质谱联用仪等分析磷酸法颗粒活性炭自成型过程中木质组分结构的演变机制,揭示了磷酸法颗粒活性炭的自成型机理,探明了自成型过程中起塑化和粘结作用的主要成分及来源,可望解决化学法自成型颗粒活性炭生产过程中存在的问题,为生产高强度高吸附性能的化学法颗粒活性炭提供理论基础与技术支撑。论文的主要研究内容和结果如下:
     以杉木屑为原料,采用磷酸活化法在不添加粘结剂的条件下制备自成型颗粒活性炭。研究结果表明,捏合热处理后,磷酸的催化作用促进了木质原料发生结构重排,引进了含磷官能团和C=C=C键。捏合时间较短时,磷酸对木质原料主要起水解和润胀作用。捏合时间较长时,木质原料主要发生脱水和聚合反应。捏合热处理过程中,在酸催化、机械力和热力的作用下,木质原料发生水解降解,形成具有粘结剂、抗氧化剂共同作用的体系,促使木质原料在不另外添加粘结性物质的条件下实现自成型。自成型过程中,起粘结作用的主要成分是糠醛均聚或缩聚形成的呋喃类树脂。浸渍比的增大,有利于颗粒活性炭孔隙结构的发达,但不利于强度的提高。木质颗粒活性炭在自成型过程中生成的粘结剂并未堵塞活性炭的孔隙,自成型过程可以制得孔隙结构发达的活性炭产品。
     以微晶纤维素为原料,采用磷酸活化法在不添加粘结剂的条件下制备自成型纤维素基颗粒活性炭。研究结果表明,捏合热处理后,纤维素的游离羟基、氢键、CH基团和C-O基团的含量增加,并引入了含磷官能团、C=C=C键、C=C键和C=O键。捏合时间较短时,磷酸主要对纤维素的无定形区和结晶区起水解和润胀作用。捏合时间较长时,磷酸主要起脱水和热分解的作用。在捏合热处理过程中,纤维素大分子在酸催化、热力和机械力作用下,发生水解降解,形成粘结剂、塑化剂和抗氧化剂共同作用的体系,促使纤维素原料在不另外添加粘结性物质的条件下实现自成型。纤维素自成型过程中,起粘结作用的主要成分是糠醛均聚或缩聚形成的呋喃类树脂,起塑化作用的主要成分为4-甲基苯酚。浸渍比的增大,有利于纤维素基颗粒活性炭吸附性能的提高和孔隙结构的发达,但不利于强度的提高。
     以半纤维素的模型物——木聚糖为原料,采用磷酸活化法在不添加粘结剂的条件下制备自成型半纤维素基颗粒活性炭。研究结果表明,在捏合热处理过程中,半纤维素在酸催化、热力和机械力的作用下,发生水解降解,形成粘结剂、有机合成中间体和抗氧化剂共同作用的体系,促使半纤维素原料在不另外添加粘结性物质的条件下实现自成型。半纤维素自成型过程中,起粘结作用的主要成分是糠醛均聚或缩聚形成的呋喃类树脂。炭活化温度的升高不利于半纤维素基颗粒活性炭吸附性能的提高和孔隙结构的发达,但有利于强度的提高。
     在纤维素/木质素和纤维素/半纤维素的混合物制备自成型颗粒活性炭过程中,随着木质素和半纤维素比例的提高,颗粒活性炭的强度呈先升后降的趋势。在捏合加热过程中,纤维素与半纤维素的水解降解产物间发生了协同效应,形成更多具有粘结性能的物质,使其强度高于纤维素和半纤维素单独制备的颗粒活性炭。不同比例的纤维素、半纤维素和木质素的混合物制备颗粒活性炭的过程中,纤维素比例的提高有利于强度的增加,木质素和半纤维素比例的增加不利于强度的提高。在杉木屑与模型物混合制备自成型颗粒活性炭的过程中,随着纤维素比例的提高,强度呈上升趋势。随着木质素和半纤维素比例的提高,强度呈下降趋势。与杉木屑制得的颗粒活性炭相比,添加纤维素和木质素有利于强度的提高,颗粒活性炭强度增大的因素主要来源于纤维素和木质素。捏合产物中糠醛含量的增加有利于颗粒活性炭强度的提高,糠醛含量太高反而不利于强度的提高。
     对自成型木质颗粒活性炭在甲烷存储和醋酸乙烯催化剂载体活性炭方面的应用进行研究。结果表明,随着浸渍比的升高,颗粒活性炭的甲烷吸附量呈先升后降的趋势,单位体积的甲烷吸附量呈下降的趋势。随着炭活化温度的升高,颗粒活性炭的表观密度、强度和醋酸锌吸附量呈不断上升的趋势,醋酸吸附值呈不断下降趋势。控制好自成型颗粒活性炭的生产工艺,可以制得符合国标产品指标的醋酸乙烯催化剂载体活性炭。
Based on the preparation of GAC by physical activation needs using a binder, and thisprocess is high energy consumption, high cost and complicated operation. On the other hand, itis difficult for GAC prepared from chemical activation to meet high adsorption andhigh-strength simultaneously. The dissertation used model compound of cellulose, lignin andhemi-cellulose as experimental materials, analyzed the evolution of the lignocellulosiccomponent in the process of self-form by automatic specific surface area analyzer, fouriertransform infrared spectroscopy, X-ray diffractometer, thermogravimetric analysis and gaschromatography-mass spectrometry instrument, revealed the self-form mechanism of GACprepared from phosphoric acid activation, and proved the main ingredient and sources of theplasticizing and cohesive compound in the self-form process. The objective of this dissertationis to solve the problem of the preparation of GAC by chemical activation and provide atheoretical basis and methods. The main research contents and results were as follows:
     GAC was prepared from fir wood powder by phosphoric acid activation without additionany binder. The results showed that phosphoric acid catalysis would promote therearrangements of the structure of lignocellulosic materials and introducephosphorus-containing functional group and C=C=C bond in the process of heat kneading.When heat kneading time was shorter, the main effects of phosphoric acid were hydrolysis anddilation. On the other hand, when heat kneading time was longer, the main reactions oflignocellulosic materials were dehydration and polymerization. In the process of heat kneading,with the effects of acid catalysis, mechanical strength and heat, lignocellulosic materials werehydrolysis degradation and formation of the system combined a binder and antioxidant, whichprompted the self-form of lignocellulosic materials in the condition without adding extraadhesive. In the process of self-form, the main ingredient of binder is furan resin which is fromthe homo or polycondensation of furfural. The increase of impregnation ratio benefited thedevelopment of pore structure in GAC, but not the intensity of GAC. The binder formed in the process of self-form did not clog the porosity of GAC, and the self-form process could producethe GAC with development porosity.
     GAC was prepared from cellulose by phosphoric acid activation without addition anybinder. The results showed that free hydroxyl groups, hydrogen content, CH groups and COgroups of cellulose were increased and phosphorus-containing functional groups, C=C=Cbond, C=C bond and the C=O bond were introduced in the process of heat kneading. Whenheat kneading time was shorter, the main effects of phosphoric acid were to hydrolyze anddilate the amorphous and crystalline regions in cellulose. When heat kneading time was longer,the main effects of phosphoric acid were dehydration and polymerization. In the process ofheat kneading, with the effects of acid catalysis, mechanical strength and heat, cellulose washydrolysis degradation and formation of the system combined a binder, plasticizer andantioxidant, which prompted the self-form of cellulose in the condition without adding extraadhesive, and then produced GAC. In the process of self-form, the main ingredient of binder isfuran resin which is from the homo or polycondensation of furfural, and the main ingredient ofplasticizer is4-methylphenol. The increase of impregnation ratio benefited the development ofpore structure in GAC, but not the intensity of GAC.
     Xylan was used as the main model of hemi-cellulose to prepare hemi-cellulose-basedgranular activated carbon by phosphoric acid activation without addition any binder. Theresults showed that with the effects of acid catalysis, mechanical strength and heat in theprocess of heat kneading, hemi-cellulose was hydrolysis degradation and formation of thesystem combined a binder, synthesis intermediates and antioxidant, which prompted theself-form of hemi-cellulose in the condition without adding extra adhesive, and then producedGAC. In the process of self-form, the main ingredient of binder is furan resin which is from thehomo or polycondensation of furfural. The increase of carbonization/activation temperaturebenefited the development of pore structure in GAC, but not the intensity of GAC.
     During preparation of GAC from the mixture of cellulose/lignin and the mixture ofcellulose/hemi-cellulose, the intensity of GAC increased firstly and then decreased with the increase of the proportion of lignin and hemi-cellulose. In the process of heat kneading, thesynergistic reaction took place between the hydrolysis degradation product of cellulose andhemi-cellulose, and produced more adhesive substance, so the intensity of GAC prepared fromthe mixture of cellulose/hemi-cellulose was stronger than the GAC prepared from cellulose andhemi-cellulose alone. During preparation of GAC from cellulose/hemi-cellulose/lignin mixture,the intensity of GAC increased with the increase of cellulosic proportion. However, theincrease of the proportion of lignin and hemi-cellulose was not good for intensity increase.During the preparation of GAC from the mixture of fir wood powder and wooden modelcompound, the intensity of GAC increased with the increase of cellulosic proportion, and theincrease of the proportion of hemi-cellulose and lignin showed an opposite trend. Whencompared with the GAC prepared from fir wood powder, the addition of cellulose and ligninbenefited the increase of GAC intensity. The factor for the increase of GAC intensity derivedfrom cellulose and lignin. The increase of furfural content benefited GAC intensity increase,but the intensity would decrease when the content of furfural was too high.
     The application of GAC in the field of methane adsorption and vinyl acetate catalystcarrier was studied. The results showed that the amount of methane adsorption increased firstlyand then decreased with the increase of impregnation ratio, and the unit volume of methaneadsorption decreased with the increase of impregnation ratio.
     The apparent density, intensity and adsorption value of zinc acetate of GAC increasedwith rising carbonization/activation temperature, but the adsorption of acetate showed theopposite trend. Controlled the preparation technology of self-form GAC, it would produce thevinyl acetate catalyst carrier conformed the national standard.
引文
[1]林冠烽.炭化工艺对高活性木炭性能的影响[J].林业科学,2009,45(04):112~116
    [2]林冠烽,程捷,黄彪,等.两步炭化法制备高活性木炭[J].林产化学与工业,2007,107(03):85~87
    [3]林冠烽,程捷,黄彪,等.高活性木炭的制备与孔结构表征[J].化工进展,2007,190(07):995~998
    [4]甘琦,周昕,赵斌元,等.成型活性炭的制备研究进展[J].材料导报,2006,20(01):61~63
    [5]闫新龙,刘欣梅,乔柯,等.成型活性炭制备技术研究进展[J].化工进展,2008,207(12):1868~1872
    [6] W. C. Lim, C. Srinivasakannan, N. Balasubramanian.Activation of palm shells by phosphoric acidimpregnation for high yielding activated carbon[J].Journal of Analytical and Applied Pyrolysis,2010,88(2):181~186
    [7] M. A. Nahil,P. T. Williams.Pore characteristics of activated carbons from the phosphoric acid chemicalactivation of cotton stalks[J].Biomass and Bioenergy,2012,37(1):142~149
    [8] S. Zuo,J. Liu,J. Yang,et al.Effects of the crystallinity of lignocellulosic material on the porosity ofphosphoric acid-activated carbon[J].Carbon,2009,47(15):3578~3580
    [9]林冠烽,黄彪,陈学榕,等.物理法制备炭陶复合吸附材料及其表征[J].林业科学,2010,46(12):125~129
    [10] C. Guan, L. S. Loo, K. Wang, et al.Methane storage in carbon pellets prepared via a binderlessmethod[J].Energy Conversion and Management,2011,52(2):1258~1262
    [11] D. Lozano-Castelló,D. Cazorla-Amorós,A. Linares-Solano,et al.Activated carbon monoliths formethane storage: influence of binder[J].Carbon,2002,40(15):2817~2825
    [12] R. Ubago-Pérez, F. Carrasco-Marín, D. Fairén-Jiménez, et al.Granular and monolithic activatedcarbons from KOH-activation of olive stones[J]. Microporous and Mesoporous Materials,2006,92(1–3):64~70
    [13] H. Trevi o-Cordero,L. G. Juárez-Aguilar,D. I. Mendoza-Castillo,et al.Synthesis and adsorptionproperties of activated carbons from biomass of Prunus domestica and Jacaranda mimosifolia for theremoval of heavy metals and dyes from water[J].Industrial Crops and Products,2013,42(1):315~323
    [14] W. Li,K. Yang,J. Peng,et al.Effects of carbonization temperatures on characteristics of porosity incoconut shell chars and activated carbons derived from carbonized coconut shell chars[J].IndustrialCrops and Products,2008,28(2):190~198
    [15] Z.Y. Zhong, Q. Yang, X.M. Li, et al.Preparation of peanut hull-based activated carbon bymicrowave-induced phosphoric acid activation and its application in Remazol Brilliant Blue Radsorption[J].Industrial Crops and Products,2012,37(1):178~185
    [16]褚效中,赵宜江,徐继明,等.高比表面积活性炭的制备及对Cr(Ⅵ)吸附的研究[J].环境工程学报,2010,4(02):315~318
    [17]王贵珍,李丽欣,李永真.毛竹活性炭制备及其对含苯酚废水吸附的研究[J].高校化学工程学报,2010,24(04):700~704
    [18]吴开金.竹节制备提金活性炭及其表征[J].林业科学,2009,45(12):124~128
    [19]周学辉,潘祖耀,石苏华,等.水蒸气活化法制山核桃壳活性炭研究[J].林产化工通讯,1999,39(05):3~7
    [20]王宁,苏伟,周理,等.水蒸气活化法制备椰壳活性炭的研究[J].炭素,2006,34(02):44~48
    [21] J. Rizhikovs, J. Zandersons, B. Spince, et al.Preparation of granular activated carbon fromhydrothermally treated and pelletized deciduous wood[J].Journal of Analytical and Applied Pyrolysis,2012,93(1):68~76
    [22] J. Pastor-Villegas,C. J. Durán-Valle.Pore structure of activated carbons prepared by carbon dioxide andsteam activation at different temperatures from extracted rockrose[J].Carbon,2002,40(3):397~402.
    [23] G. E. J. Poinern,G. Senanayake,N. Shah,et al.Adsorption of the aurocyanide, complex on granularactivated carbons derived from macadamia nut shells–A preliminary study[J].Minerals Engineering,2011,24(15):1694~1702
    [24] J. Jaramillo,V. Gómez-Serrano,P. M. álvarez.Enhanced adsorption of metal ions onto functionalizedgranular activated carbons prepared from cherry stones[J].Journal of Hazardous Materials,2009,161(2–3):670~676
    [25]林冠烽.竹材制备醋酸乙烯载体活性炭[J].福建农林大学学报(自然科学版),2012,41(02):145~148
    [26]林冠烽,蒋剑春,吴开金,等.磷酸活化竹节制备醋酸乙烯载体活性炭的研究[J].林产化学与工业,2012,32(05):51~55
    [27]左宋林,森田光博.空气-磷酸活化木炭制备酸性颗粒活性炭的研究[J].林产化学与工业,2010,30(06):13~16
    [28]时运铭,魏青,许保恩,等.磷酸法桃壳活性炭的研制[J].现代化工,2009,29(S2):83~85.
    [29]吴春华,赵黔榕,张加研,等.微波辐照核桃壳磷酸法制备活性炭的研究[J].西南林学院学报,2006,26(05):74~76
    [30]吴春华,赵黔榕,张加研,等.微波辐照核桃壳氯化锌法制备活性炭的研究[J].生物质化学工程,2007,41(01):25~27
    [31]李冰,李洋,许宁侠,等.氯化锌活化法制备长柄扁桃壳活性炭[J].西北大学学报(自然科学版),2010,40(05):806~810
    [32]杨娟,丘克强.核桃壳真空化学活化制备活性炭[J].中南大学学报(自然科学版),2012,43(04):1233~1238
    [33] K. S. K. Reddy,S. Ahmed Al,C.Srinivasakannan.海枣核CO2活化和磷酸活化制备活性炭及其结构、吸附性能(英文)[J].新型炭材料,2012,27(05):344~351
    [34] M. Al Bahri, L. Calvo, M. A. Gilarranz, et al.Activated carbon from grape seeds upon chemicalactivation with phosphoric acid: Application to the adsorption of diuron from water[J].ChemicalEngineering Journal,2012,203(1):348~356
    [35] R. Yavuz,H. Akyildiz,N. Karatepe,et al.Influence of preparation conditions on porous structures ofolive stone activated by H3PO4[J].Fuel Processing Technology,2010,91(1):80~87
    [36] K. Y. Foo,B. H. Hameed.Dynamic adsorption behavior of methylene blue onto oil palm shell granularactivated carbon prepared by microwave heating[J].Chemical Engineering Journal,2012,203(1):81~87
    [37] K. Y. Foo, B. H. Hameed.Utilization of oil palm biodiesel solid residue as renewable sources forpreparation of granular activated carbon by microwave induced KOH activation[J].BioresourceTechnology,2013,130(1):696~702
    [38] R. R. Bansode,J. N. Losso,W. E. Marshall,et al.Adsorption of volatile organic compounds by pecanshell and almond shell-based granular activated carbons[J].Bioresource Technology,2003,90(2):175~184
    [39] Y. A. Alhamed,H. S. Bamufleh.Sulfur removal from model diesel fuel using granular activated carbonfrom dates’ stones activated by ZnCl2[J].Fuel,2009,88(1):87~94
    [40] H. S. Bamufleh.Single and binary sulfur removal components from model diesel fuel using granularactivated carbon from dates’ stones activated by ZnCl2[J].Applied Catalysis A: General,2009,365(2):153~158
    [41] Z. Hu, M. P. Srinivasan.Preparation of high-surface-area activated carbons from coconutshell[J].Microporous and Mesoporous Materials,1999,27(1):11~18
    [42] M. J. Prauchner, F. Rodríguez-Reinoso.Preparation of granular activated carbons for adsorption ofnatural gas[J].Microporous and Mesoporous Materials,2008,109(1–3):581~584
    [43] W. T. Tsai,C. Y. Chang,S. Y. Wang,et al.Preparation of activated carbons from corn cob catalyzed bypotassium salts and subsequent gasification with CO2[J].Bioresource Technology,2001,78(2):203~208
    [44] F. Caturla, M. Molina-Sabio, F. Rodríguez-Reinoso.Preparation of activated carbon by chemicalactivation with ZnCl2[J].Carbon,1991,29(7):999~1007
    [45] A. Arami-Niya,W. M. A. W. Daud,F. S. Mjalli.Using granular activated carbon prepared from oil palmshell by ZnCl2and physical activation for methane adsorption[J].Journal of Analytical and AppliedPyrolysis,2010,89(2):197~203
    [46]霍素敏,邓洪贵,王艳莉,等.成型工艺对活性炭孔结构及其CO2吸附性能的影响[J].材料科学与工程学报,2009,27(05):731~734
    [47]夏洪应,彭金辉,张利波,等.微波辐射-水蒸气法制备烟杆基颗粒活性炭[J].化学工程,2007,36(01):48~51
    [48]夏洪应,彭金辉,张利波,等.微波辐射二氧化碳法制备烟秆基颗粒活性炭[J].煤炭转化,2006,29(01):81~84
    [49]夏洪应,彭金辉,张利波,等.二氧化碳活化制备烟杆基颗粒活性炭的研究[J].黄金,2006,27(07):38~41
    [50]夏洪应,彭金辉,张利波,等.水蒸气活化制备烟杆基颗粒活性炭的研究[J].离子交换与吸附,2007,23(02):112~118
    [51]李建刚,李开喜,凌立成,等.成型活性炭的制备及其甲烷吸附性能的研究[J].新型炭材料,2004,20(02):114~118
    [52]杨常玲,宋燕,李开喜.成型工艺条件对活性炭甲烷吸附性能的影响[J].煤炭转化,2001,24(01):86~88
    [53]宋燕,凌立成,李开喜,等.粘结剂添加量及后处理条件对成型活性炭甲烷吸附性能的影响[J].新型炭材料,2000,16(02):6~10
    [54]王锐,陈华,刘守新.CMC粘接法制备柱状成型活性炭[J].林产化学与工业,2011,31(05):6~10
    [55] N. Tancredi,N. Medero,F. M ller,et al.Phenol adsorption onto powdered and granular activatedcarbon, prepared from Eucalyptus wood[J].Journal of Colloid and Interface Science,2004,279(2):357~363
    [56] B. Pendyal,M. M. Johns,W. E. Marshall,et al.Removal of sugar colorants by granular activatedcarbons made from binders and agricultural by-products[J].Bioresource Technology,1999,69(1):45~51
    [57] B. Pendyal,M. M. Johns,W. E. Marshall,et al.The effect of binders and agricultural by-products onphysical and chemical properties of granular activated carbons[J].Bioresource Technology,1999,68(3):247~254
    [58] K. M. Smith,G. D. Fowler, S. Pullket,et al.The production of attrition resistant, sewage–sludgederived, granular activated carbon[J].Separation and Purification Technology,2012,98(1):240~248
    [59] M. Ahmedna, W. E. Marshall, R. M. Rao.Production of granular activated carbons from selectagricultural by-products and evaluation of their physical, chemical and adsorptionproperties[J].Bioresource Technology,2000,71(2):113~123
    [60] M. Ahmedna, W. E. Marshall, R. M. Rao.Surface properties of granular activated carbons fromagricultural by-products and their effects on raw sugar decolorization[J].Bioresource Technology,2000,71(2):103~112
    [61]杨勇,钱运华,蒋金龙,等.凹凸棒土和活性炭复合载体的制备及其在烟气脱硫中的应用[J].非金属矿,2011,34(02):25~27
    [62]林云昊,许勇进,黄满琴,等.活性炭陶瓷复合材料的苯吸附特性[J].材料热处理学报,2011,32(10):34~38
    [63] M. Molina-Sabio, J. C. González, F. Rodr g uez-Reinoso.Adsorption of NH3and H2S on activatedcarbon and activated carbon–sepiolite pellets[J].Carbon,2004,42(2):448~450
    [64] J. M. Gatica, J. M. Rodríguez-Izquierdo, D. Sánchez, et al.Originally prepared carbon-basedhoneycomb monoliths with potential application as VOCs adsorbents[J].Comptes Rendus Chimie,2006,9(9):1215~1220
    [65] M. Yates, J. Blanco, P. Avila, et al.Honeycomb monoliths of activated carbons for effluent gaspurification[J].Microporous and Mesoporous Materials,2000,37(1–2):201~208
    [67] M. Yates,J. Blanco,M. A. Martin-Luengo,et al.Vapour adsorption capacity of controlled porosityhoneycomb monoliths[J].Microporous and Mesoporous Materials,2003,65(2–3):219~231
    [68] A. P. Carvalho,A. S. Mestre,J. Pires,et al.Granular activated carbons from powdered samples usingclays as binders for the adsorption of organic vapours[J].Microporous and Mesoporous Materials,2006,93(1–3):226~231
    [69] S. Zuo,J. Yang,J. Liu,et al.Significance of the carbonization of volatile pyrolytic products on theproperties of activated carbons from phosphoric acid activation of lignocellulosic material[J].FuelProcessing Technology,2009,90(7–8):994~1001
    [70] V. Fierro,V. Torné-Fernández,A. Celzard.Kraft lignin as a precursor for microporous activated carbonsprepared by impregnation with ortho-phosphoric acid: Synthesis and texturalcharacterisation[J].Microporous and Mesoporous Materials,2006,92(1–3):243~250
    [71] D. Prahas, Y. Kartika, N. Indraswati, et al.Activated carbon from jackfruit peel waste by H3PO4chemical activation: Pore structure and surface chemistry characterization[J].Chemical EngineeringJournal,2008,140(1–3):32~42
    [72] X. Ma,F. Ouyang.Adsorption properties of biomass-based activated carbon prepared with spent coffeegrounds and pomelo skin by phosphoric acid activation[J].Applied Surface Science,2013,268(1):566~570
    [73] N. V. Sych, S. I. Trofymenko, O. I. Poddubnaya, et al.Porous structure and surface chemistry ofphosphoric acid activated carbon from corncob[J].Applied Surface Science,2012,261(1):75~82
    [74]林冠烽.炭/陶复合多孔吸附材料的研究[D].福建农林大学硕士学位论文,2007,1~15
    [75] M. Molina-Sabio, F. Rodríguez-Reinoso, F. Caturla, et al.Development of porosity in combinedphosphoric acid-carbon dioxide activation[J].Carbon,1996,34(4):457~462
    [76] M. Molina-Sabio, C. Almansa, F. Rodr guez-Reinoso.Phosphoric acid activated carbon discs formethane adsorption[J].Carbon,2003,41(11):2113~2119
    [77] F. Rodríguez-Reinoso,Y. Nakagawa,J. Silvestre-Albero,et al.Correlation of methane uptake withmicroporosity and surface area of chemically activated carbons[J].Microporous and MesoporousMaterials,2008,115(3):603~608
    [78]蒋剑春,王志高,邓先伦,等.丁烷吸附用颗粒活性炭的制备研究[J].林产化学与工业,2005,25(03):5~8
    [79]王志高,蒋剑春,邓先伦,等.磷酸法竹质颗粒活性炭的制备研究[J].林产化学与工业,2007,27(02):36~40
    [80]王志高,蒋剑春,邓先伦,等.脱色用木质颗粒活性炭的制备研究[J].林产化学与工业,2005,25(02):39~42
    [81]孟中磊,李军集,孙康.桉树锯末制备颗粒活性炭实验研究[J].广西林业科学,2012,41(04):356~358
    [82]曾巧玲,黄彪,李涛,等.磷酸法制备颗粒活性炭的研究[J].安全与环境学报,2010,10(05):18~20
    [83] M. J. Ahmed, S. K. Theydan.Physical and chemical characteristics of activated carbon prepared bypyrolysis of chemically treated date stones and its ability to adsorb organics[J].Powder Technology,2012,229(0):237~245
    [84] K. J. Cronje, K. Chetty, M. Carsky, et al.Optimization of chromium(VI) sorption potential usingdeveloped activated carbon from sugarcane bagasse with chemical activation by zincchloride[J].Desalination,2011,275(1–3):276~284
    [85] C. Saka.BET, TG–DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon fromacorn shell by chemical activation with ZnCl2[J].Journal of Analytical and Applied Pyrolysis,2012,95(1):21~24
    [86] S. K. Theydan,M. J. Ahmed.Optimization of preparation conditions for activated carbons from datestones using response surface methodology[J].Powder Technology,2012,224(1):101~108
    [87] Y. Nakagawa,M. Molina-Sabio,F. Rodríguez-Reinoso.Modification of the porous structure along thepreparation of activated carbon monoliths with H3PO4and ZnCl2[J].Microporous and MesoporousMaterials,2007,103(1–3):29~34
    [88] C. Almansa, M. Molina-Sabio, F. Rodríguez-Reinoso.Adsorption of methane into ZnCl2-activatedcarbon derived discs[J].Microporous and Mesoporous Materials,2004,76(1–3):185~191
    [89] T. H. Usmani, T. W. Ahmad, A. H. K. Yousufzai.Preparation and liquid-phase characterization ofgranular activated-carbon from rice husk[J].Bioresource Technology,1994,48(1):31~35
    [90]黄玲清.氯化锌法颗粒活性炭试验研究[J].林产化学与工业,1995,15(03):73~79
    [91] G.Y. Heo,S.J. Park.Effects of structure of heat-treated pitch precursors on electrochemical properties ofpitch-based activated carbons[J].Powder Technology,2013,239(1):94~97
    [92] C. W. Purnomo,C. Salim,H. Hinode.Effect of the activation method on the properties and adsorptionbehavior of bagasse fly ash-based activated carbon[J].Fuel Processing Technology,2012,102(1):132~139
    [93] J. Romanos, M. Beckner, D. Stalla, et al.Infrared study of boron–carbon chemical bonds inboron-doped activated carbon[J].Carbon,2013,54(1):208~214
    [94] K.T. Wu,P.H. Wu,F.C. Wu,et al.A novel approach to characterizing liquid-phase adsorption on highlyporous activated carbons using the Toth equation[J].Chemical Engineering Journal,2013,221(1):373~381
    [95] W. Zhao, V. Fierro, N. Fernández-Huerta, et al.Impact of synthesis conditions of KOH activatedcarbons on their hydrogen storage capacities[J].International Journal of Hydrogen Energy,2012,37(19):14278~14284
    [96] J. M. Ramos-Fernández, M. Martínez-Escandell, F. Rodríguez-Reinoso.Production of binderlessactivated carbon monoliths by KOH activation of carbon mesophase materials[J]. Carbon,2008,46(2):384~386
    [97] V. Ruiz,C. Blanco,R. Santamaría,et al.An activated carbon monolith as an electrode material forsupercapacitors[J].Carbon,2009,47(1):195~200
    [98] A. Silvestre-Albero,J. M. Ramos-Fernández,M. Martínez-Escandell,et al.High saturation capacity ofactivated carbons prepared from mesophase pitch in the removal of volatile organiccompounds[J].Carbon,2010,48(2):548~556
    [99]郭亮,彭晓峰,吴占松.甲烷在成型纳米活性炭中的吸附动力学特性[J].化工学报,2008,86(11):2726~2732
    [100]郑青榕,蔡振雄,陈武,等.甲烷在成型前后活性炭上吸附的初步试验[J].化工学报,2009,S1):77~82
    [101]王玉新,周亚平.竹质中孔活性炭甲烷吸附分离及存储性能研究[J].天然气化工(C1化学与化工),2008,25(03):8~12
    [102] A. Arami-Niya,W. M. A. W. Daud,F. S. Mjalli.Comparative study of the textural characteristics of oilpalm shell activated carbon produced by chemical and physical activation for methaneadsorption[J].Chemical Engineering Research and Design,2011,89(6):657~664
    [103] A. Arami-Niya,W. M. A. Wan Daud,F. S. Mjalli,et al.Production of microporous palm shell basedactivated carbon for methane adsorption: Modeling and optimization using response surfacemethodology[J].Chemical Engineering Research and Design,2012,90(6):776~784
    [104] N. Bagheri, J. Abedi.Adsorption of methane on corn cobs based activated carbon[J].ChemicalEngineering Research and Design,2011,89(10):2038~2043
    [105] M. J. D. Mahboub,A. Ahmadpour,H. Rashidi.Improving methane storage on wet activated carbons atvarious amounts of water[J].Journal of Fuel Chemistry and Technology,2012,40(4):385~389
    [106] S. Farzad, V. Taghikhani, C. Ghotbi, et al.Experimental and Theoretical Study of the Effect ofMoisture on Methane Adsorption and Desorption by Activated Carbon at273.5K[J].Journal of NaturalGas Chemistry,2007,16(1):22~30
    [107]詹亮,李开喜,朱星明,等.超级活性炭储氢性能研究[J].材料科学与工程,2002,20(01):31~34
    [108]郑青榕,顾安忠,蔡振雄,等.成型前后活性炭储氢性能的初步研究[J].热能动力工程,2009,23(6):682~684
    [109]苏伟,周亚平,魏留芳,等.微孔结构与表面改性对活性炭吸附储氢能力的影响(英文)[J].新型炭材料,2007,23(02):135~140
    [110]韩磊,杨儒,刘国强,等.汉麻杆基活性炭表面织构与储氢性能的研究[J].无机化学学报,2009,25(12):2097~2104
    [111] W. Zhao,V. Fierro,C. Zlotea,et al.Activated carbons with appropriate micropore size distribution forhydrogen adsorption[J].International Journal of Hydrogen Energy,2011,36(9):5431~5434
    [112] M. Z. Figueroa-Torres, C. Domínguez-Ríos, J. G. Caba as-Moreno, et al.The synthesis ofNi-activated carbon nanocomposites via electroless deposition without a surface pretreatment aspotential hydrogen storage materials[J].International Journal of Hydrogen Energy,2012,37(14):10743~10749
    [113] M. Zieliński,R. Wojcieszak,S. Monteverdi,et al.Hydrogen storage on nickel catalysts supported onamorphous activated carbon[J].Catalysis Communications,2005,6(12):777~783
    [114] M. Jordá-Beneyto,D. Lozano-Castelló,F. Suárez-García,et al.Advanced activated carbon monolithsand activated carbons for hydrogen storage[J].Microporous and Mesoporous Materials,2008,112(1–3):235~242
    [115] H.Y. Chuang,M.S. Yu,C.H. Chen,et al.Preparation of platinum impregnated activated carbon viavacuum treatment and effect on hydrogen storage rate[J].Journal of the Taiwan Institute of ChemicalEngineers,2012,43(4):585~590
    [116] C.C. Huang,H.M. Chen,C.H. Chen,et al.Effect of surface oxides on hydrogen storage of activatedcarbon[J].Separation and Purification Technology,2010,70(3):291~295
    [117]李洁,熊莲,张海荣,等.粉状活性炭颗粒制备、脱色性能及再生性能研究[J].化工新型材料,2012,31(12):137~139
    [118]王成福,赵光辉,马文辉,等.木糖用颗粒活性炭脱色工艺条件的研究[J].应用化工,2005,34(04):256~258
    [119]郝功元,吴彩娥,杨剑婷,等.银杏花粉粗多糖脱色工艺研究[J].食品科学,2009,30(14):136~139
    [120]李燕凤,李军,许晨,等.活性炭脱除湿法磷酸色素的研究[J].无机盐工业,2008,49(03):52~54
    [121] F. López, F. Medina, M. Prodanov, et al.Oxidation of activated carbon: application to vinegardecolorization[J].Journal of Colloid and Interface Science,2003,257(2):173~178
    [122] D. J. Sessa, D. E. Palmquist.Effect of heat on the adsorption capacity of an activated carbon fordecolorizing/deodorizing yellow zein[J].Bioresource Technology,2008,99(14):6360~6364
    [123] S.H. Chang, K.S. Wang, H.H. Liang, et al.Treatment of Reactive Black5by combinedelectrocoagulation–granular activated carbon adsorption–microwave regeneration process[J].Journal ofHazardous Materials,2010,175(1–3):850~857
    [124]张勇,宁平,高建培,等.微波加热制备椰壳活性炭吸附含Pb~(2+)废水特性研究[J].林产化学与工业,2007,27(04):87~91
    [125]姚淑华,贾永锋,汪国庆,等.活性炭负载Fe (III)吸附剂去除饮用水中的As (V)[J].过程工程学报,2009,9(2):250~256
    [126]信欣,何歆,崔钶,等.核桃壳炭化吸附废水中Cr(Ⅵ)的性能研究[J].环境工程学报,2010,31(10):2273~2277
    [127]刘晓芳,刘满红,张晓梅,等.澳洲坚果壳活性炭对Cr(Ⅵ)的吸附性能[J].云南民族大学学报(自然科学版),2012,21(03):178~181
    [128]周夫涛,张含卓,张丽.椰壳活性炭对水中Au(Ⅲ)的吸附性能[J].河北师范大学学报(自然科学版),2011,56(01):79~82
    [129] J. P. Chen,X. Wang.Removing copper, zinc, and lead ion by granular activated carbon in pretreatedfixed-bed columns[J].Separation and Purification Technology,2000,19(3):157~167
    [130] R. R. Bansode,J. N. Losso,W. E. Marshall,et al.Adsorption of metal ions by pecan shell-basedgranular activated carbons[J].Bioresource Technology,2003,89(2):115~119
    [131] F. Di Natale,A. Lancia,A. Molino,et al.Removal of chromium ions form aqueous solutions byadsorption on activated carbon and char[J].Journal of Hazardous Materials,2007,145(3):381~390
    [132] F. Di Natale,A. Erto,A. Lancia,et al.Experimental and modelling analysis of As(V) ions adsorptionon granular activated carbon[J].Water Research,2008,42(8–9):2007~2016
    [133] A. H. Sulaymon,B. A. Abid,J. A. Al-Najar.Removal of lead copper chromium and cobalt ions ontogranular activated carbon in batch and fixed-bed adsorbers[J].Chemical Engineering Journal,2009,155(3):647~653
    [134] D. D. Milenkovi,P. V. Da i,V. B. Veljkovi.Ultrasound-assisted adsorption of copper(II) ions onhazelnut shell activated carbon[J].Ultrasonics Sonochemistry,2009,16(4):557~563
    [135]于维钊,郑经堂,何小超,等.改性活性炭对噻吩的吸附性能研究[J].离子交换与吸附,2009,25(01):52~61
    [136]赵瑞东,刘凤玲,郑寿荣,等.CO2高温活化活性炭材料对苯酚的吸附行为研究[J].环境污染与防治,2010,32(10):33~36
    [137]余筱洁,周存山,王允祥,等.山核桃壳活性炭制备及其吸附苯胺特性[J].过程工程学报,2010,35(01):65~69
    [138]林云珠,钱庆荣,黄宝铨,等.桐壳基活性炭的制备及其对有机物的吸附性能[J].林产化学与工业,2007,27(04):55~60
    [139]周烈兴,彭金辉,钱天才,等.活性炭对甲苯的吸附及其等温线预测[J].化学反应工程与工艺,2011,27(02):187~192
    [140] S. Suresh,V. C. Srivastava,I. M. Mishra.Adsorptive removal of phenol from binary aqueous solutionwith aniline and4-nitrophenol by granular activated carbon[J].Chemical Engineering Journal,2011,171(3):997~1003
    [141] H.S. Tai, C.J. G. Jou.Application of granular activated carbon packed-bed reactor in microwaveradiation field to treat phenol[J].Chemosphere,1999,38(11):2667~2680
    [142] A. Kumar,S. Kumar,S. Kumar,et al.Adsorption of phenol and4-nitrophenol on granular activatedcarbon in basal salt medium: Equilibrium and kinetics[J].Journal of Hazardous Materials,2007,147(1–2):155~166
    [143] S. Kumar,M. Zafar,J. K. Prajapati,et al.Modeling studies on simultaneous adsorption of phenol andresorcinol onto granular activated carbon from simulated aqueous solution[J].Journal of HazardousMaterials,2011,185(1):287~294
    [144] C. Valderrama, X. Gamisans, X. de las Heras, et al.Sorption kinetics of polycyclic aromatichydrocarbons removal using granular activated carbon: Intraparticle diffusion coefficients[J].Journal ofHazardous Materials,2008,157(2–3):386~396
    [145] M.W. Jung, K.H. Ahn, Y. Lee, et al.Adsorption characteristics of phenol and chlorophenols ongranular activated carbons (GAC)[J].Microchemical Journal,2001,70(2):123~131
    [146]王广建,张健康,杨志坚,等.活性炭负载银吸附剂的制备与脱除苯并噻吩的研究[J].功能材料,2013,44(07)
    [147]姜良艳,周仕学,王文超,等.活性炭负载锰氧化物用于吸附甲醛[J].环境科学学报,2008,28(02):337~341
    [148]姚淑华,贾永锋,汪国庆,等.活性炭负载Fe(Ⅲ)吸附剂去除饮用水中的As(Ⅴ)[J].过程工程学报,2009,34(02):250~256
    [149]刘守新,陈曦.TiO2/活性炭负载型光催化剂的溶胶-凝胶法合成及表征[J].催化学报,2008,29(01):19~24
    [150] L. Bo,X. Quan,X. Wang,et al.Preparation and characteristics of carbon-supported platinum catalystand its application in the removal of phenolic pollutants in aqueous solution by microwave-assistedcatalytic oxidation[J].Journal of Hazardous Materials,2008,157(1):179~186
    [151] Y. Wang,Z. Liu,L. Zhan,et al.Performance of an activated carbon honeycomb supported catalyst insimultaneous SO2and NO removal[J].Chemical Engineering Science,2004,59(22–23):5283~5290
    [152] Y. Ma,S.G. Wang,M. Fan,et al.Characteristics and defluoridation performance of granular activatedcarbons coated with manganese oxides[J].Journal of Hazardous Materials,2009,168(2–3):1140~1146
    [153] D.K. Lee,S.C. Kim,I.C. Cho,et al.Photocatalytic oxidation of microcystin-LR in a fluidized bedreactor having TiO2-coated activated carbon[J].Separation and Purification Technology,2004,34(1–3):59~66
    [154] Y. Li,X. Li,J. Li,et al.Photocatalytic degradation of methyl orange in a sparged tube reactor withTiO2-coated activated carbon composites[J].Catalysis Communications,2005,6(10):650~655
    [155] Y. Li,X. Li,J. Li,et al.Photocatalytic degradation of methyl orange by TiO2-coated activated carbonand kinetic study[J].Water Research,2006,40(6):1119~1126
    [156] H.J. Fan, P. R. Anderson.Copper and cadmium removal by Mn oxide-coated granular activatedcarbon[J].Separation and Purification Technology,2005,45(1):61~67
    [157] S. Nethaji,A. Sivasamy,A. B. Mandal.Preparation and characterization of corn cob activated carboncoated with nano-sized magnetite particles for the removal of Cr(VI)[J].Bioresource Technology,2013,134(1):94~100
    [158] L. Pei,J. Zhou,L. Zhang.Preparation and properties of Ag-coated activated carbon nanocompositesfor indoor air quality control[J].Building and Environment,2013,63(1):108~113
    [159] C. Wang,Y. Ao,P. Wang,et al.Preparation, characterization and photocatalytic activity of a novelcomposite photocatalyst: Ceria-coated activated carbon[J].Journal of Hazardous Materials,2010,184(1–3):1~5
    [160] J.H. Xu, N.Y. Gao, Y. Deng et al.Perchlorate removal by granular activated carbon coated withcetyltrimethyl ammonium bromide[J].Journal of Colloid and Interface Science,2011,357(2):474~479.
    [161] G. Lin,J. Jiang,K. Wu,et al.Effects of Heat Pretreatment During Impregnation on the Preparation ofActivated Carbon from Chinese Fir Wood by Phosphoric Acid Activation[J].BioEnergy Research,2013,1~6
    [162] S. Zuo,J. Yang,J. Liu.Effects of the heating history of impregnated lignocellulosic material on poredevelopment during phosphoric acid activation[J].Carbon,2010,48(11):3293~3295
    [163]左宋林,江小华.磷酸催化竹材炭化的FT-IR分析[J].林产化学与工业,2005,25(4):21~25
    [164] P. Fu, S. Hu, L. Sun, et al.Structural evolution of maize stalk/char particles duringpyrolysis[J].Bioresource Technology,2009,100(20):4877~4883
    [165] M. Jagtoyen, F. Derbyshire.Activated carbons from yellow poplar and white oak by H3PO4activation[J].Carbon,1998,36(7):1085~1097
    [166]于政锡,徐建本,郑起,等.活性炭载体对醋酸乙烯合成催化剂活性的影响[J].石油化工,2007,35(12):1140~1144
    [167] Q. Qian,M. Machida,H. Tatsumoto.Preparation of activated carbons from cattle-manure compost byzinc chloride activation[J].Bioresource Technology,2007,98(2):353~360
    [168] M. Molina-Sabio,F. Rodr guez-Reinoso.Role of chemical activation in the development of carbonporosity[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2004,241(1–3):15~25
    [169] A. A. Ahmad,B. H. Hameed.Fixed-bed adsorption of reactive azo dye onto granular activated carbonprepared from waste[J].Journal of Hazardous Materials,2010,175(1–3):298~303
    [170] A. Jusoh,L. Su Shiung,N. a. Ali,et al.A simulation study of the removal efficiency of granularactivated carbon on cadmium and lead[J].Desalination,2007,206(1–3):9~16
    [171]朱光真,邓先伦,刘晓敏,等.杉木屑制备高丁烷工作容量颗粒活性炭(英文)[J].林产化学与工业,2011,31(03):17~22
    [172]朱光真,邓先伦,刘晓敏.催化活化法制备高丁烷工作容量颗粒活性炭[J].功能材料,2011,42(S5):884~887
    [173]刘晓敏,邓先伦,王国栋,等.活性炭对正丁烷的吸附动力学研究[J].功能材料,2012,43(04):476~479
    [174]刘晓敏,邓先伦,朱光真,等.木质颗粒活性炭的孔结构对丁烷吸附性能的影响研究[J].林产化学与工业,2012,32(02):140~144
    [175] T. R. Nunn, J. B. Howard, J. P. Longwell, et al.Product compositions and kinetics in the rapidpyrolysis of sweet gum hardwood[J].Industrial&Engineering Chemistry Process Design andDevelopment,1985,24(3):836~844
    [176] A. Zeriouh, L. Belkbir.Thermal decomposition of a Moroccan wood under a nitrogenatmosphere[J].Thermochimica Acta,1995,258:243~248
    [177]刘军利,蒋剑春,黄海涛.纤维素CP-GC-MS法裂解行为研究[J].林产化学与工业,2009,29(5):47-53
    [178]陆强,朱锡锋.利用固体超强酸催化热解纤维素制备左旋葡萄糖酮[J].Journal of Fuel Chemistryand Technology,2011,39(6):425~431
    [179]刘雪梅,蒋剑春,孙康,等.热解活化法制备高吸附性能椰壳活性炭[J].生物质化学工程,2012,46(3):5~8
    [180] E. I. Minami,Y. Ozeki, M. Matsuoka,et al.Structure and some characterization of the gene forphenylalanine ammonia‐lyase from rice plants[J].European journal of biochemistry,1989,185(1):19~25
    [181]蒋宝城,张永春,周锦霞,等.天然气吸附剂研究进展[J].化工进展,2007,No.188(05):632~635
    [182]宋燕,凌立成,李开喜,等.成型活性炭对甲烷吸附性能研究[J].新型炭材料,2000,04):13~16
    [183]刘海燕,凌立成,刘植昌,等.甲烷在高比表面积活性炭上吸附行为的初步研究[J].天然气化工,1999,01):8~11
    [184] R. F. Cracknell,P. Gordon,K. E. Gubbins.Influence of pore geometry on the design of microporousmaterials for methane storage[J].The Journal of Physical Chemistry,1993,97(2):494~499
    [185] R. Arriagada, R. Garcia, M. Molina-Sabio, et al.Effect of steam activation on the porosity andchemical nature of activated carbons from Eucalyptus globulus and peach stones[J].Microporousmaterials,1997,8(3):123~130
    [186] Y. Guo, D. A. Rockstraw.Physical and chemical properties of carbons synthesized from xylan,cellulose, and Kraft lignin by H3PO4activation[J].Carbon,2006,44(8):1464~1475
    [187] M. S. Solum,R. J. Pugmire,M. Jagtoyen,et al.Evolution of carbon structure in chemically activatedwood[J].Carbon,1995,33(9):1247~1254
    [188] A. M. Puziy,O. I. Poddubnaya,A. Mart nez-Alonso,et al.Synthetic carbons activated with phosphoricacid: I. Surface chemistry and ion binding properties[J].Carbon,2002,40(9):1493~1505

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700