用户名: 密码: 验证码:
海洋导管架平台安全数字化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋平台安全数字化技术不仅仅是一个新的概念,尽管它所涉及的理论基础、技术数据及工程应用都是建立在现有的知识基础之上,但它是从更高的层次、从系统论和一体化的角度来发展和整合现有知识,从而为更全面、更深入、更有效地挖掘和利用现有平台的各种数据,进行结构安全仿真分析,保证平台安全运行,为提高我国海洋平台全寿命安全管理水平起到积极促进作用。
     本文以国家863计划专项课题“近海老龄平台延寿技术研究”、国家自然科学基金项目“面向老龄平台延寿工程的寿命预测与管理理论及方法研究”和山东省自然科学基金“近海结构虚拟安全理论及其应用研究”为依托,以海洋固定导管架平台为研究对象,提出构建海洋工程结构数字安全技术体系的新设想,系统开展导管架平台数字安全仿真及应用研究,在海洋平台环境数字荷载建模、海洋平台数字结构建模、海洋平台冰疲劳荷载建模、复杂管节点建模方法、平台碰撞风险评估、平台连续倒塌动力非线性分析、老龄平台延寿决策模型、海洋平台数字安全仿真环境、海洋平台安全评估技术体系、海洋结构数字安全仿真软件开发等方面的研究取得了较大进展,可为我国海洋油气资源钻采装备安全提供有效的技术支持。主要研究成果归纳如下:
     1、海洋导管架平台数字荷载模型研究
     研究海洋平台数字荷载模型建模步骤,设计海洋平台数字荷载模型系统框架,并开发相应的6个数字荷载计算模块,即海风荷载模块、波浪荷载模块、海流荷载模块、海冰荷载模块、地震荷载模块以及桩-土数字模块,实现海洋平台数字荷载模块程序开发。传统的冰疲劳荷载划分方法忽略了冰速、破冰周期以及平台固有频率相互关系的影响,难以满足冰区平台疲劳寿命精细评估需要。基于冰激平台存在结构共振和非共振两种基本振动形式,提出一种新的建立平台冰激疲劳寿命评估环境荷载模型。该模型考虑结构固有周期划分冰荷载破冰周期,能够有效保证工况划分时不会错过大部分结构冰激共振工况。
     2、海洋导管架平台数字结构模型研究
     提出空间复杂管节点结构空间相贯线向平面圆环的映射方程,并在此基础上提出统一的复杂管节点精细建模方法;研究复杂管节点数字化实现的关键技术和数字管节点统一建模流程,为复杂管节点结构的模块化设计提供理论模型;开发了海洋平台数字耦合系统分析程序,解决了ANSYS软件子模型法不能实现海洋平台管-实体单元耦合精细局部分析的难题;提出将复杂管节点沿管壁分成8个区块分别计算应力集中系数,开发了复杂管节点应力集中系数计算模块;研究了海洋导管架平台数字结构仿真的建模原则,建立了海洋平台荷载数字模型的系统框架,通过在数字模型中设置结构关键节点,开发了海洋导管架平台整体结构和局部精细结构的数字建模模块。
     3、海洋平台碰撞风险及倒塌分析模型研究
     基于船-平台碰撞系统模型,分析了近海导管架平台可能受到碰撞的船舶种类、平均速度、冲击荷载,进行了船-平台碰撞的风险研究,包括船舶的碰撞概率、损失能量、碰撞后果分析,并以胜利油田海域平台碰撞为例进行了社会风险评估和个人死亡率评估分析;考虑结构失效的动力非线性响应过程,以平台飞溅区桩柱为关键初始失效构件,建立了平台结构发生初始破坏的等效静力模型,基于瞬时加载法分析了平台结构局部突变而振动的动力响应过程,提出了海洋平台连续倒塌的动力响应分析详细流程,最后实现了海洋平台碰撞及倒塌分析模块开发。
     4、不确定环境下的平台延寿决策模型研究
     分析了平台全寿命周期成本,研究了平台运行的主要风险;从影响平台服役状态的工程因素、结构因素、荷载因素和风险因素四个维度进行分析和调整,构建阶层结构;采用模糊理论建立正倒值矩阵,综合专家意见计算各因素权重;引入凹陷因子、裂纹因子、腐蚀因子以及冰荷载因子对影响因素进行合理量化,建立海洋油田老龄平台延寿决策评分准则;采用逻辑运算计算综合评分,建立老龄平台延寿决策参考表,进而依据该表确定平台延寿基准期;利用决策模型对两座海洋平台进行延寿决策,并将其结果与传统评判结果进行了对比分析。研究结果表明,采用本模型能够更加精确地描述平台的动态经济寿命,为复杂不确定环境的老龄平台延寿决策提供了一种新的计算思路。
     5、海洋平台数字安全仿真系统开发
     构建了海洋平台数字安全仿真系统框架;将平台基础数据分为七类,完成了SASOS软件系统的数据库开发;实现了海洋平台数字安全虚拟仿真环境模块开发,该模块由几何动态库、图形动态库以及几何内核库三个动态链接库组成;开发了平台安全评估模块,该模块可实现平台结构完整性评估、维修决策评估、加固效果评估以及剩余寿命评估;开发了导管架平台数字安全仿真系统软件SASOS,软件通过访问其中的数据库模块,自动生成近海平台评估的荷载数字模型、整体结构数字模型、局部结构精细模型、结构服役损伤模型以及维修加固模型;SASOS软件共分为12个功能模块:项目管理、平台数据库、虚拟显示模块、数字荷载模块、数字结构模块、设计水平评估模块、极限承载评估模块、结构损伤评估模块、剩余寿命评估模块、碰撞风险评估模块、连续倒塌仿真模块、延寿决策模块;最后软件针对胜利油田的两座平台进行了工程示范应用评估。
Digitalization of Offshore platform safety technology is not just a new concept. Although theoretical basis, technical data and engineering applications involved in it are built on the existing knowledge, digital safety simulation develops and integrates existing knowledge from a higher level and point of view of system theory and integration, thus it’s beneficial for mining and using various data of existing platforms more comprehensively, more deeply, and more effectively, performing simulation based structure safety analysis,which ensures the safe operation of platforms. It plays an active role in improving the safety and life-cycle management of our country’s offshore platform.
     Relied on a special issue of National High Technology Research and Development Program of China--"Offshore Aged Platform Life Extension Research", National Natural Science Foundation of China--"the Research on Life Prediction, Management Theories and Methods for the Aging Platform Life Extension Project", and Natural Science Foundation of Shandong Province--"Study on Offshore Structures Virtual Safety Theory and Its Application", in this paper the offshore fixed jacket platform is its study object, new idea about building digital safety technology systems of a marine engineering structure is proposed, and the research on jacket platform digital safety simulation and its application is carried out systematically. The studies in several aspects including offshore platform environment digital loads modeling, offshore platform digital structure modeling, offshore platform ice-induced fatigue load modeling, complex tubular joints modeling method, platform collision risk assessment, dynamic nonlinear analysis of platform progressive collapse, aged platform life extension decision-making model, platform digital safety simulation environment, technical systems of offshore platform safety assessment, marine structures digital safety simulation software development and so on, have made great progress, which can provide effectively technical support for the drilling and producing equipment safety of China's offshore oil and gas resources. Main researches are summarized as follows:
     1. Study on offshore jacket platform digital load model
     Modeling steps of the marine platform digital load model is studied; system framework of marine platform digital load model is designed and the corresponding 6 digital load calculation modules are developed, i.e. sea wind load module, wave load module, ocean currents load module, sea ice load module, seismic load module and pile-soil digital module. Offshore platforms digital load module program development is achieved. Ice-induced fatigue load division method in the traditional approach misses mutual relations’impact among the ice speed, ice breaking cycle, platform natural frequency; thus it is difficult to meet the need of platform fatigue life fine assessment in ice zone. Based on two basic forms of structural resonance and non-resonant vibration existing in ice-induced platform, a new environmental load model of assessing platform ice-induced fatigue life is proposed. This model divides ice load ice-breaking cycle by considering the structure natural cycle; therefore it can effectively ensure that most of the structure ice-induced resonance working conditions will not be missed when they are divided.
     2. Study on offshore jacket platform digital structure model
     The equation mapped from intersecting line in structure space of tubular joints with complex space to circular planar ring is proposed, and on this basis, the uniform and fine modeling method for complex tubular joints is presented. The key technology for complex tubular joints to achieve digitalization and digital tubular joints unified modeling process are studied and a theoretical model is provided for complex tubular joints’modularized design. Offshore platforms coupling system analysis program is developed; and the difficult problem that offshore platform pipe-solid element coupling fine local analysis is not able to be achieved by ANSYS software sub-model method, is solved. The creative proposal that Stress concentration factor be calculated separately by dividing complex tubular joints into eight blocks along the tube wall is put forward, on which complex tubular joints stress concentration factor calculation module is developed. The modeling principles of offshore jacket platform digital structure simulation is studied, and a system framework of ocean platform loading digital mode is established; through setting up structures key nodes in the digital model, digital modeling modules for jacket platform integral structure and local fine structure are developed.
     3. Offshore Platform Collision Risk and collapse analysis
     Based on the ship-platform collision system model, ship types, average speed, shock loads involved in offshore jacket platform collision are analyzed; the study on risk of collision between ship and platform is conducted including the ship's collision probability, loss of energy, collision consequence analysis, and social risk assessment and individual mortality assessment analysis is conducted by taking Shengli Oilfield sea area platform collision as an example. Considering the dynamic non-linear response processes of structural failure, taking cylinders in platform splash zone as key initial failure components, equivalent static model of platform structure happening initial destruction is established. Based on the instantaneous load method, dynamic response process of vibration caused by platform structure local mutation is analyzed and dynamic response detailed analysis process of marine platform continuous collapse is suggested.
     4 The platform life extension decision-making under uncertain environment
     Platform whole life cycle cost is analyzed and major risks of platform running are studied. Analysis and adjustment is conducted from four dimensions----engineering factors, structural factors, load factors and risk factors which affect platform service state, and hiberarchy structures are built; adopting fuzzy theory, positive inverted value matrix is established, and weight of each factor is calculated by integrating experts’advice. Introducing depression factor, crack factor, corrosion factor, as well as the ice load factor quantifies factors reasonably and establish marine oil aged platform life extension decision-making score criteria. Using logical computation calculates a comprehensive score, and establishes aged platform life extension decision-making reference tables, thereby based on the table to determine platform life extension reference period. Utilizing decision-making model, life extension decision-making for two marine platforms is proceeded and comparative analysis between the results and the traditional evaluation results is conducted. The study results indicate that using this model, the platform dynamic economic life is able to be described more accurately, and a new computing idea can be provided for aged platform life extension decision-making under complex and uncertain environment.
     5. Offshore Platform Digital Safety Simulation System Development
     Offshore platform digital safety simulation system framework is set up; digital platform data are divided into seven categories and SASOS software system database development is completed; offshore platform digital safety virtual simulation environment module development is achieved which is composed by three dynamic link libraries including the geometry dynamic library, graphics dynamic library and geometric kernel library;platform safety assessment module is developed which can achieve platform structural integrity assessment, maintenance decision evaluation, strengthening effect assessment and the remaining life assessment; and jacket platform digital safety simulation system software SASOS is developed; by visiting database module, this software can automatically generate offshore platform digital loads model, the overall structure digital model, the local structure fine model, the structure service damage model and maintenance and reinforcement model; SASOS software is divided into 12 functional modules: project management, platform database, virtual display module, digital load module, digital structure module, design level assessment module, ultimate loading evaluation module, the structure damage assessment module, residual life assessment module, the collision risk assessment module, progressive collapse simulation module, and life extension decision-making module. Finally, engineering demonstration application assessment is carried out for two platforms in Shengli Oilfield by this software.
引文
[1] Al Gore. The Digital Earth: Understanding our planet in the 21st century[Z].1998
    [2]江泽民.中国科学院第九次院士大会、中国工程院第四次院士大会讲话[Z]. 1998
    [3]李岚清.全球首届数字地球国际会议讲话[Z]. 1999
    [4]李剑锋,李恕中,张志檀.数字油田[M].北京:化学工业出版社. 2006: 23-24.
    [5] Marshall P. W. Risk Evaluation for Offshore Structures [J]. ASCE St.Div. 1969: 95(12)
    [6] Marshall P. W. Dynamic and Fatigue Analysis Using Directional Spectra [C]. Proceeding of 8th Annual Offsore Technology. OTC2537, 1976, 143-157
    [7] Bea R.G. Selection of Environmental Criteria for Offshore Platform Design [C]. Proceeding of 5th Annual Offshore Technology. OTC1839,1973,185-196
    [8] Bea R. G. Earthquake Criteria for Platforms in the Gulf of Mecico [C]. Proceeding of 8th Annual Offshore Technology. OTC2675, 1976, 657-679
    [9] Wirsching P. H. Stahl B. and Nolte K. G. Probabilistic Fatigue Design for Ocean Structures [J]. Journal of the Structural Division, ASCE, 1977,103(ST10): 2049-2062
    [10] Wirsching P. H. Probability Based Fatigue Design in Welded Joints of Offshore Structures [C]. Proceeding of 11th Annual Offshore Technology Conference, 1979 OTC3380,197-206
    [11] Moan T. Hovde G. O. and Blanker A. M. Reliability-based Fatigue Design Criteria for Offshore Structures Considering the Effect of Inspection and Repair [C]. Preceeding of 25th Annual Offshore Technology Conference. 1993
    [12] Sarveswaran V and Roberts M B. Reliability Analysis of Deteriorating Structures-The Experience and Needs of Practicing Engineers [J]. Structural Safety. 1999,21(4):357-372
    [13] Sarveswaran V, Smith J W and Blockley D I. Reliability of Corrosion-damaged Steel Structures Using Interval Probability Theory [J]. Structural Safety. 1998,20(3):237-255
    [14] Onoufriou T. Reliability Based Inspection Planning for Floating Offshore Structures [J]. Transaction of the Institution of Marine Engineers, 1999,111(3):135-144
    [15] American Petroleum Institute (API). Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Load and Resistance Factor Design [S]. American Petroleum Institute Production Department, Washington, D. C, 1993
    [16] Moses F. A Global Approach for Reliability-based Offshore Platform Codes [C]. Proc. 4th Integrity of Offshore Struct. Symp. Glasgow, London: Elsevier, 1991
    [17] Theophanatos A, et al. Adoption of API RP2A-LRFD to the Mediterranean Sea [C]. The 24th Offshore Technology Conference, Houston, 1992, OTC 6932
    [18] Turner R C, et al. Towards The Worldwide Calibration of API RP2A-LRFD [C]. Proc. 24th OTC. Houston, 1992:513-520
    [19] Wish D. J. Fixed Steel Standard: ISO and API Development-ISO67 /SC7 /WG3 [C]. Proceedings ofthe Offshore Technology Conference [C]. OTC8423 Houston, 1997
    [20] Sigurdsson G, et al. Probabilistic Collapse Analysis of Jeckets [C]. Proc. of ICOSSAR’93, Innsbruck, Austria. 1993:535-543
    [21] Frieze P.A., Morandi A.C. et al. Fixed and Jack-Up Platforms: Basis for Reliability Assessment [J]. Marine Structures, 1997,10(2): 263-284
    [22] Ellingwood B R. Reliability-Based Condition Assessment and LRFD for Existing Structures. Structural Safety[C]. 1996,18(2/3):67-80
    [23]欧进萍,段忠东,肖仪清.海洋平台结构安全评定:理论、方法与应用[M].北京:科学出版社, 2003
    [24]周道成.海洋环境极值风浪概率模型及参数估计[D].哈尔滨:哈尔滨工业大学, 2002
    [25]王欣平.海洋环境随机荷载与平台结构可靠度分析[D].哈尔滨:哈尔滨工业大学, 2000
    [26]肖仪清.现役固定式海洋平台结构体系可靠度分析与安全评定[D].哈尔滨:哈尔滨工业大学, 2001
    [27]方华灿,陈国明.模糊概率断裂力学:海洋石油机械工程用[M].东营:石油大学出版社,1999
    [28]方华灿,陈国明.冰区海上结构物的可靠性分析[M].北京:石油工业出版社,2000
    [29]许亮斌.近海石油平台动态疲劳可靠性分析与控制研究[D].东营:中国石油大学,2004
    [30]刘健.冰区平台疲劳评估及虚拟安全系统研究[D].东营:中国石油大学,2005
    [31]林红.面向延寿工程的老龄平台寿命预测与管理研究[D].东营:中国石油大学,2008
    [32]陈养厚.滩海石油老龄平台维修方法及应用研究[D].东营:中国石油大学,2008
    [33]金伟良.工程荷载组合理论和应用[M].北京:机械工业出版社, 2006
    [34]郑忠双.极端环境下海洋平台结构物随机响应分析及动力可靠性研究[D].杭州:浙江大学, 2001
    [35]宋剑.海洋平台结构在偶然灾害作用下的可靠性研究[D].杭州:浙江大学, 2005
    [36] SEAM. User’s Manual, PROBAN, General Purpose Probabilistic Analysis Program [M], DNV Software Repot No. 92-7049, Rev. No. 1, H?vik, 1996
    [37] Soreide T,et al. USFOS Theory Manual [M]. SINTEF, Report STF71 F88038. 1990
    [38] Lee KY, Lee WJ. Development of a semantic product modeling system for initial hull structure in shipbuilding [J]. Robotics and Computer-Integrated Manufacturing.2004(3):211-212
    [39] Lee SH,Lee K.Sumire system in sumiyomo oppama shipyard [J]. Advances in Engineering Software. 2001(4):356-365
    [40] Lee KY, Kim JH, Lee SU,et al, Development of sophisticated hull form CAD system 'EzHULL' based on non-manifold model and 'X-toplogy' [C]. Proceedings of the 8th international symposium on practical design of ships and other floating structures.2001:315-321
    [41]严俊.数字化造船企业初探[J].舰船科学技术, 2006,28(1):5-9
    [42]孙东生,李明.数字化造船的基础[J].中国制造业信息化, 2005, 7(7): 54-56
    [43]张祥瑞,何援军,严家文.船体主要结构三维实体模型快速建模方法研究[J].东华大学学报(自然科学版) ,2005,31(4):6-10.
    [44]李永良.船体典型结构的三维重构方法研究[D].大连:哈尔滨工程大学, 2005
    [45]常大伟,杜正春,张普等.基于型线图的船舶三维自动建模算法研究及实现[J].船海工程, 2007, 35(5):13-16.
    [46]黄永生,刘俊梅.船体三维建模技术研究[J].船海工程, 2006, 21(4):13-15
    [47]周新根.CATIAVS在船体结构设计中的应用[J].舰船科学技术, 2006(6):70-73
    [48]彭辉,朱丹红,聂武.基于通用软件的船体结构三维数字模型的开发与应用[J].中国造船, 2007, 48(2):122-129
    [49]崔会峰,路慧彪,王跃辉.应用于虚拟现实中的船体可视化建模技术[J].大连海事大学学报, 2005, 31(3):17-19
    [50]蒋革,李俊华,陈宾康.基于VR(虚拟现实)技术的船舶设计方法研究[J].船舶, 2005, 4(2):15-19
    [51]赵东,孔慧敏.参数化技术在舰船结构设计中的应用[J].舰船科学技术, 2006, 28(6):131-133
    [52]苏文荣,陈锦晨,郑斌华.三维CAD技术在船舶设计上的应用[J].上海造船, 2006(1):33-3
    [53]顾宁,王炬成,王岳,马宁.地方船厂数字化造船技术开发与应用态势研究[J].江苏船舶, 2006, 23(6):3-22
    [54]李俊华.国内数字造船的发展和应用现状[J].舰船科学技术, 2007(2):5-6.
    [55]陈国明,殷志明.虚拟技术在深海油气工程中的应用及展望[C].中国深水油气开发工程高技术论坛论文集.上海, 2005: 31-35
    [56] Q/HSn 3000-2002.中国海海冰条件及应用规定[S],2002.
    [57] API.Recommended Pracrice for Planning, Designing, and Constructing Structures and Pipelings for Arctic Conditions,API RP 2N[S]. Second Edition.1995
    [58]中国船级社.海上固定平台入级与建造规范[S].北京,1992
    [59]方华灿.冰区海洋石油钢结构工程力学[M].东营:石油大学出版社, 1996.
    [60]欧进萍,段忠东,王刚.海冰作用下平台结构自激振动的参数分析与响应的数值计算[J].工程力学, 2001; 18(5): 8-17.
    [61]刘春厚,陈祥余,杨国金.渤海冰力计算方法的探讨[J].中国海上油气(工程), 1994; 6(4): 36-41.
    [62]柳春图,段梦兰.海冰工程中的结构力学问题[J].机械强度, 1995; 17(3): 7-21.
    [63]刘圆.抗冰海洋平台动力分析与结构选型研究[D].大连:大连理工大学.2006:5-6
    [64]岳前进,刘圆,曲衍,时忠民.抗冰平台的冰振疲劳分析[J].工程力学.2007,24(6):159-163
    [65] Fang Huacan, Chen Guoming. Fatigue reliability of offshore platform in ice zone[C]. Proceedings of the 8th International Conference on Fatigue (Fatigue’99), Beijing, 1999, 4: 2685-2693.
    [66] Chen Guoming, Fang Huacan, Yang Xiaogang. Fatigue analysis and assessment of offshore structures in ice environment[C]. Proc. of the 16th International Conference on Offshore Mechanics and Arctic Engineering, 1997,3: 175-186.
    [67] Chen Guoming, Yang Xiaogang. Fracture safety assessment of offshore structures in ice environment[C]. Proceedings of the 20th International Conference on Offshore Mechanics and Arctic Engineering-OMAE, Brazil, 2001,3: 177-186.
    [68] Chen Guoming, Yang Xiaogang. Reliability based fatigue safety assessment of offshore structures in ice zone[C]. Proceedings of the International Conference on Offshore Mechanics and ArcticEngineering-OMAE, 2002,3: 87-96.
    [69]季顺迎,岳前进,毕祥军.辽东湾JZ2022海域海冰参数的概率分布[J].海洋工程. 2002, 20(3): 39-43.
    [70] Yue Q J,Bi X J.Ice-induce jacket structure virbrations in Bohai Sea[C].Journal of Cold Regions Engineering,2000,14(2):81-92
    [71]张力.导管架海洋平台冰激振动控制的实验研究[D].大连:大连理工大学.2008:52-53
    [72] Yue,Q.J,Bi,X.J.Full-scale test and analysis of dynamic interaction between ice sheet and conical structure[C]. Proc. Of 14th International Association for Hydraulic Research(IAHR) Symposium on Ice.1998.vol.2
    [73]曲衍.基于现场实验的海洋结构随机冰荷载分析[D].大连:大连理工大学.2006:136-137
    [74]岳前进,毕祥军,于晓,时忠民.锥体结构的冰激振动与冰力函数[J].土木工程学报.2003,36 (2):16-19
    [75]张淑茳,史冬岩.海洋工程结构的疲劳与断裂[M].哈尔滨:哈尔滨工业大学出版社. 2005: 109-110
    [76] Det Norske Veritas.fatigue strenging analysis of offshore steel structures[S].2001:15-16
    [77] J F威尔逊.海洋结构动力学.北京:石油工业出版社, 1991
    [78] Torgeir Moan. Probabilistic inspection planning of jacket structures[C]. OTC, Texas, USA, 1999: 253-264
    [79] NPD. Regulations Concerning Load bearing Structures in the Petroleum Activity[R]. Stavanger: Norwegian Petroleum Directorate, 1992
    [80] BROWN G M, HOLMES R, KERR, J. Fatigue life enhancement of welded tubular joints by injection of grout[C]. In Proc. of Int. Offshore Conf. on Behavior of Offshore Structures (BOSS‘88) Tapir Publishers, Trondheim, Norway, 1988: 1081-1095
    [81]刘海涛,柳春图,黎之奇等.海洋平台用高强度钢多次补焊的疲劳分析[J].机械强度, 2002; 24(3):433-435
    [82]贾宝春,李冬霞. TIG熔修提高焊接接头疲劳强度的研究[J].中原工学院学报, 2003; 14(1): 8-10
    [83] K J Kirkhope, et al. Weld detail fatigue life improvement techniques [J]. Marine Structures, 1999, (12):447-474
    [84] Bian LC, Lim JK. Fatigue strength and stress concentration factors of CHS-to-RHS T-joints [J]. Journal of Constructional Steel Research 2003; 59(5):627-40.
    [85] Gho W M, Fung T C, Soh C K. Stress and strain concentration factors of completely overlapped tubular K(N) joints [J]. Journal of Structural Engineering, ASCE, 2003, 129(1): 21-29.
    [86] Van Wingerde A M, Packer J A, Wardenier J. Simplified SCF formulae and graphs for CHS and RHS K- and KK-connections [J]. Journal of Constructional Steel Research, Elsevier, 2001, 57(3): 221-252.
    [87] Karamanos S A, Romeijn A, Wardenier J. Stress concentrations in tubular gap K-joints: mechanics and fatigue design [J]. Engineering Structures, 2000, 22(1): 4-14.
    [88] Chang E, Dover WD. Prediction of full stress distributions along the intersection of tubular T and Y-joints[J]. International Journal of Fatigue, 1999. 21(4):361-81.
    [89] Hellier AK, Connolly MP, Kare RF, Dover WD. Prediction of the stress distribution in tubular Y-and T-joints[J]. International Journal of Fatigue, 1990. 12(1):25-33.
    [90] Shao YB. Proposed equations of stress concentration factor (SCF) for gap tubular K-joints subjected to bending load[J]. International Journal of Space Structures 2004. 19(3):137-47.
    [91] Hellier AK, Connolly MP, Dover WD. Stress concentration factors for tubular Y- and T-joints [J]. International Journal of Fatigue 1990; 12(1):13-23.
    [92] Det Norske Veritas. Fatigue strength analysis of offshore steel structures [S]. 2001: 15-16
    [93] Lee M M K, Bowness D. Prediction of stress intensity factors in semi-elliptical weld toe cracks in offshore tubular joints [C]. Proceedings of the 9th International Symposium and Euroconference on Tubular Structures, Dusseldorf, Germany, 2001. 299-308.
    [94] Herion S, Mang F, Puthli R. Parametric study on multiplanar K-joints with gap made of circle hollow sections by means of the finite element method [C]. Proceedings of the 6th International Offshore and Polar Engineering Conference, Los Angeles, CA, USA, 1996. IV: 68-73.
    [95] Cao JJ, Yang GJ, Packer JA. FE mesh generation for circular tubular joints with or without cracks[C]. In: Proceedings of the Seventh International O. shore and Polar Engineering Conference. Honolulu, HI, 1997. Vol. IV. p. 98-105.
    [96] S.T. Lie, C.K. Lee, S.M. Wong. Model and mesh generation of cracked tubular Y-joints. Engineering Fracture Mechanics [J]. 2003,70:161-184
    [97] American Welding Society. Structural welding code-steel [S]. ANSI/AWS D1.1-2000, Miami, USA, 2000.
    [98] Wong SM. Model and mesh generation of cracked Y-tubular joints for SIF and SCF studies [D]. School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 2001.
    [99]中国船级社.材料与焊接规范[S].人民交通出版社.北京,2006
    [100] DNV Technica (1995). An Overview of Risk Level in the Offshore Industry on the UK Continental Shelf (1994)[R]. HSE Offshore Technology Repot OTH94 458, HMSO.
    [101] DNV, Semi-Submersible Flooding Incident Data [C]. Offshore Technology Report OTO 1999 016,Helth&Safety Executive,1999:151-152
    [102] KennyJ.P. Protection of Offshore Installations Against Impact, Background Report, Prepared for Department of Energy[C].OTI88535,1998:40-50
    [103] KjeΦyH. and Straube P., Impacts and Collisions Offshore[C].Project Summary, DNV Report No 83-0375, Veritas, HΦvik, 1983:33-40
    [104] Bea Robert, Perez Faustino, Ortega Roberto. Requalification of platforms offshore Tampico-Tuxpan, Mexico: Arenque platforms [C]. Proceeding of the International Offshore and Polar Engineering Conference. 2000, Vol 4: 300-306
    [105] Tebbett,I.E.The Last Five Year's Experience in Steel Platform RePairs[C]. Proeeeding of 19thannual offshore techoology conference.OTC5385,1987.261-268.
    [106] Jan Erik Vinnem.Offshore Risk Assessment Principles, Modelling and Applications of QRA Studies [M]. Springer. New Jersey:2007, 337-338
    [107] DNV. WOAD, Worldwide Offshore Accident Database[R]. H?vik; DNV. 1998a
    [108] HSE. Management of Health and Safety at Work Act[R]. HMSO: London.1974
    [109] HSE. Tolerability of Risk from Nuclear Power Stations[R]. HMSO: London.1992
    [110] HSE. Drag anchors for floating systems[R]. London; HMSO. Report No.: OTH 93 395.1993
    [111] HSE. Prevention of Fire and Explosion, and Emergency Response regulations[R]. HMSO: London.1995a
    [112] HSE. Offshore Installations and Pipeline Works (Management and Administration) Regulations[R]. HMSO: London.1995b
    [113] HSE. The Offshore Installations and Wells (Design and Construction, etc.) Regulations[R]. HMSO: London. 1996
    [114] HSE. The Effectiveness of Collision Control and Avoidance Systems[R]. London: HMSO; 1997 Jan. Report No.: DST-96-CR-052-01. 1997a
    [115] HSE. Offshore Hydrocarbon Releases Statistics. London[R]: HMSO; 1997 Dec. Report No.: OTO 97 950. 1997b
    [116] HSE. Development of the Oil and Gas Resources of the United Kingdom[R]. London: HMSO. 1998
    [117] HSE. Offshore Hydrocarbon Releases Statistics[R]. London: HMSO. 2002
    [118]聂武,孙丽萍李治彬等.海洋工程钢结构设计[M].哈尔滨:哈尔滨工程大学出版社,2007,51-52
    [119]龚顺风.海洋平台结构碰撞损伤及可靠性与疲劳寿命评估研究[D].杭州.浙江大学,2003:29-30
    [120] DNV.An Ovevriew of Risk Levels in the Osffhoer Industry on the UK Continental Shelf[R],HSE Offshore Technology Report OTH94 458,HMSO.
    [121] DNV.Semi-Submersible Flood incident Data[R]. Offshore Technology Report OTO1999 016, Health&Saefyt Executive,1999:151-152
    [122]胡晓斌,钱稼茹.结构连续倒塌分析与设计方法综述[J].建筑结构, 2006, 36(S1): 79-83.
    [123]胡晓斌,钱稼茹.单层平面钢框架连续倒塌动力效应分析[J].工程力学,2008,25(6):38-43
    [124] GSA 2003, Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects [S]. General Services Administration, June 2003.
    [125] DoD 2005, Design of buildings to resist progressive collapse [S]. Department of Defense, January 2005.
    [126] Guidelines for Collapse Control Design,ΙDesign [S]. Japanese Society of Steel Construction Council on Tall Buildings and Urban Habitat, September 2005.
    [127] Guidelines for Collapse Control Design,ⅡResearch [S]. Japanese Society of Steel Construction Council on Tall Buildings and Urban Habitat, September 2005.
    [128] Marjanishvili S M. Progressive analysis procedure for progressive collapse [J]. ASCE Journal of Performance of Constructed Facilities, 2004, 18(2): 79-85.
    [129] Buscemi N, Marjanishvili S. SDOF model for progressive collapse analysis [C]. Structures 2005, ASCE . New York:2005.
    [130]侯保荣.海洋环境腐蚀规律及控制技术[J].科学与管理,2004,(5):6-8.
    [131]胡津津,石明伟.海洋平台的腐蚀及防腐技术[J].中国海洋平台,2008,23(6),39-42
    [132]陆文发,李林普,高明道.近海导管架平台.北京:海洋出版社,1992
    [133] Pitt E G, Daruvala J, Bole J B, et al. Models of the probability distribution of extreme wave crest elevation [C]. Proceedings of the Ninth International Offshore and Polar Engineering Coference, Brest, France,1999,3:101-108
    [134] Bea.Robert, Valle O. Key issues associated with development of reassessment and requalification criteria for platforms in the Bay of Campeche, Mexico [C]. OMAE, 2000, vol 122, n1: 6-19
    [135] Moan Torgeir. Recent research and development relating to platform requalification [J]. Journal of Offshore Mechanics and Arctic Engineering, 2000; 122(1): 20-32
    [136] Torgeir Moan, Johannes M., Ole Tom. Probabilistic Inspection Planning of Jacket Structures [C]. Paper OTC 10848, Offshore Technology Conference, Houston, 1999
    [137] CHEN Guo-ming. Reliability based defect assessment for offshore structure [C]. Proceedings of sixth Pacific structural steel conference, Vol 1, 278-283. 2001
    [138] Zuccarelli F, Diamantidis D, Righetti G, et al. Lifetime extension of existing offshore structures [C]. Proc First Int Offshore Polar Eng Conf, 1991, p 43-48
    [139] W.F.Krieger, S.K.Paulson, S.T.Hong, etc. Strength/Risk Assessment and Repair Optimization for Aging, Low-Consequence, Offshore Fixed Platforms [C]. Paper OTC 5931, Offshore Technology Conference, Houston, 1989
    [140] Walker A.C, Ellinas C.p, Snedden W. Use of structural simulation for extension of life of offshore structures [C]. Proc. ISOPE , 1997, USA
    [141] Stacey A, Sharp J V. Re-assessment of offshore structures using the revised HSE fatigue guidance [C]. Proc OMAE, 1995,USA
    [142] Rune Reinertsen. Residual life of technical systems; diagnosis, prediction and life extension [J]. Reliability Engineering and System Safety. 54(1996) 23-34
    [143] Scherf Ingar, Etterdal Birger, Monshaugen Trond. Cost-efficient structural upgrade and life extension of North Sea jacket platforms with use of modern reassessment techniques [C]. OTC. 1999, v 3, p 265-283
    [144] Faber Michael Havbro, Straub Daniel, Chakrabarti Partha, et al. Fatigue analysis and Risk Based Inspection planning for life extension of fixed offshore platforms [C]. OMAE, 2005(1): 511-519
    [145] D.N.Galbraith, J.V.Sharp, E. Terry. Managing Life Extension in Aging Offshore Installations [C]. Paper SPE 96702, Offshore Euripe 2005, Aberdeen, 2005
    [146]王光远.工程结构软设计理论[M].北京:科学出版社, 1992
    [147] Berns A P, Hovey P W. Flaw Detection Criteria [R]. A FWAL-TR-84-4022, 1984
    [148] Chang C M, Chen I K, et al. X-Ray inspection reliability for welded joints [C]. Proceedings of the 6th International Conference on Structural Safety and Reliability (ICOSSAR'93). Innsbruck,Austria, 1994: 991-996
    [149] Kaisa Simoda, Urho Pulkkinen. Models for nondestructive inspection data [J]. Reliability Engineering & System Safety, 1998; 60: 1-126
    [150] Buckley J J. Fuzzy hierachial analysis [J]. Fuzzy Sets and Systems, 1985, 17(3): 233-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700