用户名: 密码: 验证码:
超级电容器用明胶基和化学气相沉积碳材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级电容器(又称为电化学超级电容器)根据储能机理的不同可以分为两类:一类是双电层电容器,基于电极与电解液界面双电层的非法拉第过程;另一类是赝电容器,基于电极表面的嵌入、欠电位沉积、氧化还原的法拉第过程。双电层电容器中最常用的电极材料是活性碳材料,因为它们不仅造价低廉,而且拥有多种存在形式。双电层电容器的优劣关键在于双电层的充放电效率,高效率的双电层充放电要求电极材料具有高比表面积、与离子大小相适合的孔径。
     碳材料主要以粉末、纤维、气凝胶、碳纳米管等形式应用于超级电容器,这些材料的性质已经被详细地研究,并被应用于科研和生产中。随着材料研究的发展,不同结构、形态及性能差异的其它碳材料也在不断出现,因而对这种碳材料也需要进行系统地研究。这些材料的研究和应用对推动和完善超级电容器用碳电极材料领域的发展同样具有重要的意义。
     本论文重点针对材料,对它们的制备、性质、应用等进行探讨和研究:(1)以明胶为原材料,对明胶的碳化条件、形成微孔的原理、复合物的制备、电化学性质等方面进行了系统的研究;(2)研究了化学气相沉积法制备碳球的工艺条件和所得碳球电化学性质;(3)研究了碳微线圈的制备、生长机理、电化学性质。论文围绕这三大部分展开,主要的研究内容如下:
     1、明胶为前驱体制备明胶碳球。明胶微球首先要在空气中以250℃进行预处理,然后再高温碳化。戊二醛交联前后,明胶在空气和氮气中的热失重曲线仅在300℃之后有细微的差别,熔化温度Tm为228℃。戊二醛交联前后的明胶微球在空气或氮气中250℃热处理7 h,再经过稀硫酸处理,得到不同结构的明胶基材料:空气中处理的未交联明胶微球可得多孔内核结构,而在氮气中处理的得到实心结构,交联后明胶球无论在空气还是氮气中处理均得到实心结构。核壳式明胶基球碳化后保持了多孔内核/致密外壳的结构,对其电化学性质也进行了初步研究。
     2、利用CaCO3和明胶制备了多种复合微球及其衍生明胶基活性碳球。当纳米CaCO3和明胶质量比为2时,得到的活化明胶基碳球最适合作为超级电容器的碳电极材料。碳纤维与明胶基碳球复合,可明显提高整体的导电性,但复合材料的比电容仍然偏低。
     3、以苯和乙炔为碳源,分别用两段炉和一段炉法制备化学气相沉积碳球。两段炉方法中,第一段炉的温度对碳球形貌无明显影响,两种方法的碳化温度都要高于1100℃。碳球直径从前向后逐渐减小、分散性从前向后逐渐提高,影响碳球的粒径的主要因素为混合气体总气流速率,总气流速率越大得到的碳球粒径越小。
     4、水蒸气活化碳球单电极比电容为131 F/g,电容器等效串联电阻为7.5 ;KOH活化碳球单电极比电容为146.4 F/g,电容器等效串联电阻为7.5。对比两种活化方法得到的碳球,虽然KOH活化碳球的比电容略高,但KOH活化的实验步骤较为繁琐,而水蒸气活化操作简单、原料便宜,两者活化的碳球比电容相差不大,所以水蒸气活化方法更适合本实验室活化碳球的制备。
     5、碳微线圈有一个共同的碳基底并垂直于基底生长。在710~750℃范围内,随温度升高碳微线圈的内径减小、长度增长。730℃条件下得到的碳微线圈基底厚度和韧性适中、碳微线圈含量最高;经水蒸气活化后BET比表面积为511 m2/g,孔径分布较广,微孔占主要部分,中孔和大孔含量较少;单电极比电容为56.4 F/g。电容器等效串联电阻为12.5。
     6、碳微线圈碳基底背面有密堆六方和面心立方两种晶格结构的Ni共存;进气口附近,Ni为密堆六方晶格结构,颗粒为近似六边形的扁平晶体;离进气口较远处,催化剂小颗粒聚集成饼状的结构,相互之间没有完全熔合在一起。说明微米级半径碳微线圈的生长机理和纳米级半径碳微线圈的生长机理有所不同。
Supercapacitor ( also called electrochemical supercapacitor )can be classified into two types according to the mechanism of energy storage: electrical double layer capacitor (EDLC), utilizing electrolyte charging at the electric double layer on electrode surface by Non Faradaic process, and pseudocapacitor involving fast Faradaic reactions such as intercalation, underpotential deposition or redox processes occurring at or near a solid–electrode surface at an appropriate potential. Activated carbons are the most often used EDLC electrode material because of their low cost and versatile existing forms. An e?cient charging of the electrical double layer requires materials with a high surface area and pores adapted to the size of ions, which is crucial for EDLC performance.
     Carbon materials such as powders, ?bers, aerogels and nanotubes are widely used for supercapacitor applications. The performance of these carbon materials have been studied thoroughly and used in industrial applications and scientific researches. However, systematic researches of other carbon materials and discoveries of unknown materials are still needed.
     In this dissertation, firstly, a systematic study including the carbonization parameters, the formation mechanism of pore structures, preparations of composite materials, electrochemical properties of gelatin, as a carbon precursor, was performed; secondly, the preparation process and electrochemical properties of carbon spheres produced by chemical vapor deposition were studied; finally, the preparation, the formation mechanism and electrochemical properties of carbon microcoils were investigated. The main research work in the present dissertation can be summarized as follows:
     a) Gelatin based carbon microspheres were produced from gelatin spheres by heat treating at 250℃and carbonization. The empty gelatin microspheres (GMs) and glutaraldehyde crosslinked gelatin microspheres (CGMs) were characterized by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). It was found that CGMs had an equal slight weight loss more than GMs from 300℃in air and nitrogen atmosphere respectively. The melting temperature (Tm) of GMs and CGMs were both at 228℃. After being heat treated at 250℃and acid treated in sulfuric acid solution for 7 h, the GMs heat treated in air had a foam like core/solid shell structure and that heat treated in nitrogen had solid cores/shell structure, and CGMs were all solid microspheres with cracks. After carbonization, the foam like core/solid shell structure was maintained, and the properties of the as prepared carbon materials were analysed.
     b) Several kinds of composite spheres were produced from CaCO3 particles and gelatin. The active carbon spheres produced from the composite spheres, whitch the mass ratio of nano CaCO3 and gelatin was 2, was the most suitable material for supercapacitor compared with other gelatin based carbon spheres. The carbon fibers/carbon spheres composite material had a low specific capacitance because of large percentage of gelatin based carbon spheres and low resistance because of the carbon fibers.
     c) Benzene and acetylene were used in chemical vapor deposition (CVD) process to produce carbon spheres. A double furnace apparatus and a one furnace apparatus were used for the pyrolysis of precursors. The temperature of the first furnace in the double furnace apparatus had not effect on the diameter of produced carbon spheres, and the pyrolysis temperature should over 1100℃. The diameter and accretion of prepared carbon spheres decreased along the direction of gas flow and with the increasing of gas flow rate.
     d) The steam activated carbon sphere had a specific capacitance of 131 F/g and the value of equivalent series resistance (ESR) of the supercapacitor was 7.5 ; the KOH activated carbon sphere had a specific capacitance of 131 F/g and the value of ESR of the supercapacitor was 7.5 . Compared these two kinds of activated carbon, the one prepared from KOH activation had higher capacitance, while the steam activation was easy to operate and low cost. So the steam activation was more efficient in our lad.
     e) The carbon micro coils had a carbon co substrate and were vertical with the co substrate. The coil diameter decreased and length increased with the increasing of pyrolysis temperature from 710 to 750℃. The specimen obtained at 730℃had a substrate of proper thickness and thoughness, highest percentage of coils, and a BET surface area of 511 m2/g after steam activation. The porosity distribution was primarily micro pores, with some meso and micro pores. The value of specific capacitance was 56.4 F/g and the ESR value of the supercapacitor was 12.5 .
     f) On the back surface of co substrate of carbon micro coils, Ni particles exhibited face centered cubic (fcc) phase and hexagonal close packed (hcp) phase. Only hcp Ni was found in the vicinity of the gas inlet, and Ni monolith shaped as flat hexagonal plates. Far from the gas inlet, Ni grains aggregated into flat plates without total fusion. The evidences above indicated that the mechanism of micro diameter carbon micro coils was different from that of nano diameter carbon micro coils.
引文
[1] Conway BE. Transition from supercapacitor to battery behavior in electrochemical energy storage. Journal of the Electrochemical Society. 1991;138(6): p1539 1548.
    [2] Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors? Chemical reviews. 2004;104(10): p4245 4269.
    [3] Conway BE. Electrochemical supercapacitors: Kluwer Academic Publishers.
    [4]陈列春.超级电容器电极材料的制备与研究. [硕士学位论文]广东工业大学. 2008.
    [5] Trasatti S, Kurzweil P. Electrochemical supercapacitors as versatile energy stores. Platinum Metals Review. 1994;38(2): p46 56.
    [6] Pandolfo AG, Hollenkamp AF. Carbon properties and their role in supercapacitors. Journal of Power Sources. 2006;157(1): p11 27.
    [7] Barrade P, Rufer A. Energy storage and applications with supercapacitors. ANAE, Bressanone, Italy. 2003.
    [8] Sarangapani S, Tilak BV, Chen CP. Materials for electrochemical capacitors. Journal of the Electrochemical Society. 2005;143: p3791.
    [9] Burke A. Ultracapacitors: Why, how, and where is the technology. Journal of Power Sources. 2000;91(1): p37 50.
    [10]张娜.电化学超级电容器电极材料的研究. [硕士学位论文]哈尔滨工程大学. 2003.
    [11] K?tz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochimica Acta. 2000;45(15 16): p2483 2498.
    [12] Bard AJ, Faulkner LR. Electrochemical methods, fundamentals and applications. New York. 1980;525: p96.
    [13]李获.电化学原理.北京:北京航空航天大学出版杜. 1989;59.
    [14] Conway BE. Electrochemical supercapacitors. 1999: Plenum Press New York.
    [15] Bai LJ, Conway BE. Ac impedance of faradaic reactions involving electrosorbed intermediates examination of conditions leading to pseudoinductive behavior represented in 3 dimensional impedance spectroscopy diagrams. Journal of the Electrochemical Society. 1991;138(10): p2897 2907.
    [16] Conway BE, Birss V, Wojtowicz J. The role and utilization of pseudocapacitance for energy storage by supercapacitors. Journal of Power Sources. 1997;66(1 2): p1 14.
    [17] Liu T, Pell WG, Conway BE. Self discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes. Electrochimica Acta. 1997;42(23 24): p3541 3552.
    [18] Jang JH, Han S, Hyeon T, Oh SM. Electrochemical capacitor performance of hydrous ruthenium oxide/mesoporous carbon composite electrodes. Journal of Power Sources. 2003;123(1): p79 85.
    [19] Zhang FB, Zhou YK, Li HL. Nanocrystalline NiO as an electrode material for electrochemical capacitor. Materials Chemistry and Physics. 2004;83(2 3): p260 264.
    [20] Lin C, Ritter JA, Popov BN. Characterization of sol‐gel‐derived cobalt oxide xerogels as electrochemical capacitors. Journal of the Electrochemical Society. 2005;145: p4097.
    [21] Jiang J, Kucernak A. Electrochemical supercapacitor material based on manganese oxide: Preparation and characterization. Electrochimica Acta. 2002;47(15): p2381 2386.
    [22] Zheng JP, Cygan PJ, Jow TR. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. Journal of the Electrochemical Society. 1995;142: p2699.
    [23] Chen WC, Hu CC, Wang CC, Min CK. Electrochemical characterization of activated carbon–ruthenium oxide nanoparticles composites for supercapacitors. Journal of Power Sources. 2004;125(2): p292 298.
    [24] Gujar TP, Shinde VR, Lokhande CD, Kim WY, Jung KD, Joo OS. Spray deposited amorphous RuO2 for an effective use in electrochemical supercapacitor. Electrochemistry Communications. 2007;9(3): p504 510.
    [25] Subramanian V, Hall SC, Smith PH, Rambabu B. Mesoporous anhydrous RuO2 as a supercapacitor electrode material. in 14th International Conference on Solid State Ionics. 2003. Monterey, CA: Elsevier Science Bv.
    [26] Ganesh V, Pitchumani S, Lakshminarayanan V. New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon. Journal of Power Sources. 2006;158(2): p1523 1532.
    [27] Rudge A, Davey J, Raistrick I, Gottesfeld S, Ferraris JP. Conducting polymers as active materials in electrochemical capacitors. Journal of Power Sources. 1994;47(1 2): p89 107.
    [28] Ingram MD, Staesche H, Ryder KS. 'activated' polypyrrole electrodes for high power supercapacitor applications. in 53rd Annual Meeting of the International Society of Electrochemistry. 2002. Dusseldorf, Germany: Elsevier Science Bv.
    [29] Hashmi SA, Upadhyaya HM. Polypyrrole and poly (3 methyl thiophene) based solid state redox supercapacitors using ion conducting polymer electrolyte. Solid State Ionics. 2002;152: p883 889.
    [30] Yuan G, Jiang Z, Aramata A, Gao Y. Electrochemical behavior of activated carbon capacitor material loaded with nickel oxide. Carbon. 2005;43(14): p2913 2917.
    [31] Liang YY, Cao L, Kong LB, Li HL. Synthesis of co (oh) 2/usy composite and its application for electrochemical supercapacitors. Journal of Power Sources. 2004;136(1): p197 200.
    [32] Hu CC, Lin JY. Effects of the loading and polymerization temperature on the capacitive performance of polyaniline in nano3. Electrochimica Acta. 2002;47(25): p4055 4067.
    [33] Khomenko V, Raymundo Pinero E, Béguin F. Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2v in aqueous medium. Journal of Power Sources. 2006;153(1): p183 190.
    [34] Wang Y, Xia Y. A new concept hybrid electrochemical surpercapacitor: Carbon/limn2o4 aqueous system. Electrochemistry Communications. 2005;7(11): p1138 1142.
    [35] Kinoshita K. Carbon: Electrochemical and physicochemical properties. 1988: John Wiley & Sons, New York.
    [36] Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. Journal of Power Sources. 2001;101(1): p109 116.
    [37] Soffer A, Folman M. Electrical double layer of high surface porous carbon electrode. J Electroanal Chem. 1972;38: p25–43.
    [38] Tseng RL, Tseng SK. Pore structure and adsorption performance of the koh activated carbons prepared from corncob. Journal of Colloid And Interface Science. 2005;287(2): p428 437.
    [39] Wu FC, Tseng RL, Hu CC, Wang CC. Effects of pore structure and electrolyte on the capacitive characteristics of steam and koh activated carbons for supercapacitors. Journal ofPower Sources. 2005;144(1): p302 309.
    [40] Shi H. Activated carbons and double layer capacitance. Electrochimica Acta. 1996;41(10): p1633 1639.
    [41] Qu D, Shi H. Studies of activated carbons used in double layer capacitors. J Power Sources. 1998;74(1): p99 107.
    [42] Frackowiak E, Béguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon. 2001;39(6): p937 950.
    [43] Qu D. Studies of the activated carbons used in double layer supercapacitors. Journal of Power Sources. 2002;109(2): p403 411.
    [44]邓梅根,张治安,胡永达,汪斌华,杨邦朝.活化和表面改性对碳纳米管超级电容器性能的影响.物理化学学报. 2004;20(004): p432 435.
    [45]庄新国,杨裕生,杨冬平,嵇友菊,唐致远.表面官能团对活性炭性能的影响.电池. 2003;33(004): p199 202.
    [46]刘亚菲.超级电容器活性炭电极材料的孔径调控和表面改性. [博士论文]同济大学. 2008.
    [47] MaciáAgullóJA, Moore BC, Cazorla Amorós D, Linares Solano A. Activation of coal tar pitch carbon fibres: Physical activation vs. Chemical activation. Carbon. 2004;42(7): p1367 1370.
    [48] Rodríguez Reinoso F, Molina Sabio M, González MT. The use of steam and co2 as activating agents in the preparation of activated carbons. Carbon. 1995;33(1): p15 23.
    [49] Lua AC, Yang T, Guo J. Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio nut shells. Journal of Analytical and Applied Pyrolysis. 2004;72(2): p279 287.
    [50] Yang T, Lua AC. Characteristics of activated carbons prepared from pistachio nut shells by physical activation. Journal of Colloid And Interface Science. 2003;267(2): p408 417.
    [51] Turmuzi M, Daud WRW, Tasirin SM, Takriff MS, Iyuke SE. Production of activated carbon from candlenut shell by co2 activation. Carbon. 2004;42(2): p453 455.
    [52] Rodriguez Reinoso F, Molina Sabio M. Activated carbons from lignocellulosic materials by chemical and/or physical activation: An overview. Carbon(New York, NY). 1992;30(7): p1111 1118.
    [53] Ahmadpour A, Do DD. The preparation of activated carbon from macadamia nutshell by chemical activation. Carbon. 1997;35(12): p1723 1732.
    [54] Hayashi J, Kazehaya A, Muroyama K, Watkinson AP. Preparation of activated carbon from lignin by chemical activation. Carbon. 2000;38(13): p1873 1878.
    [55] Teng H, Yeh TS, Hsu LY. Preparation of activated carbon from bituminous coal with phosphoric acid activation. Carbon. 1998;36(9): p1387 1395.
    [56] Girgis BS, Ishak MF. Activated carbon from cotton stalks by impregnation with phosphoric acid. Materials Letters. 1999;39(2): p107 114.
    [57] Lillo Ródenas MA, Cazorla Amorós D, Linares Solano A. Understanding chemical reactions between carbons and naoh and koh an insight into the chemical activation mechanism. Carbon. 2003;41(2): p267 275.
    [58] Lillo Ródenas MA, Juan Juan J, Cazorla Amorós D, Linares Solano A. About reactions occurring during chemical activation with hydroxides. Carbon. 2004;42(7): p1371 1375.
    [59] Teng H, Wang SC. Preparation of porous carbons from phenol–formaldehyde resins with chemical and physical activation. Carbon. 2000;38(6): p817 824.
    [60] Moreno Castilla C, Carrasco Marín F, López Ramón MV, Alvarez Merino MA. Chemical and physical activation of olive mill waste water to produce activated carbons. Carbon. 2001;39(9): p1415 1420.
    [61] Ahmadpour A, Do DD. The preparation of active carbons from coal by chemical and physical activation. Carbon. 1996;34(4): p471 479.
    [62] Namasivayam C, Kadirvelu K. Activated carbons prepared from coir pith by physical and chemical activation methods. Bioresource technology. 1997;62(3): p123 127.
    [63] Tanahashi I, Yoshida A, Nishino A. Electrochemical characterization of activated carbon‐fiber cloth polarizable electrodes for electric double‐layer capacitors. Journal of the Electrochemical Society. 1990;137: p3052.
    [64]吴海芳,胡中华.活性炭纤维制备双电层电容器.炭素技术. 2004;23(001): p12 16.
    [65]西野敦.用活性炭纤维制备的双层电容器.炭素. 1988;132: p57.
    [66] Momma T, Liu XJ, Osaka T, Ushio Y, Sawada Y. Electrochemical modification of active carbon fiber electrode and its application to double layer capacitor. Journal of Power Sources. 1996;60(2): p249 253.
    [67] Miura K, Nakagawa H, Okamoto H. Production of high density activated carbon fiber by a hot briquetting method. Carbon. 2000;38(1): p119 125.
    [68] Nakagawa H, Shudo A, Miura K. High capacity electric double layer capacitor with high density activated carbon fiber electrodes. Journal of the Electrochemical Society. 2000;147(1): p38 42.
    [69] Kim C, Choi YO, Lee WJ, Yang KS. Supercapacitor performances of activated carbon fiber webs prepared by electrospinning of pmda oda poly(amic acid) solutions. in 1st International Conference on Polymer Batteries and Fuel Cells (PBFC 1). 2003. Jeju Isl, SOUTH KOREA: Pergamon Elsevier Science Ltd.
    [70]朱玉东.炭气凝胶的制备及在超级电容器中的应用. [博士论文]大连理工大学. 2006.
    [71] Kim SJ, Hwang SW, Hyun SH. Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics. Journal of Materials Science. 2005;40(3): p725 731.
    [72] Li J, Wang XY, Huang QH, Gamboa S, Sebastian PJ. Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. Journal of Power Sources. 2006;158(1): p784 788.
    [73] Li W, Reichenauer G, Fricke J. Carbon aerogels derived from cresol–resorcinol–formaldehyde for supercapacitors. Carbon. 2002;40(15): p2955 2959.
    [74]刘希邈,张睿,詹亮,龙东辉,乔文明,杨俊和,凌立成.炭气凝胶/活性炭复合电极在有机电解液体系双电层电容器中的阻抗.新型炭材料. 2007: p02.
    [75]蒋亚娴,陈晓红,宋怀河.炭气凝胶的制备及应用进展.炭素技术. 2007;26(1): p28 33.
    [76]蒋亚娴,陈晓红,宋怀河.用于超级电容器电极材料的球形炭气凝胶.北京化工大学学报(自然科学版). 2007: p06.
    [77] Mayer ST, Pekala RW, Kaschmitter JL. The aerocapacitor: A carbon aerogel based supercapacitor. 1992.
    [78] Mayer ST, Pekala RW, Kaschmitter JL. The aerocapacitor an electrochemical double layer energy storage device. Journal of the Electrochemical Society. 1993;140(2): p446 451.
    [79] Pekala RW, Farmer JC, Alviso CT, Tran TD, Mayer ST, Miller JM, Dunn B. Carbon aerogels for electrochemical applications. Journal of non crystalline solids. 1998;225(1 3): p74 80.
    [80]李文翠,郭树才,朱玉东.间甲酚甲醛气凝胶炭化工艺的研究.炭素技术. 2000;(001):p9 11.
    [81] Shen JUN, Wang JUE, Zhai J, Guo Y, Wu G, Zhou BIN, Ni X. Carbon aerogel films synthesized at ambient conditions. Journal of sol gel science and technology. 2004;31(1 3): p209 213.
    [82] Pr?bstle H, Wiener M, Fricke J. Carbon aerogels for electrochemical double layer capacitors. Journal of Porous Materials. 2003;10(4): p213 222.
    [83] Miller JM, Dunn B, Tran TD, Pekala RW. Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes. Journal of the Electrochemical Society. 1997;144: pL309.
    [84] Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354(6348): p56 58.
    [85] Niu C, Sichel EK, Hoch R, Moy D, Tennent H. High power electrochemical capacitors based on carbon nanotube electrodes. Applied Physics Letters. 1997;70: p1480.
    [86] Niu CM, Sichel EK, Hoch R, Moy D, Tennent H. High power electrochemical capacitors based on carbon nanotube electrodes. Applied Physics Letters. 1997;70(11): p1480 1482.
    [87] Frackowiak E, Metenier K, Bertagna V, Beguin F. Supercapacitor electrodes from multiwalled carbon nanotubes. Applied Physics Letters. 2000;77: p2421.
    [88] An KH, Jeon KK, Heo JK, Lim SC, Bae DJ, Lee YH. High capacitance supercapacitor using a nanocomposite electrode of single walled carbon nanotube and polypyrrole. Journal of the Electrochemical Society. 2002;149(8): pA1058 A1062.
    [89] An KH, Kim WS, Park YS, Choi YC, Lee SM, Chung DC, Bae DJ, Lim SC, Lee YH. Supercapacitors using single walled carbon nanotube electrodes. Advanced Materials. 2001;13(7): p497 500.
    [90] Ma RZ, Liang J, Wei BQ, Zhang B, Xu CL, Wu DH. Study of electrochemical capacitors utilizing carbon nanotube electrodes. Journal of Power Sources. 1999;84(1): p126 129.
    [91]马仁志,魏秉庆.基于碳纳米管的超级电容器.中国科学: E辑. 2000;30(002): p112 116.
    [92]张彬,马仁志.双电层电容器碳纳米管固体极板的制备.电子学报. 2000;28(008): p13 15.
    [93] Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S. Shape engineerable and highly densely packed single walled carbon nanotubes and their application as super capacitor electrodes. Nature Materials. 2006;5(12): p987 994.
    [94] Li C, Wang D, Liang T, Wang X, Wu J, Hu X, Liang J. Oxidation of multiwalled carbon nanotubes by air: Benefits for electric double layer capacitors. Powder Technology. 2004;142(2 3): p175 179.
    [95] Lee JY, Liang K, An KH, Lee YH. Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance. Synthetic metals. 2005;150(2): p153 157.
    [96] Park BO, Lokhande CD, Park HS, Jung KD, Joo OS. Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes—effect of film thickness. Journal of Power Sources. 2004;134(1): p148 152.
    [97] Xiao QF, Zhou X. The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor. Electrochimica Acta. 2003;48(5): p575 580.
    [98] Frackowiak E, Jurewicz K, Szostak K, Delpeux S, Béguin F. Nanotubular materials as electrodes for supercapacitors. Fuel Processing Technology. 2002;77: p213 219.
    [99]赵淑红,吴锋,苏岳锋,陈实.超级电容器碳电极工艺研究.通信电源技术. 2003;(003): p34 36.
    [100]慈颖,葛军,王小峰,陈文浩,郭燕川,陈丽娟.明胶基多孔碳球电极材料的制备及电化学性能研究.无机化学学报. 2007;23(002): p365 368.
    [101] Qian H, Han F, Zhang B, Guo Y, Yue J, Peng B. Non catalytic cvd preparation of carbon spheres with a specific size. Carbon. 2004;42(4): p761 766.
    [102] Serp P, Feurer R, Kalck P, Kihn Y, Faria JL, Figueiredo JL. A chemical vapour deposition process for the production of carbon nanospheres. Carbon. 2001;39(4): p621 626.
    [103] Jin YZ, Gao C, Hsu WK, Zhu Y, Huczko A, Bystrzejewski M, Roe M, Lee CY, Acquah S, Kroto H. Large scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons. Carbon. 2005;43(9): p1944 1953.
    [104] Jin YZ, Kim YJ, Gao C, Zhu YQ, Huczko A, Endo M, Kroto HW. High temperature annealing effects on carbon spheres and their applications as anode materials in li ion secondary battery. Carbon. 2006;44(4): p724 729.
    [105] Motojima S, Kawaguchi M, Nozaki K, Iwanaga H. Growth of regularly coiled carbon filaments by ni catalyzed pyrolysis of acetylene, and their morphology and extension characteristics. Applied Physics Letters. 1990;56(4): p321 323.
    [106] Chen X, Motojima S. The growth patterns and morphologies of carbon micro coils produced by chemical vapor deposition. Carbon. 1999;37(11): p1817 1823.
    [107]李文军,郭燕川,陈丽娟.碳微线圈的合成,表征及形态研究.高等学校化学学报. 2005;26(009): p1589 1593.
    [108]李文军,徐海涛,郭燕川,陈丽娟.碳微线圈的气液固固生长机理.物理化学学报. 2006;22(006): p768 770.
    [109]慈颖,李文军,郭燕川,陈丽娟.超级电容器用RuO2/碳微线圈材料的研制.电池. 2007;37(001): p19 21.
    [110] Conway BE, Pell WG. Double layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. Journal of Solid State Electrochemistry. 2003;7(9): p637 644.
    [111] Conway BE, Pell WG. Power limitations of supercapacitor operation associated with resistance and capacitance distribution in porous electrode devices. Journal of Power Sources. 2002;105(2).
    [112] Pell WG, Conway BE. Voltammetry at a de levie brush electrode as a model for electrochemical supercapacitor behaviour. Journal of Electroanalytical Chemistry. 2001;500(1 2): p121 133.
    [113] Frackowiak E. Carbon materials for supercapacitor application. Physical Chemistry Chemical Physics. 2007;9(15): p1774 1785.
    [114] Ko:tz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochimica Acta. 2000;45(15 16): p2483 2498.
    [115]刘亚菲,胡中华,许琨,郑祥伟,高强.活性炭电极材料的表面改性和性能.物理化学学报. 2008;24(7): p1143 1148.
    [116] Brousse T, Toupin M, Belanger D. A hybrid activated carbon manganese dioxide capacitor using a mild aqueous electrolyte. Journal of the Electrochemical Society. 2004;151: pA614.
    [117]王晓峰,王大志,梁吉.碳纳米管表面沉积氧化镍及其超电容器的电化学行为.无机材料学报. 2003;18(2): p331 336.
    [118] Djagny KB, Wang Z, Xu S. Gelatin: A valuable protein for food and pharmaceutical industries: Review. Critical Reviews in Food Science and Nutrition. 2001;41(6): p481 492.
    [119] Olsen D, Yang C, Bodo M, Chang R, Leigh S, Baez J, Carmichael D, Per?l? M, H?m?l?inen ER, Jarvinen M. Recombinant collagen and gelatin for drug delivery. Advanced Drug Delivery Reviews. 2003;55(12): p1547 1567.
    [120]彭争宏,周圣泽,郭云,张锦锡,周祥凤,彭必先.明胶与食品——大力加强以明胶为载体的食品和保健品的开发——果蔬来源的植物化学物质防癌作用的研究进展.明胶科学与技术. 2007;27(003): p131 149.
    [121]靳钰,李彦凝,聂俊,杨冬芝.生物高分子明胶纳米纤维膜的制备及其应用.塑料. 2007;36(006): p49 52.
    [122]黄明智,黄雅钦,崔旭红.明胶的疗效与保健功能及其发展前景.明胶科学与技术. 2005;25(001): p4 15.
    [123] Marshall AS, Petrie SEB. Thermal transitions in gelatin and aqueous gelatin solutions. The J of Photog Sci. 1980;28: p128 134.
    [124] Michon C, Cuvelier G, Relkin P, Launay B. Influence of thermal history on the stability of gelatin gels. International Journal of Biological Macromolecules. 1997;20(4): p259 264.
    [125] Vanin FM, Sobral PJA, Menegalli FC, Carvalho RA, Habitante A. Effects of plasticizers and their concentrations on thermal and functional properties of gelatin based films. Food Hydrocolloids. 2005;19(5): p899 907.
    [126]李承明,姜莹,黄雅钦,蒋国昌,夏宇正.热降解明胶的研究.化工科技. 2006;14(003): p30 32.
    [127] Yannas IV, Tobolsky AV. High temperature transformations of gelatin. European Polymer Journal. 1968;4: p257 264.
    [128] Yannas IV. Collagen and gelatin in the solid state. Polymer Reviews. 1972;7(1): p49 106.
    [129] Fakirov S, Sarac Z, Anbar T, Boz B, Bahar I, Evstatiev M, Apostolov AA, Mark JE, Kloczkowski A. Mechanical properties and transition temperatures of crosslinked oriented gelatin ii. Effect of orientation and water content on transition temperatures. Colloid and polymer science(Print). 1997;275(4): p307 314.
    [130] Ge J, Shi J, Chen L. Gelatin based carbon microspheres with a foam like core/solid shell structure. Carbon. 2009;47(4): p1992 1995.
    [131] Molin SO, Nygren H, Dolonius L. A new method for the study of glutaraldehyde induced crosslinking properties in proteins with special reference to the reaction with amino groups. Journal of Histochemistry and Cytochemistry. 1978;26(5): p412 414.
    [132] Richards FM, Knowles JR. Glutaraldehyde as a protein cross linking reagent. Journal of Molecular Biology. 1968;37: p231 233.
    [133] Yannas IV, Tobolsky AV. Cross linking of gelatine by dehydration. Nature. 1967;215(5100): p509 510.
    [134] Vandelli MA, Romagnoli M, Monti A, Gozzi M, Guerra P, Rivasi F, Forni F. Microwave treated gelatin microspheres as drug delivery system. Journal of Controlled Release. 2004;96(1): p67 84.
    [135] Cox RJ. Photographic gelatin ii. 1st ed. 1976, London: Academic Press.
    [136]张军,纪奎江,夏延致.聚合物燃烧与阻燃技术. 2005,北京:化学工业出版社. p. 16 22.
    [137] Layden GK. Retrograde core formation during oxidation of polyacrylonitrile filaments. Carbon. 1972;10(1): p59–60.
    [138]贺福.碳纤维及其应用技术. 2004:化学工业出版社.
    [139] Barreto PLM, Pires ATN, Soldi V. Thermal degradation of edible films based on milk proteinsand gelatin in inert atmosphere. Polymer degradation and stability. 2003;79(1): p147 152.
    [140] Ferrari AC, Robertson J. Interpretation of raman spectra of disordered and amorphous carbon. PHYSICAL REVIEW SERIES B . 2000;61(20): p14095 14107.
    [141]陈建峰沈,初广闻文,王玉红.制备具有具体形态的碳酸钙的方法. 2003.
    [142]林荣毅,张家芸.纳米caco3的生长和控制机理.中国有色金属学报. 2002;12(002): p358 362.
    [143]诸葛兰剑,张士成.超细碳酸钙的合成及结晶过程.硅酸盐学报. 1999;27(002): p159 163.
    [144]王玉红,贾志谦.超重力场中合成超微细caco3的粒度控制研究.材料科学与工程. 1998;16(002): p65 67.
    [145]陈建峰,邹海魁.超重力反应沉淀法合成纳米材料及其应用.现代化工. 2001;21(009): p9 12.
    [146] Smiljanic O, Dellero T, Serventi A, Lebrun G, Stansfield BL, Dodelet JP, Trudeau M, Desilets S. Growth of carbon nanotubes on ohmically heated carbon paper. Chemical Physics Letters. 2001;342(5 6): p503 509.
    [147] Sonoyama N, Ohshita M, Nijubu A, Nishikawa H, Yanase H, Hayashi J, Chiba T. Synthesis of carbon nanotubes on carbon fibers by means of two step thermochemical vapor deposition. Carbon. 2006;44(9): p1754 1761.
    [148] Sun X, Li R, Stansfield B, Dodelet JP, Désilets S. 3d carbon nanotube network based on a hierarchical structure grown on carbon paper backing. Chemical Physics Letters. 2004;394(4 6): p266 270.
    [149] Sun X, Stansfield B, Dodelet JP, Desilets S. Growth of carbon nanotubes on carbon paper by ohmically heating silane dispersed catalytic sites. Chemical Physics Letters. 2002;363(5 6): p415 421.
    [150] Zhao ZG, Ci LJ, Cheng HM, Bai JB. The growth of multi walled carbon nanotubes with different morphologies on carbon fibers. Carbon. 2005;43(3): p663 665.
    [151] Su F, Zhao XS, Wang Y, Lee JY. Bridging mesoporous carbon particles with carbon nanotubes. Microporous and Mesoporous Materials. 2007;98(1 3): p323 329.
    [152] Su F, Li X, Lv L, Zhao XS. Ordered mesoporous carbon particles covered with carbon nanotubes. Carbon. 2006;44(4): p801 803.
    [153] Lim S, Yoon SH, Korai Y, Mochida I. Selective synthesis of thin carbon nanofibers: I. Over nickel–iron alloys supported on carbon black. Carbon. 2004;42(8 9): p1765 1781.
    [154] Zhang HL, Zhang Y, Zhang XG, Li F, Liu C, Tan J, Cheng HM. Urchin like nano/micro hybrid anode materials for lithium ion battery. Carbon. 2006;44(13): p2778 2784.
    [155] Zhang HL, Liu SH, Li F, Bai S, Liu C, Tan J, Cheng HM. Electrochemical performance of pyrolytic carbon coated natural graphite spheres. Carbon. 2006;44(11): p2212 2218.
    [156] Wang H, Yoshio M, Abe T, Ogumi Z. Characterization of carbon coated natural graphite as a lithium ion battery anode material. Journal of the Electrochemical Society. 2002;149: pA499.
    [157] Lee HY, Baek JK, Jang SW, Lee SM, Hong ST, Lee KY, Kim MH. Characteristics of carbon coated graphite prepared from mixture of graphite and polyvinylchloride as anode materials for lithium ion batteries. Journal of Power Sources. 2001;101(2): p206 212.
    [158] Miao JY, Hwang DW, Narasimhulu KV, Lin PI, Chen YT, Lin SH, Hwang LP. Synthesis and properties of carbon nanospheres grown by cvd using kaolin supported transition metal catalysts. Carbon. 2004;42(4): p813 822.
    [159] Conway BE. Transition from“supercapacitor”to“battery”behavior in electrochemical energystorage. Journal of the Electrochemical Society. 1991;138(6): p1539 1548.
    [160] Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon. 2001;39(6): p937 950.
    [161]邓梅根,张治安,胡永达,杨邦朝.双电层电容器电极材料最新研究进展.碳素技术. 2003;127(4): p25 30.
    [162]刘国阳,周安宁.超级电容器炭基电极材料研究进展.炭素. 2006;128(04): p27 30.
    [163]陈秀琴,元岛栖二.高弹性螺旋状碳纤维及其制备方法. CN00108831.9. 2001.
    [164]元岛栖二,井户胜富,丹羽祯辅.碳纤维线圈的制造方法及制造装置. CN99800179.1. 1999.
    [165]戈敏,沈曾民.气相催化裂解法制备微米级螺旋形炭纤维的研究.新型炭材料. 2003;18(001): p31 36.
    [166]陈丽娟,李文军,郭燕川,徐海涛,彭必先.微碳卷及其制备方法和用途. CN200410034061.6. 2004.
    [167]陈丽娟,彭必先,郭燕川,韩凤梅,李文军.旋管直径为纳米级的螺旋状碳纤维及其制备方法. CN200410000752.4. 2004.
    [168] Li W, Guo Y, Chen L. Preparation of carbon nano microcoils by ni3s2 catalyzed pyrolysis of acetylene and its vapor–liquid–solid–solid growth mechanism Journal of Nanoscience and Nanotechnology. 2006;6(12): p3775 3779.
    [169] Motojima S, Chen Q. Three dimensional growth mechanism of cosmo mimetic carbon microcoils obtained by chemical vapor deposition. Journal of Applied Physics. 1999;85(7): p3919 3921.
    [170] Kuzuya C, In Hwang W, Hirako S, Hishikawa Y, Motojima S. Preparation, morphology, and growth mechanism of carbon nanocoils. Chemical Vapor Deposition. 2002;8(2): p57.
    [171] Shibagaki K, Motojima S. Distribution of sulfur in bulk carbon microcoils. Carbon. 2001;39(10): p1605 1607.
    [172] In Hwang W, Kuzuya T, Iwanaga H, Motojima S. Oxidation characteristics of the graphite micro coils, and growth mechanism of the carbon coils. Journal of Materials Science. 2001;36(4): p971 978.
    [173] Wen Y, Shen Z. Synthesis of regular coiled carbon nanotubes by ni catalyzed pyrolysis of acetylene and a growth mechanism analysis. Carbon. 2001;39(15): p2369 2374.
    [174] Du J, Su G, Bai S, Sun C, Cheng H. Solid catalytic growth mechanism of micro coiled carbon fibers. Science in China Series E: Technological Sciences. 2001;44(4): p377 382.
    [175]蔡少华,黄坤耀,张玉容.元素无机化学. 1998:广州:中山大学出版社. 248 250.
    [176]宫杰,刘洋,王丽丽,杨景海,宗占国.密堆积六方结构Ni纳米颗粒的制备与表征.高等学校化学学报. 2007;28(007): p1232 1234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700