用户名: 密码: 验证码:
双质体振动给料机动态设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双质体振动给料机是一种广泛应用在冶金、煤炭、电力、化工、建材、轻工和粮食等行业中的给料设备。目前双质体振动给料机大多是采用经验数据和安全系数的设计方法,未充分考虑结构的工作动态特性,因此不能保证产品结构的设计合理性,导致电耗高、振幅不稳定、产量较低、噪音大、使用寿命短等缺点。所以,采用现代设计方法研究和制造双质体振动给料机,提升设计水平、缩短产品开发周期及提高产品可靠性等已成为一项重要的研究课题。为此,本论文采用虚拟设计、动态设计、有限元分析、动力学仿真等现代设计方法对双质体振动给料机的设计技术展开了研究。
     通过对双质体振动给料机的工作原理和给料槽体内物料的运动形式的研究,推导出给料槽体工作面的位移、速度、加速度、物料运动的理论平均速度和产量的计算公式,总结出双质体振动给料机工艺参数的选择原则和方法;分析了物料运动速度的影响参数,并利用MATLAB优化工具箱对其进行了优化计算,得到了小倾角椭圆振动给料机物料在抛掷运动状态下输送速度最大时的最佳运动学参数。
     建立了双质体振动给料机的动力学模型和四自由度振动方程,给出了振动方程的求解方法。对振动方程的分析表明,双质体振动给料机出现前、后摇摆振动的原因是激振力不通过机体质心,在此基础上提出了使双质体振动给料机减少前、后摇摆振动的措施。同时计算了双质体振动给料机的动力学参数,为有限元模型的创建与动力学仿真研究提供了基础数据。
     应用三维CAD绘图软件SolidWorks建立了双质体振动给料机三维模型,完成给料机的虚拟装配,干涉检验和整机参数的校验。利用Visual Basic对SolidWorks进行了二次开发,建立了人机交互界面,通过Visual Basic编程实现不同参数的模型更新,实现一参数一模型的自动生成和模型的重新装配,并实现了三维实体模型向二维工程图的自动转换,以便直接用于生产。整合以上功能建立了双质体振动给料机虚拟设计系统,有效缩短了产品开发周期、节省了制造成本、提高了设计质量。
     采用三维CAD绘图软件SolidWorks、有限元分析软件ANSYS、多体动力学仿真软件MSC.ADAMS联合仿真技术,建立了双质体振动给料机的刚柔耦合虚拟样机模型,并进行了动力学仿真分析,得到了整机的运动学和动力学参数、主振弹簧和隔振弹簧受力曲线及振动方向角变化曲线等。结果表明,在开机和停止阶段,给料机会出现前后和左右的摇摆,但幅度不大,隔振弹簧承受较大的冲击载荷,易发生剪断破坏,主振弹簧在起动和停止阶段受力很小,工作时振幅平稳,其破坏形式主要为稳定阶段的疲劳失效;双质体振动给料机的平均振动方向角仿真值为34.8°,与理论设计值35°基本一致。仿真结果与理论计算结果的对比分析表明,两者具有较好的一致性,由此证明了双质体振动给料机动力学仿真模型的正确性及仿真结果的可靠性。
     应用有限元分析软件ANSYS对给料槽体进行了自由模态分析,结果表明给料槽体在额定工作频率下工作不会出现共振现象;对双质体振动给料机整机进行了约束模态分析和谐响应分析,结果表明双质体振动给料机能够成功地克服共振,实现平稳地起动和正常工作。应用ANSYS Workbench软件对主振弹簧、给料槽体等关键易损零部件进行了疲劳分析,得出了寿命图、损伤图、安全系数等疲劳分析参数,确定了弹簧的薄弱环节、不安全和易损伤区域,进而分析了结构设计的合理性,并估算出了使用寿命,为优化设计提供了依据。
     对双质体振动给料机进行了空载实验,测得了各测点的运动轨迹和振动方向角,实验结果与理论分析结果和仿真结果基本一致,证明了双质体振动给料机动力学分析的正确性。同时,实验表明双质体振动给料机的工作性能和振动特性能够满足设计要求。对给料槽体进行了自由模态试验,测得了给料槽体的固有频率和振型,结果表明试验模态分析结果和理论模态分析结果基本一致,验证了所建立的有限元模型的合理性。
Two-mass vibratory feeder is widely used in metallurgy, coal, electric power,chemical, building materials, light industry and food industry in feeding equipment etc.But the production practice has showed the following shortcomings: high powerconsumption, unstable amplitude, low output, high noise, short service life etc. In addition,the traditional design is mostly using empirical data and safety coefficient design method,which can not accurately reveal the internal structure of the dynamic stress distribution;therefore it can not guarantee the product structure design is reasonable, which directlyaffect product performance and service life. Therefore, researching and manufacturingTwo-mass vibratory feeder by modern design method,upgrading the level of design,shortening the product development cycle and improving product reliability have becomeimportant research subjects. This dissertation has used virtual design, dynamic design,optimization design, finite element analysis, dynamic simulation and other modern designmethods to carry out research on dynamic design of two-mass vibratory feeder.
     On the bases of the study in working principle of the two-mass vibratory feeder andthe material motion in the trough, the formulas of the displacement, velocity andacceleration of the working face and the theoretical average velocity of the material motionare obtained. The principles and methods chosen for the proper process parameters for thetwo-mass vibratory feeder are summarized, and the Optimization Toolbox of MATLAB isused to get the best kinematic parameters for the small obliquity elliptical vibratory feeder,with the maximal conveying velocity and under the material throw condition.
     The dynamic model and four freedom degrees vibration equations of the two-massvibratory feeder are established. The method which solves the vibration equations is putforward. According to the analysis of vibration equations, the reason that results in forwardand backward swing of the two-mass vibratory feeder is that exciting force doesn’t passthrough the centroid. Based on that, the approaches to prevent the feeder from swinging arealso put forward. Calculation of the kinetic parameters of two-mass vibratory feeder, forthe finite element model is created and dynamics simulation study provides basic data.
     Based on Visual Basic6.0, the paper does secondary development for SolidWorks.Establishing interactive interface, completing different parameters of the model updated byVisual Basic programming, automatically saving every parts and assembly.Three-dimensional solid model is automatically converted to the two drawings for directlyused in the production. Finally integrating above function the paper creates a virtual design system as user interface, thus shorten the product development cycle, save manufacturingcost, and improve design quality.
     Using3D CAD software SolidWorks, the finite element analysis software ANSYS,multi body dynamic simulation software MSC.ADAMS joint simulation technology, andestablished a two-mass vibratory feeder rigid-flexible virtual prototype model, the buildingof two-mass vibratory feeder rigid-flexible virtual prototype model. Using the establishedmodel of virtual prototype dynamics simulation analysis is based on the two-massvibratory feeder to get the kinematics and kinetic parameters, which are the main vibrationspring and vibration isolation spring force curve and vibration direction angle curve andparameters. Simulation results, theoretical calculation and experimental results werecompared, the simulation result with the theoretical calculation and experimental resultsare in good design, which proves that two-mass vibratory feeder dynamic simulationmodel is correct. The simulation study also shows that during starting up and stoppingstage, feeder appears around the swing, but range is not big, the vibration isolation springbear larger impact load, prone to shear failure, the master vibration spring force is verysmall, the main failure patterns for the phase stability of fatigue failure; the averagetwo-mass vibratory feeder of vibrating direction angle of the simulation value is34.8°anddesign value of35°theory basically is the same, proved that the two-mass vibratory feederhas better production efficiency.
     The ANSYS software is used to analyze the unconstrained mode of the feeding trough,it has shown that the resonant of feeding trough does not appear on the rated workingfrequency, and the structure design of the feeder trough is reasonable. So the constrainedmodal analysis and harmonic analysis are conducted. It shows that the two-mass inertialvibratory feeder can conquer resonance, and reposeful starting and normal working can becarried out. Appling to ANSYS Workbench, the paper does fatigue analysis of mastervibration spring, a feeding trough body and other key vulnerable parts in this section,obtaining the parameter chart of the life, damaged and safety factor, analyzing therationality of the design of the structure, estimating their service life, finding the weaklinks, unsafe and easily damaged area to provide a basis for design optimization andproduction strength.
     No-load experiment research of the two-mass vibratory feeder is accomplished. Themotion tracks and vibration direction angles of every measuring point are obtained. Theexperimental and theoretical results are basically consistent. It proves that the dynamicanalysis is right. It is also shown that the working performance and dynamic characteristic of the feeder can meet the design aims. Through the unconstrained modal experiment studyon feeding trough, the natural frequency and vibration modes of feeding trough areobtained. The results, which are basically consistent with the theoretical results showingthe finite element model is reasonable.
引文
[1]王运池.国内振动给料设备的现状与发展[J].煤质技术,2003(4):29-31.
    [2]周永红.电磁振动给料机的力学模型[D].上海:东华大学图书馆,2004.
    [3]刘育.国内煤矿振动给料设备的现状及发展[J].煤矿机械,2003(4):3-4.
    [4]范朝阳.振动机械的发展与展望[J].矿业快报,2004(2):10-11.
    [5]赵野平.论述矿山振动机械的发展与技术进步[J].甘肃科技,2005(5):18-19.
    [6]周洲.双质体给料机动态设计研究[D].徐州:中国矿业大学图书馆,2008.
    [7]张全勤.国内外振动机械发展状况与趋势[J].机械科技,1991(3):5-6.
    [8]陈新,贾玉兰.机械结构动态设计理论方法及应用[M].北京:机械工业出版社,1997.
    [9]王敦曾.选煤新技术的研究与应用[M].北京:煤炭工业出版社,1999.
    [10]顾培英,邓昌,吴福生.结构模态分析及其损伤诊断[M].南京:东南大学出版社,2008.
    [11]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2000.
    [12]李德葆,陆秋海.实验模态分析及其应用[M].北京:科学出版社,2001.
    [13]沈鹏程,何沛祥.多变量样条有限元法[J].固体力学学报,1994.15(3):234-243.
    [14]王培军,李国强.火灾下轴向约束钢梁的样条有限元法[J].同济大学学报,2007,35(12):1592-1596.
    [15]李兵,陈雪峰,向家伟等.基于小波有限元法的悬臂梁裂纹识别的试验研究[J].机械工程学报,2005,41(5):114-119.
    [16] Wang Renhong.Multivariate Splines and its Application[M].Beijing:China Machine Press,2006.
    [17]方远翔,陈安宁,董卫平.振动模态分析技术[M].北京:国防工业出版社,1993.
    [18]左鹤声,彭玉莺.振动试验模态分析[M].北京:中国铁道出版社,1995.
    [19]俞云书.结构模态实验分析[M].北京:宇航出版社,2000.
    [20] JLardies,NTaM,BerthillierM.Modal parameter estimation based on[C].International Conferenceon Intelligent Robots and Systems,2005:627-641.
    [21] T P Le and P Argoul.Continuous wavelet transform for modal identification using free decayresponse[J].Journal of Sound and Vibration,2004,277(1-2):73-100.
    [22]曹树谦,张文德,萧龙翔.振动结构模态分析—理论、实验与应用[M].天津:天津大学出版社,2001.
    [23]杜尚之.超静定问题[J].丽水师范专科学校学报,2003,25(5):30-32.
    [24]吴宏礼,刘颖.土木工程力学[M].上海:东华大学出版社,2007.
    [25]李天匀,张小铭.周期简支曲梁的振动波与功率流[J].华中理工大学学报,1995,23(9):112-115.
    [26]范成建,熊光明.虚拟样机软件MSC.ADAMS应用与提高[M].北京:机械工业出版社,2006.
    [27]石剑锋.煤用振动筛分设备的研究现状及发展趋势[J].煤矿机械,2,30(5):8-9.
    [28]王峰.我国矿山振动技术及设备的新发展[J].矿山机械,1991,(4):24-27.
    [29]新型振动棒条给料机[J].国外金属矿选矿,1988(8):56.
    [30]夏圣伯,范朝阳.BZS1665棒条振动给料机的设计及与几种机型的比较[J].矿山机械,2005(2):26~27.
    [31]夏圣伯,唐勇.棒条振动给料机采矿工艺配置的探讨[J].矿业快报,2006(4):54.
    [32]金鸿年.篦形水泥振动给料机[J].建筑机械化,1988(6):26.
    [33]李明星.多层槽振动给料机[J].中国铸造装备与技术,1991(2).
    [34]程秀芳.提高大型振动筛筛分效率的实践[J].矿山机械,1999(4):46-47.
    [35]张路霞,李云峰.振动筛筛分效率的影响因素分析[J].煤矿机械,2008,29(11):74-76.
    [36]刘奎胜,谭兆衡.筛分机械的应用和发展[J].矿山机械,1998(7):56-57.
    [37]王正浩,范改燕.振动筛结构强度研究的现状[J].沈阳建筑工程学院学报,1999(3):278-281.
    [38]刘瑞宏,陈少华.筛分机械大型化的发展趋向[J].内蒙古石油化工,1999(3):87-88.
    [39] Lonie K.W. Practical Model For Sub-resonant Vibratory Feeders[J]. Bulk Solids Handling,1983(3):741-746.
    [40] Okabe, S., Kamiya, Y.,Tsujikado, K.,Yokoyama, Y.,Vibratory Feeding By NonsinusoidalVibration-Optimum Wave Form[J]. Journal of Vibration, Acoustics, Stress, and Reliability inDesign,1985(3): P188-195.
    [41] Lim, G.H. Vibratory Feeder Motion Study Using Turbo C++Language[J]. Advances inEngineering Software, v18, n1,1993, p53-59.
    [42] Barnes R.N. Resonant Vibratory Feeders[J]. Institution of Engineers,1992(2):321-326.
    [43] Du, W.Y. Motion tracking of a part on a vibratory feeder [C]. IEEE/ASME InternationalConference onAdvanced Intelligent Mechatronics, AIM, v1,2001, p75-80.
    [44] Umbanhowar, Paul; Lynch, Kevin M. Optimal vibratory stick-slip transport[J]. IEEE TransactionsonAutomation Science and Engineering, v5, n3, July,2008, p537-544.
    [45]杨冬平.振动输送机及给料机的最佳运动学参数[J].起重运输机械,1983.
    [46]何勍.椭圆振动输送机物料在抛掷运动状态下的最佳运动学参数[J].辽宁工学院学报,1993(4):5-8.
    [47]张艳冬,白瑛.振动输送机最佳振动形式的应用研究[J].辽宁工学院学报,1996(3):35-37.
    [48]闻邦椿,刘树英,何勍.振动机械的理论与动态设计方法[M].北京:机械工业出版社,2001.
    [49]刘安源,刘石,潘中刚.振动给料机中固体颗粒物料运动规律的数值研究[J].中科院研究生院学报,2002(1):39-41.
    [50]邵晓荣.自同步振动给料机最佳安装参数研究[J].燕山大学学报,2005(1):38-45.
    [51]于辉,刘敏楠.振动给料机物料结合的实验研究[J].起重运输机械,2006(4):71-72.
    [52]周洲,赵子江,贾晓娜.基于Matlab的惯性振动给料机速度最大值的求取[J].矿山机械,2007(7):13-15.
    [53] Koizumi, Kunio; Sasaki, Motofumi; Iwaki, Toshihiro; Okabe, Sakiichi; Yokoyama, Yasuo.Self-contained vibration reducing function by interference method on vibratory machine (1streport). Drive by direct exciting force[J]. Journal of the Japan Society of PrecisionEngineering/Seimitsu Kogaku Kaishi, v58, n5, May,1992, p871-876.
    [54] Lim, G.H. On the conveying velocity of a vibratory feeder[J]. Computers and Structures, v62, n1,Jan3,1997, p197-203.
    [55] Ye, Jianrui; Yasuda, Kimihiko Analysis of nonlinear oscillations of three-degree-of-freedomvibratory systems with1:1:1internal resonance [J]. Nippon Kikai Gakkai Ronbunshu, CHen/Transactions of the Japan Society of Mechanical Engineers, Part C, v63, n613, Sep,1997, p2967-2975.
    [56] Raski, Jerry Z. Chaotic behavior on in-phase vibratory conveyors[C]. ASTM Special TechnicalPublication, n1362, Feb,1999, p121-133.
    [57] Pramanik, S. Selection of Spring Stiffness of a Tuned-vibratory Feeder[J]. Journal of the Institutionof Engineers (India): Mechanical Engineering Division, v80, n1, May,1999, p37-40.
    [58]王炜.双质体惯性式振动机激振源位置对振幅的影响[J].云锡科技,1990(2):44-47.
    [59]时立臣.双质体惯性振动输送机工作状态的简易调整[J].水泥,1993(10):7-9.
    [60]吕富强.双质体共振式给料机的动力学分析探讨[J].物料搬运与分离技术,1995(1):11-14.
    [61]刘树英,袁艺,闻邦椿.考虑物料作用力的大倾角振动输送机的动力学分析[J].东北大学学报,1995(3):315-319.
    [62]张义民,闻邦椿.非线性随机振动机的动力学研究[J].工程力学,1999(3):100-104.
    [63] Chen, Yongliang. Dynamic Design of Electromagnetic Vibratory Bowel Feeders UsingCoupled-fieldAnalysis[J]. Journal of Mechanical Strength,2006(1):104-107.
    [64]刘杰,刘劲涛,张金萍,李允公.考虑物料质量随机波动的反共振振动机动力学分析[J].振动与冲击,2006(6):76-84.
    [65] Han, Y.; Janzen, V.P.; Smith, B.A.W.; Godet, T. Analysis of a PHWR outlet feeder vibration due torandom turbulence-induced excitation[C]. American Society of Mechanical Engineers, PressureVessels and Piping Division (Publication) PVP, v4, p503-512,2008,2007Proceedings of theASME Pressure Vessels and Piping Conference-Fluid-Structure Interaction.
    [66]徐燕申.机械动态设计[M].北京:机械工业出版社,1992:74-109.
    [67]周传荣.结构动态设计[J].振动、测试与诊断,2001,21(1):1-8.
    [68] Hiroshi Kobayashi, Kentaro Konishi. Development of Feeding Support System and Its QuantitativeEstimation[C]. International Conference on Intelligent Robots and Systems,2006:717-722.
    [69] Pazyuk M.Yu, Syromyasskii,V.A..Monitoring the Operation of Vibrating Feeders [J]. Metallurgist(English Translation of Metallurg),1987(3):9-12.
    [70]黄桂.双质体惯性振动给料机动态特性的研究[D].徐州:中国矿业大学图书馆,2009.
    [71]王国强.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2002.
    [72]张琳琳.电磁振动给料系统结构动力学研究[D].秦皇岛:燕山大学图书馆,2006.
    [73]谭建荣,刘振宇.关键技术与产品应用[M].机械工业出版社,2007.
    [74]李慰立,余成波.虚拟制造关键技术[J].重庆工程学报,2000,14(1),42-44.
    [75]林家浩.结构动力优化中的灵敏度分析[J].振动与冲击,1995,14(1):1-6.
    [76]王志华,陈翠英.基于ADAMS的联合收割机振动筛虚拟设计[J].农业机械学报,2003.
    [77]郑德涛,孙健,陈洪军等.组合夹具装配虚拟设计[J].机械设计与制造,2002.
    [78]盛步云,胡业发等.磁力轴承系统的虚拟设计[D].湖北省机电研究设计院,中国机械工程,2000.
    [79]汪新月.新龙织机送经减速箱的虚拟设计[J].中国纺织机械器材工业协会,2002.
    [80]杜诗文,宋建军.汽车虚拟设计在UG下的应用[J].太原:太原重型机械学院学报,2002.
    [81]卢建平,张道林,杨洪峰.基于Pro/E玉米联合收获机的虚拟设计[J].农机化研究,2008.
    [82]李成松,高治国,刘庆.番茄籽皮分离机的虚拟设计[J].石河子大学学报,2007.
    [83]魏占国,刘晋浩.基于SolidWorks的伐根清理机器人虚拟设计与运动仿真[D].哈尔滨,东北林业.
    [84]张道林,刁培松,张士新.玉米收获机切碎装置虚拟设计与动态仿真分析[D].山东理工大学轻工与农业工程学院,2008.
    [85]郭年琴,刘静.新型低矮式破碎机的虚拟设计与运动仿真[J].煤矿机械,2009.
    [86]钱丹浩.基于参数化技术的齿轮油泵虚拟设计系统研究术[J].拖拉机与农用运输车,2010(2)37.
    [87]赵永满,梅卫江.垂直换向悬挂翻转五铧犁的虚拟设计[J].农机化研究,2010.
    [88] Benjamin C.Kuo, Duane C.Hanselman.MATLAB tools for control system analysisanddesign[M].Englewood Cliffs,NJ:Prentice Hall,1994.
    [89]龚建球,刘守斌.基于ADAMS与MATLAB的自平衡机器人仿真[J].机电工程.2008.2:8-10.
    [90]刘军.工程结构中的二次共振分析[J].淮海工学院学报(自然科学版),2005(12):15-17.
    [91]飞思科技产品研发中心.MATLAB6.5辅助优化计算与设计[M].北京:电子工业出版社,2003.
    [92]李文英.大型振动筛动力学分析及动态设计[D].太原:太原理工大学图书馆,2004.
    [93]吕硕.圆振动筛的动力学分析和计算机仿真[D].北京:北京科学技术大学图书馆,2002.
    [94]季文美,方同,陈松洪.机械振动[M].北京:科学出版社,1985.
    [95] Wu Xu tong,Liu Shenlin.Study On a new Type of swing Link Speed Reduce[C].Proceedings ofNinth World Congress on the Theory of Machines and Mechanisms,sepeember1-3,1995,MilanItaly,IFTOMM,c1995:182—185.
    [96]尹成龙,朱林,吴元梓,常静.基于SolidWorks的新型玉米播种机虚拟设计[J].农业科技与装备,2009(4)58-60.
    [97]郑长松,谢昱北,郭军,等.SolidWorks2006中文版机械设计高级应用实例[M].北京:机械工业出版社,2006.
    [98]任辉,纳斯哈提.基于SolidWorks的联轴传动机构的虚拟设计与运动仿真[J].邢台职业技术学院学报,2009(3)70,71,77.
    [99]赵常云.基于SolidWorks的产品三维参数化设计与虚拟装配研究[D].东北大学机械工程与自动化,2008.
    [100]徐宏海.基于VB和SolidWorks的调节阀参数化设计[J].机电工程技术,2009,(4).
    [101]周凯旋.基于VB的SolidWorks二次开发[D].机械制造,2005.5(489).
    [102]刘媛.基于SolidWorks的YH30液压机参数化设计[D].合肥工业大学机械工程,2011.3.
    [103]黄烨.基于SolidWorks的鼓形联轴器参数化设计[D].东南大学机械电子工程,2006.12.
    [104]杨丹丹.基于SolidWorks的滑木箱参数化设计及分析[D].山东大学,2010.5.
    [105]江洪.SolidWorks2003二次开发基础与实例教程[M].北京:电子工业出版社,2003.
    [106]江洪,陆利锋,魏峥.SolidWorks动画演示与运动分析实例解析[M].北京:机械工业出版社,2006.
    [107]张晋西,郭学琴.SolidWorks及COSMOSMotion机械仿真设计[M].北京:清华大学出版社,2007.
    [108]王猛.基于ADAMS的急救车担架支架减振特性仿真分析与优化研究[D].中国人民解放军军事医学科学院,2009.
    [109]门玉琢.基于ADAMS的重型载货汽车可靠性仿真与试验研究[D].交通学院,2009.
    [110]董江华,姜大成.基于ADAMS的虚拟样机技术实践[J].机械工程师,2009.
    [111]符长会.关于Pro/E和ADAM的推土机工作装置的仿真分析与改进设计[D].山东科技大学,2011.
    [112]万达.基于ADAMS的鼓式制动器结构优化设计[D].河北工业大学,2010.
    [113]李增刚.ADAMS入门详解与实例[M].北京:国防工业出版社,2009.
    [114]山玉波,刘峰,马刚,周明.基于Pro/E/ADAMS/ANSYS的虚拟设计[J].煤矿机械,2010.
    [115]解德乾,丁武学,王栓虎,李太福.基于ADAMS和ANSYS的高速冲床导轨仿真分析[J].机械设计与制造,2012.
    [116]樊炳辉,曾庆良,车翠莲,江浩.基于ADAMS的移动机器人仿真.中国制造业信息化,2006.5:39-42.
    [117]梁林,吕召泉,袁海龙.多体动力学在汽车前轮定位参数分析中的应用[J].计算机辅助工程,2006,(15):149.
    [118]丁建明,巢凯年.基于ADAMS的悬架参数对轮胎侧向滑移的仿真研究[J].轻型汽车技术,2006,(l):33-34.
    [119]槐寒冰,邓楚男,何文波.基于ADAMS软件的汽车平顺性仿真分析[J].机械设计与制造,2007,(7):48-50.
    [120]张德超,杨亚娟.基于ADAMS/CAR的悬架运动学/动力学分[J].天津汽车,2008,(1):7-8.
    [121]袁士杰,吕哲勤.多刚体系统动力学.北京理工大学出版社,1992.3.
    [122]ADAMS Theory Seminar, Mechanical Dynamics, Inc.,1994.
    [123] Mechanical Dynamics, Inc.,UsingADAMS/Solver V.1998.
    [124] Mechanical Dynamics, Inc.,UsingADAMS/View V.1998.
    [125]ADAMS/VIEWTM Icon Interface Primer, Version8.0Mechanical Dynamics, Inc.
    [126]ADAMS/VIEWTM Mensus&Panels Interface Primer, Version8.0Mechanical Dynamics, Inc.
    [127]刘晓东,章晓明.基于ADAMS与NASTRAAN的刚柔耦合体动力学分析方法[J].机械设计与制造,2008(2):168-170.
    [128]莆明辉等.基于ADAMS的链传动多体动力学模型研究[J].机械设计与研究,2008,4(2)13-16.
    [129]洪学.基于ADAMS/View的小车式起落架动态仿真[J].美国MDI公司.
    [130] MSC.SoftwareCorPoration.ADAMS/CarHeIP,2007.
    [131] ThomasD.Gillespie等.车辆动力学基础[M].清华大学出版社,2006.
    [132] T.G.Chondros,P.A.Belokas,and K.Valllrrakeros,“Vehicle Dynamics Simulation and SuspensionSystem Design”,SAE:970105.
    [133]王永涛,李成,马志垒.基于ADAMS/CarRide汽车平顺性仿真[J].机械设计与制造,2010(4):81-83.
    [134] MSC公司.UsingADAMS/Car, version12.0.
    [135] MSC公司.Using TheADAMS/View Function Builder.
    [136] Dr.P.Fischer,W.Witteveen,M.Sehabasser,Integrated MBS-FE-Durability Analysis of TruekFrame Components by Modal Stresses,ADAMS User Meeting2000-Rom.
    [137]饶曾仁.教学机器人实践开发与教程[M].兰州:兰州大学出版社,2010.
    [137]孟繁华.机器人应用技术[M].哈尔滨:哈尔滨工业大学出版社,1989.
    [139]赖锡煌.基于ADAMS虚拟平台的多关节机器人动力学分析[D].北京:北方工业大学2005.5.
    [140]钟小勇,李凤英.ADAMS函数的使用技巧.设备制造技术[M].2008.11:100-102.
    [141] Stejskal,Valasek.Kinematies and Dynamics of Machinery[J].Hardeover,January1996,(8):19-22.
    [142] MeConville,J.B,MeGrath,J.F.Introduction to ADAMS Theory[M].MDI,1997,51-59.
    [143] Negrllt,D.Harris,B. ADAMS Theory in a Nutshell[M].MDI,2001,66-75.
    [144]张韵韵.基于ADAMS的桥式抓斗卸船机结构动力学仿真研究[D].武汉:武汉理工大学,2008.
    [145]许涛,王建平.基于Pro/E、ANSYS和ADAMS的动力学联合仿真研究[J].机械工程与自动化,2009.3:37-39.
    [146] D. Kmiec,J. McConville.Structural flexibility influence using ADAMS/FEA[C].Proceedings ofthe1996International ADAMS User Conference,Michigan (USA),1996.
    [147]朱俊,陈振华,沈金燕.Pro/E、ADAMS、ANSYS在取玻璃机器人设计中的联合应用[J].机械工程师,2008.7:3-5.
    [148]张胜利.Pro/E、ADAMS与ANSYS在机械系统设计中的联合应用[J].机械设计与制造,2005.11:143-145.
    [149]侯红玲,赵永强,魏伟锋.基于ADAMS和ANSYS的动力学仿真分析[J].现代机械,2005.4:62-63.
    [150]赵静一,安东亮,孙炳玉,李建松.基于ADAMS和ANSYS的桥梁检测车臂架结构的研究[J].中国工程机械学报,2009,7(2):219-222.
    [151]姚晓光,郭晓松,冯永保,于欣.基于ADAMS和ANSYS的柔性导弹起竖系统仿真分析及研究[J].机械制造,2006.2:18-21.
    [152]解本铭,郭海乐,崔大妍.基于ADAMS与ANSYS的液压平台车动力学仿真[J].工程机械文摘,2008.2:67-69.
    [153] G. Kouroussis, O. Verlinden, O. Champenois, C. Conti. Multi-body model of a competition kartaccounting for the chassis flexibility. Proceeding of the7th National Congress on Theoretical andApplied Mechanics, Mons (Belgium), May29-30,2006.
    [154]邢俊文.MSC.ADAMS/Flex与AutoFlex培训教程[M].北京:科学出版社,2006.
    [155]饶寿期.有限元法和边界元法基础[M].北京:航空航天大学出版社,1990.
    [156]周昌玉,贺小华.有限元法分析的基本方法及工程应用[M].北京:化学工业出版社,2006.
    [157]刘坤,吴磊.ANSYS有限元法精解[M].北京:国防工业出版社,2005.1.
    [158]高旭,崔文好.振动筛侧板强度有限元分析及试验研究[J].建筑机械,1999(5):34-36.
    [159]梁坤京,白勇军,邵佩森.动态设计在2ZKP3660直线振动筛中的应用[J].矿山机械,2001.7:36-37.
    [160]李运忠.振动筛侧板压制工艺设计[J].中州煤炭2002.3:39-40.
    [161] M Levinson.A new rectangular beam theory[J].Journal of Sound and Vibration,1981,74(1):81-87.
    [162] R.D.库克著,关正西,强洪夫译.有限元分析的概念和应用[M].西安:西安交通大学出版社,2007.
    [163]刘尔烈,崔恩第,徐振铎.有限单元法及程序设计[M].天津:天津大学出版社,1999.
    [164]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [165]邵忍平.机械系统动力学[M].北京:机械工业出版社,2005.
    [166]倪振华.振动力学[M].西安:西安交通大学出版社,1989.
    [167] W B Bickford.Aconsistent of higher order beam theory[C].Chung T J. Developments in TheoryandApplied Mechanics.Huntsville,Ala:University ofAlabama in Huntsville,1982,137-150.
    [168]刘国庆,杨庆东.ANSYS工程应用教程[M].北京:中国铁道出版社,2003:11-18.
    [169]周小林,白万民.基于ANSYS Workbench的某型装置的有限元分析[J].机电产品开发与创新2010.2.
    [170]有限元软件ANSYS英文帮助,Release10.0Documentation for ANSYS[DB/OL].
    [171]张乐乐,谭南林,焦风川.ANSYS辅助分析应用基础教程[M].北京:清华大学出版社,2006.
    [172]李卫民,杨红义,王宏祥.ANSYS工程结构实用案例分析[M].北京:化学工业出版社,2007:82-96.
    [173] Jackson, E.Atlee. Perspectures of nonlinear dynamics[M]. Cambridge University Press,1989.
    [174]张本祥,孙博文,马克明.非线性的概念性质及其哲学意义[J].自然辩证法研究,1996.2.
    [175]刘涛,杨凤鹏.精通ANSYS[M].北京:清华大学出版社,2002:218-265.
    [176] C LDym and I H Shames.袁祖贻,姚金山,应达之译.固体力学变分法[M].北京:中国铁道出版社,1984.
    [177]胡少伟,苗同臣.结构振动理论及其应用[M].北京:中国建筑工业出版社,2005.
    [178]安世亚太. ANSYS结构分析指南(下)[DB/OL].
    [179] M Levinson.On Bickford’s consistent higher order beam theory[J].Mechanics ResearchCommunications,1985,12(1):1-9.
    [180] M Levinson.Consistent and inconsistent higher order beam theories: Some surprisingcomparisons[C].Elishakoff I,Irretier H.Proceedings of Euromech Colloquium219th,1986:Refined Dynamical Theories of Beams,Plates and Shells and Their Applications.Berlin,NewYork:Springer-Verlag,1987.
    [181] F J Fahy.Measurement of mechanical input power to a structure[J].Journal of Sound and117Vibration,1969,10(3):517-518.
    [182] L Cremer and M Heckl.Structure-borne sound: structural vibration and radiation at audiofrequencies[M].Beilin:Springer,2005.
    [183] LCremer Lions and M Heckl Springer.Structure-borne sound:structural vibrasound radiation ataudio frequencies[M].Beilin:2005.
    [184] H U Manfred,S E Semercigil.Vibration control for plate-like swctures using strategiccut-outs[J].Journal of Sound and Vibration,2008,309(1-2):246-261.
    [185]和世超,赵尚民.振动筛筛框模态分析及动力响应[J].焦作工学院学报,2001(5):400-403.
    [186] S A Hambric,R P Szwerc.Predictions of structural intensity fields using solid finiteelements[J].Noise Control Engineering Journal,1999,47(6):209-217.
    [187] A M Wilson,L B Josefson.Combined finite element analysis and statistical energy analysis inmechanical intensity calculations[J].AIAAJournal,2000,38(1):123-130.
    [188] K M Ahmida,J R F Arruda.Spectral element-based prediction of active power flow inTimoshenko beams[J].International Journal of Solids and Structures,2001,38(10-13):1669-1679.
    [189] F Wang,H P Lee,C Lu.Relations between structural intensity and J-integral[J].EngineeringFracture Mechanics,2005,72(8):1197.
    [190]阎照文.ANSYS10.0工程电磁场分析技术与实例详解[M].北京:中国水利水电出版社,2006:52-59.
    [191] N K Mandal,S Biswas.Vibration power flow:A critical review[J].The Shock and VibrationDigest,2005,37(1):3-11.
    [192] H PLee,S P Lim,M S Khun.Diversion of energy flow near crack tips of a vibrating plate usingthe structural intensity technique[J].Journal of Sound and Vibration,2006,296(3):602-622.
    [193]张永锋,尹忠俊.振动筛的动应力分析[M].冶金设备,2005.4:42-43.
    [194] Asokendu Samdnta, Madhujit Mukhopadhyay. Finite Elements large deflection static analysis ofshallow and deep stiffened shells[M]. Finite Elements in Analysis and Design,1999:187-208.
    [194] Richard H. MacNeal. Perspective onfinite elements for shell analysis[M]. Finite Elements inAnalysis and Design,1998:175-186.
    [196] Richard H. MacNeal, Charels T.Wilson, Robert L.Harder, class C.Hoff. The treatment of shellnormal in finite element analysis[M]. Finite Elements in Analysis and Design,1998:235-242.
    [197] Sun W. Bolted joint analysis using ANSYS super elements and gap elements[M].4th InternationalANSYS Conference and Exhibition,1989:666-675.
    [198] Luque P, Mantaras D.A Pneumatic suspensions in semi-trailers[M]. Heavy Vehicle Systems,2003.10:309-320.
    [199]王富耻,张朝阳.ANSYS10.0有限元分析理论及工程应用[M].北京:电子工业出版社,2006:1-14.
    [200]邓凡平. ANSYS10.0有限元分析自学手册[M].北京:人民邮电出版社,2007:1-21.
    [201] R.Dittman.Physics in everyday life[M].Mc Graw-Hill Bood Company,1989:53-67.
    [202] Pradlwarter H, J Schueller, GI. Robust Vibration Control of a Truck Cab using ModalAnalysis[M]. JSAE Review,1995.3:307-309.
    [203] Hermas L, Vander Auweraer. Modal Testing and Analysis of Structures under OperationalConditions. Industrial Applications[M]. Mechanical Systems and Sigal Processing,1999.2:193-216.
    [204] Lallmean B,Cherki A. Fuzzy Modal Finite Element Analysis of Structures with ImpreciseMaterial Properties[M]. Journal of Sound and Vibration,1999,220(2):353-365.
    [205] Cugnoni J, Gmur TH. Identification by Modal Analysis of Composite Structures Modeled withFsdt and Hsdt Laminate Shell Finite Elements[M]. Composites Part A: Applied Science andManufacturing,2004,35(7):977-987.
    [206] Yan.Y.H, Chen.C.S,Hsu.C.T. Harmonic analysis for industrial customers[M]. IEEE Transaction onIndustryApplications,v30,n2,1994,5:462-468.
    [207] JB/T7555-94惯性振动给料机.
    [208] MT/T527-1995机械振动给料机.
    [209] GB16490-1996振动给料机安全规范.
    [210] JB/T4042-1999振动筛试验方法.
    [211] T E Rook,R Singh.Structural intensity calculations for compliant plate-beam structuresconnected by bearings[J].Journal of Sound and Vibration,1998,211(3):365-386.
    [212]张传涛.三电机振动筛试验模态分析[D].南充:西南石油大学图书馆,2005.
    [213] TThomson Willianm,胡宗武译.振动理论及其应用[M].北京:煤炭工业出版社,1980.
    [214] LiuChen Chang, Graham E.Dawson.Combined Finite Elementand Analytical Methods for RotorDesign of Permanent Magnet Synchronous Motors[J].Machines and Power Systems,1998-26(5):465-476.
    [215]孙明礼,胡仁喜,崔海蓉.ANSYS10.0电磁学有限元分析实例指导教程[M].北京:机械工业出版社,2007:57-59.
    [216] R L Fox,M P KaPoor.Structural optimization in the dynamic regime:A computationalapproach[J].AIAAJ,1970,8(10):1798-1804.
    [217]张桂莲.动力学在振动给料机中的应用[J].黑龙江:哈尔滨工业大学,2010.
    [218]张连万.大型径向等厚振动给料机的动态特性分析[J].北京:矿山机械,2010.
    [219]李国亮,刘克俭,贺新华,刘吉普.转底炉均匀给料机物料运动特性的数值研究[J].化工装备技术,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700