用户名: 密码: 验证码:
超级电容器氧化钌基复合电极材料的制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为新一代储能器件,因其无可替代的优点,超级电容器目前是国际上公认的比电容最大、比功率最高,充放电性能最好的新型储能元件,是各个工业发达国竞相发展的新一代电容器。
     建立在法拉第充放电原理基础上的二氧化钌电极材料是制造高比容超级电容器的关键材料。薄膜电极材料性能的好坏直接影响超级电容器的性能。由于二氧化钌价格昂贵,限制了它的应用范围。因此,立足当今国内外超级电容器电极材料的技术发展前沿,本文重点研究了在不同复合体系、不同制备工艺下得到的氧化钌基复合电极材料对高比容超级电容器性能的影响规律,目的是发现电极材料性能与成本之间的规律。如何才能够大幅度降低材料成本,充分发挥电极材料的性能,提高电极材料的性价比,这对发展新一代高比容超级电容器,拓展其应用领域都具有深远意义。
     本文研究了各种工艺,制备了不同体系的氧化钌基复合电极材料。其中包括采用旋转涂敷热分解法制备了RuO2薄膜电极,对传统的胶体法工艺进行改良后获得RuO2/活性碳(AC)复合电极,采用电沉积法制备了RuO2/聚苯胺(PANI)复合电极,采用组合涂敷热分解法与电化学氧化法分别制备出RuO2/聚苯胺(PANI)和RuO2/聚吡咯(PPy)复合电极。在此基础上,深入系统地研究了氧化钌掺杂活性碳(AC)、聚苯胺(PANI)及聚吡咯(PPy)复合电极薄膜材料的制备工艺、组织形貌及结构对其电化学性能的影响规律,并对电极的比电容、等效串联电阻及循环寿命等综合性能进行了优化。主要的研究内容及结果如下:
     1.首次提出低成本旋转涂敷原位热分解法制备RuO2薄膜电极。该方法操作简单,对设备要求低,薄膜电极具有厚度均匀、附着力好及电化学性能优良等特点。当RuO2薄膜电极经260℃热处理3h时,获得了最好的综合性能:此时薄膜厚度控制在7.7~8.0μm,附着力达到18.00MPa,比电容及等效串联电阻(ESR)分别为705.3Fg-1和0.436Ω,经1000次循环后,比电容仅损失0.32%。
     2.首次提出和成功实现了RuO2/AC复合粉体直接涂敷的工艺技术,制备了性能好,成本低廉的RuO2/AC复合电极材料。该工艺解决了传统胶体法制备RuO2/AC复合电极存在的问题包括:(1)氧化钌粒度较粗引起电极生成的薄膜组织比表面积减小,导致比电容性能下降;(2)反应过程中生成的NaCl残余物很难消除干净;(3)在电极制备过程中使用机械压片工艺,使得复合材料与基体附着力下降,造成复合材料与基体剥离而失效等问题。直接涂覆RuO2/AC复合粉体创新了复合电极材料制备的低成本短流程工艺技术。
     3.揭示了RuO2/AC复合材料热处理温度及活性碳含量对其物相结构及电化学性能的影响规律。研究结果表明该复合电极材料在240℃热处理4h后,可获得最大比电容445Fg-1和充放电性能的最佳匹配。当热处理温度高于270℃时,有较多的晶体相出现,电容量下降;研究发现在RuO2/AC复合体系中,当AC含量为27.65wt.%时,相应的复合电极的比电容最高,为582Fg-1,经1000次循环后损失10.4%。
     4.探索和优化了电化学沉积及其涂敷热分解组合法制备RuO2/PANI复合电极。首先,采用电沉积法作为比较态,制备了RuO2/PANI复合电极,其比电容为474Fg-1,经1000次循环后,比电容损仅损失12%;其后,采用电化学沉积及其涂敷热分解组合法制备RuO2/PANI复合电极。该法发挥两种工艺的优势,即利用电沉积法获得高的薄膜附着力,利用涂敷法节省贵金属原材料,消耗的RuCl3nH2O大约是电沉积法的1/15。组合法制备的复合电极中,PANI粒子较细,与Ru02薄膜形成良好的结合界面,该电极的比电容可达478Fg-1,经1000次循环后,比电容仅损失11%。
     5.揭示了组合法制备RuO2/PPy复合电极沉积时间、电流密度及吡咯单体浓度等工艺参数对电极的形貌和电化学性能的影响规律。研究发现,当沉积时间为25min,电流密度为2.4mA·cm-2时,苯胺单体浓度为0.20mol-L'1时,制备的复合电极能够获得最好的性能,其比电容可达486Fg-1,经1000次循环后仅损失9.8%。
Owing to its irreplaceable advantage with highest specific capacitance and specific energy, as well as the best charge and discharge property, supercapacitor has been considered as one of the new energy storage devices worldwide.
     Based on Faraday charge and discharge principle, RuO2has been identified as the key electrode material to make high specific capacitance supercapacitors. However, the application of RuO2was limited due to its high cost. Therefore, established on the frontier of the developing technology of supercapacitor electrode materials at home and abroad today, this paper focuses on the effects of RuO2-based electrode prepared with different composite systems and different methods on properties of high specific capacitance supercapaciors, aiming to find the law between its performance and cost. It is far-reaching significant for developing new high specific capacitance supercapacitor and enlarging application rang to figure out how to greatly reduce the cost and give full play to its performance.
     In this paper, we have studied different technics to prepare RuO2-based composite electrode with different systems, including rotation coating situ thermal decomposition method to prepare RuO2film electrodes, modified traditional colloidal method to prepare RuO2/activated carbon (AC) composite electrode, electrodeposition method to prepare RuO2/polyaniline (PANI) electrode and the combination of thermal decom-position and electrochemical oxide method to prepare RuO2/PANI and RuO2/polypyrrole (PPy) composite electrode. Based on those cases, we haved made further study on the effects of preparation, morphology and microstructure of RuO2composite electrode film doped with AC, PANI and PPy on electrochemical properties of electrodes, and we also optimized the property of specific capacitance, equivalent series resistance and cycle life of the electrode. The major findings of this paper are as follows:
     1. RuO2film electrode prepared by low cost and rotation si-tu coating thermal decomposition method is proposed for the first time. This method is easy to manipulate with low requirements for devices, and electrodes film has uniform thickness, excellent adhesion and great electrochemical properties, et al. The best comprehensive properties of RuO2film electrodes are obtained when RuO2film electrodes were annealed at260℃for3h. Meanwhile, the film thickness is7.7~8.0μm, adhesion gets18.00MPa, specific capacitance reaches705.3Fg-1and equivalent series resistance (ESR) lows to0.436Ω, and specific capacitance only loses0.32%after1000cycles.
     2. We firstly proposed a direct coating technology using RuO2/AC composite powders to prepare low cost and well performed RuO2/AC composite electrode. This method solved a series of problems of RuO2/AC composite prepared by traditional colloid method which includes problems such as:1) specific surface of film in electrode formed by coarse grain ruthenium oxide films declines and leads to specific capacitance decrease,2) NaCl generated in the reaction could hardly be eliminated,3) the mechanic tablet technology is used in the electrode preparation, this decreases the adhension between composite material and matrix, and finally makes the composite material spin off the matrix and leads to failure, etc. Direct coating RuO2/AC composite powders method has renovated the low cost and short technology of preparing composite electrode materials.
     3. The effect of annealing temperature and loading of activated carbon on phase structure and electrochemical properties of RuO2/AC composite electrode is revealed. The result shows that the highest specific capacitance of445Fg-1and excellent charge and discharge performance is obtained when RuO2/AC composite is annealed at240℃for4h. The capacitance decreases and more crystal phases appear when annealing temperature raises to270℃. In addition, study shows that the optimized content of activated carbon is27.65wt.%at which comes the highest specific capacitance of582Fg-1with only10.4%loss of specific capacitance after1000cycles.
     4. RuO2/PANI composite electrode prepared by electrodeposition and thermal decomposition combination method is explored and optimized. Firstly, as compasion, RuO2/PANI composite electrode has been prepared by electrodeposition method, and its specific capacitance is 474Fg-1, and only loss12%after1000cycles. Next, the composite electrode was prepared by electrodeposition and thermal decomposition combination method. The combination of the two methods can performs the advantages of both two preparations, that is to say, electrodeposition method can obtain high film adhesion, and thermal decomposition save precious metals of RuCl3.nH2O, and the amount of RuCl3.nH2O consumed by coating method is about1/15that of electrodeposition method. PANI particles prepared by combined method are fine and with good interface. The specific capacitance reaches478Fg-1and only loses11%after1000cycles.
     5. The effect of deposition time, current density and pyrrole monomer concentration on morphology and electrochemical performance of RuO2/PPy electrode prepared by combination method was revealed. The results show that the composite electrode obtains the best properties which specific capacitance reaches486Fg-1and only loses9.8%after1000cycles when deposition time, current density and pyrrole concentration are25min,2.4mA-cm-2and0.20mol·L-1, respectively.
引文
[1]Becker H E. Low voltage electrolytic capacitor [P]. U. S.,2800616,1957.
    [2]Boos D I, U.S. [P]:35369639,1970.
    [3]Conway B E. Transition from "supercapacitor" to "battery" behavior in electrochemical energy storage [J]. Journal of the Electrochemical Society,1991, 138:1539-1548.
    [4]Murphy T C, Wright R B, Sutula R A, et al. Electrochemical capacitors II [M], The Electrochemical Society, Pennington,1997,258:96-25,
    [5]Kotz R, Carlen M. Principles and applications of electrochemical capacitors [J]. Electro-chimica Acta,2000,45:2483-2498.
    [6]刘泓.超级电容器用高比容氧化钌系薄膜电极材料的研究[D].长沙:中南大学,2010.
    [7]Rudge A, Davey J, Raistrick J. Conducting polymers as active materials in electrochemical capacitors [J]. Journal of Power Sources,1994,47:89-95.
    [8]Vukovic M, Cukman D. Electrochemical quartz crystal microbalance study of electro-deposited ruthenium [J]. Journal of Electroanalytical Chemistry,1999, 474:167-173.
    [9]Patake V D, Lokhande C D. Chemical synthesis of nano-porous ruthenium oxide (RuO2) thin films for supercapacitor application [J]. Applied Surface Science, 2008,254:2820-2824.
    [10]Li J, Zhitomirsky I. Electrophoretic deposition of manganese oxide nanofibers [J]. Materials Chemistry and Physics,2008,112:525-530.
    [11]Sharma R K, Rastongi A C, Desu S B. Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor [J]. Electrochimica Acta, 2008,53:7690-7695.
    [12]Patil U M, Salunkhe R R, Gurav K V, et al. Chemically deposited nanocrystalline NiO thin films for supercapacitor application [J]. Applied Surface Science,2008, 78:157-162.
    [13]李景虹编著.先进电池材料[M].北京:化学工业出版社,2004:12-13.
    [14]于凌宇.超级电容器迅猛发展商机无限[J].产业聚焦,2008,9:27-30.
    [15]华黎明.超级电容器发展与新能源汽车[J].新技术与应用,2009,4:26-32.
    [16]熊奇,唐冬汉.超级电容器在混合电动汽车上的研究进展[J].中山大学学报,2003,42(增刊),6:130-133.
    [17]Burke A. Ultracapacitors:Why, how, and where is the technology [J]. Journal of Power Sources,2000,91:37-50.
    [18]Nomoto S, Nakata H, Yoshioka K, et al. Advanced capacitors and their applications [J]. Journal of Power Sources,2001,98:807-811.
    [19]Pandollfo A G, Hollenkamp A F. Carbon properties and their role in supercapacitors [J]. Journal of Power Sources,2006,157:11-27.
    [20]Sufer A, Folman M. The electrical double layer of high surface porous carbon electrode [J]. Journal of Electroanalytical Chemistry,1972,38:25-43.
    [21]张治安,胡永达,汪斌华,等.活化和表面改性对碳纳米管超级电容器性能的影响[J].物理化学学报,2004,20(4):432-435.
    [22]庄兴国,杨裕生,杨冬平,等.表面官能团对活性碳性能的影响[J].电池,2003,33(4):199-202.
    [23]Zheng J P. Ruthenium oxide-carbon composite electrodes for electrochemical Capacitors [J]. Electrochemical and Solid State Letters,1999,2:359-361.
    [24]Gryglewica G, Machnikowski J, Grabowska E L, et al. Effect of pore size distribution of coal-based activated carbons on double layer capacitance [J]. Electrochimica Acta,2005,50:1197-1200.
    [25]Zheng J P, Jow T R. High energy and high power density electrochemical capacitors [J]. Journal of Power Sources,1996,62:155-159.
    [26]Qiu D Y. Study of activated carbon used in double-layer supercapacitors [J]. Journal of Power Sources,2002,109:403-411.
    [27]Taylor R, Marsh H, Heintz E A, et al. Introduction to carbon technologies [M]. Universidad, de Alicante, Secretarido de Publication,1997,167.
    [28]Donnet J B, Bansal R C, Wang M J. Carbon Black Science and Technology [M], 2nd ed., Marcel Dekker, New youk,1993.
    [29]Kinoshita K. Carbon:Electrochemical and Physiochemical properties [M]. Wiley Interscience, New Youk,1988.
    [30]Spain I L, Walker P L, Thrower P A. Chemistry and Physics of Carbon [M]. Marcel Dekker, New York,1981.
    [31]韩松,管止捷,古可隆,等.石油焦制高比表面积粉状活性碳[J].石油化工,2000,29(3):171-175.
    [32]Weng T C, Teng HS. Characterization of high porosity carbon electrodes derived from mesophase pitch for electric double-layer capacitors [J]. Journal of the Electrochemical Society,2001,4:A368-A373.
    [33]Dolata M, Beck F, Grivei E, et al, Electrochemical supercapacitors based on industrial carbon blackss in aqueous H2SO4 [J]. Journal of Applied Electrochemistry [J],2001,31:845-853.
    [34]Richner R, Muller S, Wokaum A. Grafted and crosslinked carbon black as an electrode material for double layer capacitors [J]. Carbon,2002,40:307-314.
    [35]Qu D Y. Studies of the activated carbons used in double-layer supercapacitors [J], Journal of Power Sources,2002,109:403-411.
    [36]Kierzek K, Frackowiak E, Lota G, et al. Electrochemical capacitors based on highly porous carbons prepared by KOH activation [J]. Electrochemical Acta, 2004,49:515-523.
    [37]刘洪波,常俊玲,张红波.双电层电容器高比表面积活性碳的研究[J].电子元件与材料,2002,21(2):19-22.
    [38]何月德,刘洪波,张红波.活化刘用量对无烟煤基高比表面积活性碳电容特性的影响[J].新型碳材料,2002,17(4):18-22.
    [39]Jurewicz K, Vix-Guterl C, E. Frackowiak etal. capacitance properties of ordered porous carbons carbon materials prepared by a templating procedure [J]. Journal of Physics and Chemistry of Solids,2004,65:287-293.
    [40]Guterl C V, Jurewicz K, Frackowiak E, et al. Supercapacitor electrode from new ordered porous carbon materials obtained by a templating procedure [J]. Materials Science and Engineering B,2004,108:148-155.
    [41]Guterla C V, Frackowiak E, Jurewicz K, et al. Electrochemical energy storage in ordered porous carbon materials [J]. Carbon,2005,43:1293-1302.
    [42]Futes A B, Pico F, Rojo J M. Influence of pore structure on electric double layer capacitance of template mesoporous carbons [J]. Journal Power Sources,2004, 133:329-336.
    [43]李护彬.炭材料中孔控制技术[J].炭素,2002,4:30-34.
    [44]宋燕,凌立成,李开喜,等.超级活性炭的制备和结构及其性能研究进展[J].煤炭转化,2001,24(2):27-31.
    [45]吴明铂.化学活化法制备活性炭的进展[J].炭素技术,1999,4:19-23.
    [46]况建华,许斌.超高比表面积活性炭[J].碳素技术,1998,1:25-29.
    [47]Reinose F R. Activated carbon from lingocallulosic materials by chemical and/or physical activation an overview [J]. Carbon,1992,30:1111-1115.
    [48]Martinetal M J. Feasibility of activated carbon production from biological sludge by chemical activation with ZnCl2 and H2SO4 [J]. Enviroment Technology,1996, 17:667-672.
    [49]Eakelen V, Christian A G. Protease muteins and their use in detergents [P]. U. S., 6271012,2001.
    [50]Janes A, Kuvig H, Lust E. Characterisation of activated nanoporous carbon for super-capacitor electrode materials [J]. Carbon,2007,45:1266-1233.
    [51]Balducci A, Dugas R, Taberna P L, et al. High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte [J]. Journal of Power Sources, 2007,165:922-927.
    [52]Yang J, Liu Y F, Chen X M, et al. Carbon electrode material with high density of energy and power [J]. Acta Physico-Chimica Sinica,2008,24:13-19.
    [53]Liu Y F, Hu Z H, Xu K, et al. Surface modification and performance of activated carbon electrode material [J]. Acta Physico-Chimica Sinica,2008,24:1143-1148.
    [54]Ruiza V, Blancoa C, Santamaria R, et al. An activated carbon monolith as an electrode material for supercapacitors [J]. Carbon,2009,47:195-200.
    [55]Kim Y J, Lee B J, Suezaki H, et al. Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors [J]. Letter to the editor/Carbon,2006,44:1592-1595.
    [56]Yoon S H, Korai Y, Mochida I, et al. Sciences of carbon materials [M]. Universidad de Alicante,2000.
    [57]Otsuka K, Segal C L. Advanced capacitor world summit:Buliding the technology applications and new business opportunities for high performance electro-chemical capacitors [M]. Washington, DC,2003.
    [58]黄靖如,柯泽豪.碳材料在电双层电容电容器电极应用的最新研究[J].高科技纤维与应用,2005,30(4):9-13.
    [59]贺福,杨永岗.酚醛基活性碳纤维[J].高科技纤维与应用,2003,28(5):19-25.
    [60]Leitner K, Lerf A, Winter M, et al. Nomex-derived activated carbon fibers as electrode materials in carbon based supercapacitors [J]. Journal of Power Sources, 2006,153:419-423.
    [61]Oda H, Yamashita A, Minoura S, et al. Modification of the oxygen-containing functional group on activatedcarbon fiber in electrodes of an electric double-layer capacitor [J]. Journal of Power Sources,2006,158:1510-1516
    [62]Milczarek G, Ciszewski A, Stepniak I. Oxygen-doped activated carbon fiber cloth as electrode material for electrochemical capacitor [J]. Journal of Power Sources, 2011,196:7882-7885.
    [63]朱磊,吴伯容,陈晖,等.超级电容器的开发及应用[J].稀有金属,2003,27(3):385-390.
    [64]Rodriguez N M, Anderson P E. Growth of graphite nanofibers from the decomposition of CO/H2 over silica-supported iron-nickel particles [J]. Journal of Materials Research,1999,14:2912-2921.
    [65]An K H, Jeon K K, Heo J K, et al. High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole [J]. Journal of the Electro-chemical of Society,2002,149:A1058-A1062.
    [66]An K H, Kim W S, Park Y S, et al. Electrochemical properties of high power super-capacitors using single-walled carbon nanotube electrodes [J]. Advanced Functional Materials,2001,11:387-392.
    [67]Frackowiak E, Jurewicz K, Bejuin F, et al. Electrochemical storage of hydrogen in activated carbons [J]. Fuel Processing Technology,2002,77:415-421.
    [68]Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors [J]. Carbon,2001,39:937-950.
    [69]Frackowiak E, Metenier K, Bertagna V, et al. Supercapacitor electrodes from multiwalled carbon nanotubes [J]. Applied Physics Letters,2000,77:2421-2423.
    [70]王晓峰.碳纳米管超级电容器的研制和应用[J].电源技术,2005,29(1):27-30.
    [71]He X J, Li J, Yan S C, et al. Direct synthesis of porous carbon nanotubes and its performance as conducting material of supercapacitor electrode [J]. Diamond & Related Materials,2008,17:993-998.
    [72]Lia C S, Wang D Z, Liang T X, et al. A study of activated carbon nanotubes as double-layer capacitors electrode materials [J]. Materials Letters,2004,58: 3774-3777.
    [73]Kim J H, Nam K W, Ma S B, et al. Fabrication and electrochemical properties of carbon nanotube film electrodes [J]. Carbon,2006,44:1963-1968.
    [74]Jiang Q, Qu M Z, Zhou G M. A study of activated carbon nanotubes as electrochemical supercapacitors electrode materials [J]. Materials Letters,2002, 57:988-991.
    [75]Wanga G M, Linga Y C, Qiana F, et al. Enhanced capacitance in partially exfoliated multi-walled carbon nanotubes [J]. Journal of Power Sources,2011, 196:5209-5214.
    [76]张莉,邹积岩,宋金岩.二氧化钌薄膜电极的制备及性能研究[J].仪器仪表学报,27(6):930-932.
    [77]王晓峰,王大志,梁吉.超细氧化钌超电容器电极材料的制备[J].无机化学学报,2003,19(4):371-375.
    [78]Zheng J P, Jow T R. Ruthenium oxide film electrodes prepared at low temperature for electrochemical capacitors [J]. Journal of the Electrochemical Society,1995,142:L6-L8.
    [79]Rosario A V, Bulhoes L O S, Pereira E C. Investigation of pseudocapacitive properties of RuO2 film electrodes prepared by polymeric precursor method [J]. Journal of Power Sources,2006,158:795-800.
    [80]Gujar T P, Shinde V R, Lokhande C D, et al. Spray deposited amorphous RuO2 for an effective use in electrochemical supercapacitor [J]. Electrochemistry Communications,2007,9:504-510.
    [81]Zheng J P, Huang J, Jow T R. The limitations of energy density of electro-chemical capacitors [J]. Journal of the Electrochemical Society,1997,144: 2026-2031.
    [82]Dandekar M S, Arabale G, Vijayamohanan K. Preparation and characterization of composite electrodes of coconut-shell-based activated carbon and hydrous ruthenium oxide for supercapacitors [J]. Journal of Power Sources,2005,141, 198-203.
    [83]Cui G L, Zhou X H, Zhi L J, et al. Carbon/nano structured Ru composites as electrodes for supercapacitors [J]. New Carbon Materials,2007,22:302-306.
    [84]Panic S V, Vidakovic T, Gojkovic S. The properties of carbon-supported hydrous ruthenium oxide obtained from RuOxHy sol [J]. Electrochimica Acta,2003,48: 3805-3813.
    [85]Kim H, Popov B N. Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method [J]. Journal of Power Sources,2002,104:52-61.
    [86]张莉,宋金岩,邹积岩.二氧化钌/活性碳复合电极及混合型超级电容器的性能研究[J].无机化学学报,2005,20(3):745-749.
    [87]张莉,宋金岩,邹积岩.二氧化钌/活性碳复合电极材料的性能研究[J].电子元件与材料.2006,25(10):23-25.
    [88]Yu G Y, Chen W X, Zheng Y F, et al.Synthesis of Ru/carbon nanocomposites by polyol process forelectrochemical supercapacitor electrodes [J]. Materials Letters, 2006,60,2453-2456.
    [89]王晓峰,王大志,梁吉.氧化钌/活性碳超级电容器电极材料的研制[J].稀有金属材料与工程,2003,32(6):424-427.
    [90]Li H F, Wang R D, Cao R. Physical and electrochemical characterization of hydrous ruthenium oxide/ordered mesoporous carbon composites as super-capacitor [J]. Mesoporous Materials,2008,111:32-38.
    [91]郑言贞,张密林,陈野.RuO2 xH20/MWNTs纳米复合物的超级电容特性研究[J].无机化学学报,2004,23(4):630-634.
    [92]Picoa F, Ibanezb J, Rodenasc M A L. Understanding RuO2·xH2O/carbon nano-fibre compositesas supercapacitor electrodes [J]. Journal of Power Sources 2008, 176:417-425.
    [93]Lee J K, Sivakumar S R, Ko J M. Carbon nanofibre/hydrous RuO2 nanocom-posite electrodes for supercapacitors [J]. Journal of Power Sources,2007,168: 546-552.
    [94]Zaher A, Liu X R, Pickup P G. An asymmetric anthraquinone-modified carbon/ruthenium oxide supercapacitor [J]. Journal of Power Sources,2009,187: 640-643.
    [95]Conway B E著.电化学电容器的科学原理及技术应用[M].陈艾,吴梦强,张绪礼,等译.北京:化学工业出版社,2005.
    [96]Arabale G, Wagh D, Kulkarni M, et al. Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide [J].Chemical Physics Letters,2003,376:207-213.
    [97]Lee B J, Pathan H M, Jung K D. Electrochemical capacitance of nano-composite films formed by loading carbon nanotubes with ruthenium oxide [J]. Journal of Power Sources,2006,159:1527-1531.
    [98]Yan S C, Qu P, Wang H T, et al. Synthesis of Ru/multiwalled carbon nanotubes by microemulsion for electrochemical supercapacitor [J]. Materials Research Bulletin,2008,43:2818-2824.
    [99]王晓峰,高琦,梁吉.纳米氧化钌的制备及碳纳米管复合电极的超电容特性[J].稀有金属材料与工程,2006,35(2):295-298.
    [100]Ravinder R N, Reddy R G. Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode materials [J]. Journal of Power Sources,2004,132:315-320.
    [101]Aderson M A, Pang S C, Chapman T W. Novel electrode material for thin film untracapacitors:comparison of electroc hemical properties of sol-gel-derived and electrode deposited manganese dioxide [J]. Journal of the Electrochemical Society,2000,147:444-450.
    [102]Kuo C L, Anderson M A. Porous nickel oxide/nickel films for electrochemical capacitors [J]. Journal of the Electrochemical Society,1996,143:124-129.
    [103]Chuan L, James A, Branko N. Characterization of sol-gel derived cobalt xergels as electrochemical capacitor [J]. Journal of the Electrochemical Society,1998, 145:4097-4101.
    [104]Kuo S L, Wu N L. Composite supercapacitor containing tin oxide and electro-plated ruthenium oxide [J]. Electrochemical and Solid-State Letters,2003,6: A85-A87.
    [105]Chou S L, Wang J Z, Chew S Y, et al. Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors [J]. Electrochemistry Communications,2008,10:1724-1727.
    [106]Sharma R K, Oh H S, Shul Y G, et al. Growth and characterization of carbon-supported MnO2 nanorods for supercapacitors electrode [J]. Physica B,2008, 403:1763-1769.
    [107]Reddy A L, Ramaprabhu S. Nanocrystalline metal oxides dispersed multiwalled carbon nanotubes as supercapacitor electrodes [J]. Journal of Physical Chemistry C,2007,111:7727-7734.
    [108]刘泓,甘卫平,黄波,等.掺锡氧化钌超级电容器薄膜电极的研制[J].稀有金属材料与工程,2011,40(1):115-120.
    [109]Snook G A, Kao P, Best A S. Conducting-polymer-based supercapacitor devices and electrodes [J]. Journal of Power Sources,2011,196:1-12.
    [110]Karami H, Mousavi M F, Shamsipur M. A new design for dry polyaniline rechargeable batteries [J]. Journal of Power Sources,2003,117:255-259
    [111]Ryu K S, Lee Y G, Kim K M, et al. Electrochemical capacitor with chemically polymerized conducting polymer based on activated carbon as hybrid electrodes [J]. Synthetic Metals,2005,153:89-92.
    [112]Kim B C, Too C O, Kwon J S, et al. A flexible capacitor based on conducting polymer electrodes [J]. Synthetic Metals,2011,161:1130-1132.
    [113]Sivakkumar S R, Saraswathi R. Performance evaluation of poly(N-methylaniline) and polyisothianaphthene in charge-storage devices [J]. Journal of Power Sources, 2004,137:322-328.
    [114]Liu Q, Nayfeh M H, Yau S T. Brushed on flexible supercapacitor sheets using a nanocomposite of polyaniline and carbon nanotubes [J]. Journal of Power Sources.2010,195:7480-7483.
    [115]Khomenko V, Frackowiak E, Barsukov V, et al. Development of supercapacitors based on conducting polymers [J]. Nato Science Series, Series II:Mathematics, Physics and Chemistry,2006,229:41-50.
    [116]Ge D T, Wang J X, Wang Z, et al. Electrochemical synthesis of polypyrrole nanowires on composite electrode [J]. Synthetic Metals,2002,132:93-95.
    [117]Fan L Z, Maier J. High-performance polypyrrole electrode materials for redox super-capacitors [J]. Electrochemistry Communication,2006,8:937-940.
    [118]Li C M, Sun C Q, Chen W, et al. Electrochemical thin film deposition of polypyrrole on different substrates [J]. Surface & Coating Technology,2005,198: 474-477.
    [119]Ingram M D, Staesche H, Ryder K S. Ladder-doped popypyrrole:a possible electrode materials for inclusion in electrochemical supercapacitors [J]. Journal of Power Sources,2004,129:107-112.
    [120]Liang X M, Wan Q Y, Feng C H, et al. The role of anthraquinone sulfonate dopants in promoting performance of polyrrole composites as pseudo-capacitive electrode materials [J]. Synthetic Metals,2010,160:1800-1804.
    [121]Frackowiak E, Khomenko V, Jurewicz K, et al. Supercapacitors based on conducting polymers/nanotubes composites [J]. Journal of Power Sources,2006, 153:413-418.
    [122]Ballarin B, Zanardi C, Schenetti L, et al. Synthesis and electrochemical characterisation of novel sonogel-carbon-polythiophene microstructured electrodes [J]. Synthetic Metals,2003,139:29-33.
    [123]Orchard B J, Freidenreich B, Tripathy S K. Structural study of two conducting polymers:poly (pyrrole) and poly (thiophene) [J]. Polymer,1986,27:1533-1541.
    [124]Yang X F, Chao G, Wang R Y, et al. A novel layered manganese oxide/poly (aniline-co-o-anisidine) nanocomposite and its application for electrochemical supercapacitor [J]. Electrochimica Acta,2010,55:5414-5419.
    [125]Mastragostino M, Arbizzani C, Soavi F. Conducting polymers as electrode materials in supercapacitors [J]. Solid State Ionics,2002,148:493-498.
    [126]钟新仙,芳平,李庆余,等.不同氧化剂制备的聚苯胺电化学性能研究[J].电源技术,2009,33(9):781-783.
    [127]吕新美,吴全富,米红宇,等.低温合成樟脑磺酸掺杂聚苯胺微管的电化学电容行为[J].物理化学学报,2007,23(6):820-824.
    [128]王晓峰,阮殿波,王大志,等.聚苯胺/活性碳复合型超电容器的电化学特性[J].物理化学学报,2005,21(3):261-268.
    [129]Wang K, Ryu S, Kim K M, et al. Symmetric redox supercapacitor with conducting polyaniline electrodes [J]. Journal of Power Sources,2002,103: 305-309.
    [130]Miura N, Gupta V. Electrochemically deposited polyaniline nanowire's network-A high performance electrode material for redox supercapacitor [J]. Electro-chemical Solid-State Letter,2005,8:A630-A632.
    [131]Kovalenko B I, Bucknall D G, Yushin G. Detonation nanodiamond and onion-like-Carbon-Embedded polyaniline for Supercapacitors [J]. Advanced Functional Material,2010,20:3979-3986.
    [132]Gomez H, Ram M K, Alvi F, et al. Graphene-conducting polymer nano-composite as novel electrode for supercapacitors [J]. Journal of Power Sources, 2011,196:4102-4108.
    [133]Huang L M, Wen T C, Gopalan A. Electrochemical and spectroelectro-chemical monitoring of supercapacitance and eletrochromic properties of hydrou sruthenium oxide embedded poly (3,4-ethylenedioxythiophene)-poly (styrene sulfonic acid) composite [J]. Electrochimica Acta,2006,51:3469-3476.
    [134]Rao C R K, Vijayan M. Ruthenium(ii)-mediated synthesis of conducting poluaniline (PAni):A novel route for PAni-RuO2 [J]. Synthetic Metals,2008,158: 516-519.
    [135]Song R Y, Park J H, Ko J M, et al. Supercapacitors properties of polyaniline/ Nafion/hydrous RuO2 composite electrodes [J]. Journal of Power Sources,2007, 166:297-301.
    [136]Maier J, Fan L Z. High-performance polypyrrole electrode materials for redox super-capacitors [J]. Electrochemistry Communications,2006,8:937-940.
    [137]Dubal D P, Patil S V, Kim W B, et al. Supercapacitors based on electrochemically deposited polypyrrole nanobricks [J]. Materials Letters,2011,65:2628-2631.
    [138]Dubal D P, Patil S V, Jagadale A D, et al. Two step novel chemical synthesis of polypyrrole nanoplates for supercapacitor application [J]. Journal of Alloys and Compounds,2011,509:8183-8188.
    [139]Sharma R K, Rastogi A C, Desu S B. Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor [J]. Electrochemistry Communications,2008,10:268-272.
    [140]Zhang D C, Zhang X, Chen Y, et al. Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors [J]. Journal of Power Sources,2011,196:5990-5996.
    [141]Wang Y J, Yang C, Liu P. Acid blue AS doped polypyrrole (PPy/AS) nano-materials with different morphologies as electrode materials for supercapacitors [J]. Chemical Engineering Journal,2011,172:1137-1144.
    [142]Wang J, Xu Y L, Chen X, et al. Capacitance properties of single wall carbon nanotube/polypyrrole composite films [J]. Composite Science and Technology, 2007,67:2981-2985.
    [143]Kim J Y, Kim K H, Kim K B. Fabrication and electrochemical properties of carbon nanotube/polypyrrole composite film electrodes with controlled pore size [J]. Journal of Power Sources,2008,176:396-402.
    [144]Lee H, Cho M S, Kim I H, et al. RuOx/polypyrrole nanocomposite electrode for electrochemical capacitors [J]. Synthetic Metals,2010,160:1055-1059.
    [145]Sharma R K, Karakoti A, Seal S, et al. Multiwall carbon nanotube-poly(4-styrenesulfonic acid) supported polypyrrole/manganese oxide nano-composites for high performance electrochemical electrodes [J]. Journal of Power Sources, 2010,195:1256-1262.
    [146]Sivakkumar S R, Ko J M, Kim D Y, et al. Performance evaluation of CNT7 polypyrrole/MnO2 composite electrodes for electrochemical capacitors [J]. Electrochimica Acta,2007,52:7377-7385.
    [147]Laforgue A, Simon P, Sarrazin C, et al. Polythiophene-based supercapacitors [J]. Journal of Power Sources,1999,80:142-148.
    [148]Senthilkumar B, Thenamirtham P, Selvan R K. Structural and electrochemical properties of polythiophene [J]. Applied Surface Science,2011,257:9063-9067.
    [149]Alvi F, Ram M K, Basnayaka P A, et al. Graphene polyethylene dioxythio-phene conducting polymer nanocomposite based supercapacitors [J]. Electrochimica Acta,2011,56:9406-9412.
    [150]Lu Q, Zhou Y K. Synthesis of mesoporous polythiophene/MnO2 nanocomposite and its enhanced pseudocapacitive properties [J]. Journal of Power Sources,2011, 196:4088-4094.
    [151]Evans D A. Capacitor [P]. U.S.:5,369,547,1994.
    [152]冯端,师昌绪,刘冶国.材料科学导论[M].北京:化学工业出版社,2002:461-462,467-470.
    [153]Dubal D P, Patil S V, Kim W B, et al. Supercapacitors based on electro chemically deposited polypyrrole nanobricks [J]. Materials Letters,2011,65: 2628-2631.
    [154]刘泓,甘卫平,郭桂全,等.RuO2nH2O薄膜的制备以及物相演变和伏安特性[J].中国有色金属学报,2010,20(3):522-528.
    [155]Parkb B O, Lokhande C D, Park H S, et al. Cathodic electrodeposition of RuO2 thin films from Ru (III) Cl3 solution [J]. Materials Chemistry and Physics,2004, 87:59-66.
    [156]周玉,武高辉,编著.材料分析测试技术[M].哈尔滨:哈尔滨工业大学出版社,1998:67-70,183-189.
    [157]常铁军,刘喜军,主编.材料近代分析测试方法[M].哈尔滨:哈尔滨工业大学出版社,2005:217-218,234-246.
    [158]Li H, Wei S, Qing C, et al. Discussion on the position of the shear plane [J]. Journal of Colloid and Interface Science,2003,258:40-44.
    [159]Sugimoto W, Iwata H, Yasunaga Y, et al. Preparation of Ruthenic Acid Nanosheets and Utilization of Its Interlayer Surface for Electrochemical Energy Storage [J]. Angewandte Chemmie International Edition,2003,42:4092-4096.
    [160]Kierzek K, Frackowiak E, Lota Q et al. Electrochemical capacitors based on highly porous carbons prepared by KOH activation [J]. Electrochimica Acta, 2004,49:515-523.
    [161]Hu C C, Chang K H. Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical supercapacitors:effects of the chloride precursor trans-formation [J]. Journal of Power Sources,2002,112:401-409.
    [162]张莉.混合型超级电容器的相关理论和实验研究[D].大连:大连理工大学,2005.
    [163]刘泓,甘卫平,黄波,等.超级电容器RuO2nH2O电极材料的热处理[J].中南大学学报(自然科学版),2009,40(6):1546-1551.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700