用户名: 密码: 验证码:
炭材料催化二氧化碳重整甲烷制合成气
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CO2和CH4是主要的温室气体,同时它们也是一种宝贵的资源。随着全球变暖,CO2排放问题正在引起国际社会的关注。以气化煤气和焦炉煤气为源头的“双气头”多联产系统,不仅可以产生人类必须的能源和化工产品,而且可以综合提高能源的转化效率,对环境温和,是煤炭洁净转化高效利用和解决温室气体排放的重要途径,在整个系统中,最关键的技术是焦炉煤气(CH4)和气化煤气(CO2)重整转化制合成气,其中重整催化剂是重中之重。因此,开发新的催化剂材料并通过对其改性,为工业化获得廉价高活性催化剂,始终是材料科学和催化学科领域的热点研究课题。
     炭材料因廉价、丰富的孔结构和高的比表面积近年来受到了广‘泛的关注。炭材料的种类众多,结构和官能团丰富,因而可以通过改性来改变炭材料的结构和官能团的组成来调控催化剂的活性。同传统的负载型催化剂相比较,炭材料种类的丰富性及性能的可变性,不仅为新型炭材料的制备提供了新的途径,也为重整催化剂的开发提供了新的机会。本文通过实验研究、现代仪器分析和反应机理分析等对炭材料催化二氧化碳重整甲烷进行了系统研究,考察了高温炭材料的“催化”本质、重整过程中产生的积炭以及压力对重整转化的影响;初步探讨了重整反应的机理和动力学,得到的主要结论如下:
     1、高温炭材料对C02-CH4重整反应具有明显的催化作用,催化的实质在于:①炭催化剂表面含有丰富的含氧官能团,含氧官能团中含有活性的极性氧,极性氧具有较强的活性,可以以偶极作用力与甲烷的氢键的形式缔合,促进CH4和CO2的活化转化;②过程发育的比表面积和孔结构有助于CH4和C02的吸附和解离活化;③炭材料催化剂中的灰分的促进作用;④炭材料含氧官能团的活性氧、比表面、微孔和灰分的协同作用。
     2、在非催化条件下,C02-CH4重整反应主要是先进行甲烷的裂解反应,然后裂解产生的积炭和二氧化碳发生气化反应;在高温炭材料催化条件下,C02-CH4重整转化反应分为两步:首先是甲烷和二氧化碳被活化;然后两者发生反应生成一氧化碳和氢。其中甲烷的活化是一个链反应过程,其链引发是关键步骤。即CH4与炭材料表面活性点发生碰撞获得能量而活化。炭材料表面的活性点是表面的官能团,其能降低CH4脱H的活化能。催化活性主要取决于含氧官能团中氧的极性,所含氧物种的不同使其表面的电核性质也不一致,从而使其表现出不同的催化性能。采用化学滴定和XPS分析证实了炭材料表面的酸酐和内酯结构是炭材料催化剂的主要活性中心。
     3、首次采用炭材料催化剂对焦炉煤气-CO2重整进行了研究,发现不同炭材料催化活性有所差别,但在不同炭材料上作用下重整转化表现出相同的趋势:初始阶段,催化活性逐渐下降,CH4转化率明显下降,C02转化率略有下降;稳定阶段,催化剂保持较好的活性和稳定性,甲烷和二氧化碳转化率基本恒定。提高重整反应温度和增加重整反应停留时间,都可以提高重整反应的转化率,当温度从700℃升高到1050℃时,CH4转化率从小于5%提高到97.3%;同时可以通过调节入口气CH4/CO2的比来调节出口气CO/H2比,以更好的满足后续合成工业对原料气的要求。长达600min寿命考察,催化剂未发现明显失活,炭材料催化剂显示出较好的催化活性和稳定性。
     4、C02-CH4重整过程中根据温度的不同产生的积炭可分为两类:易气化炭Ⅰ(1000℃以下产生的积炭)和难气化炭Ⅱ(1000℃以上产生的积炭)。易气化炭Ⅰ易与CO2发生气化反应,难气化炭Ⅱ趋于石墨化,活性较差,难与CO:发生气化消炭反应;由此可以通过控制重整反应的温度(低于1000℃),进行控制积炭的生成速率。
     5、根据Hume-Rothery理论,采用具有面心立方晶格的两种金属对炭材料进行改性,开发出了一种高活性和抗积碳的Cu-Co/炭材料催化剂;该催化剂降低了CH4和C02活化重整反应能垒,使CH4和C02活化比单炭材料催化更容易(同样转化率,反应温度降低200℃)。
     6、根据建立的传热传质模型,研制出了一种新型高温高压反应器(1200℃,12MPa),该反应器具有高温区不承压,承压区不高温的特点。并在该反应器上考察了压力对C02-CH4重整反应的影响,由于压力效应导致催化剂表面的甲烷解离脱H和CO2的吸附发生变化,进而改变CHx*在炭材料上沉积速率,不利于炭材料催化剂的活性和稳定性
     7、炭催化剂能够提供一种活性物质,这种活性物质能有效的改变二氧化碳重整甲烷反应的历程,从而改变二氧化碳重整甲烷反应的活化能。在炭材料催化二氧化碳重整甲烷反应体系内同时发生甲烷裂解、二氧化碳气化和二氧化碳重整甲烷反应;由平推流模型求得甲烷非催化和炭材料催化裂解的表观活化能分别为154.02kJ/mol和56.42kJ/mol;重整过程中,C02过量时,不仅产生的积碳被CO2气化反应消耗,而且部分炭材料在反应过程中也被消耗,采用总包一级未反应芯收缩模型对炭材料消耗动力学参数进行了计算,得到C02-炭催化剂气化、甲烷裂解和CH4-C02直接重整三者的活化能顺序依次为:C02-炭催化剂气化>CH4-C02重整>甲烷裂解。
     8、对经典的Eley-Ridea (ER)和Langmuir-Hinshaelwood (LH)两种机理模型进行了分析和比较,结合实验研究数据,提出了炭催化C02-CH4重整的两种反应机制:1)开始阶段CH4被O-M活化生成CHxO*,然后生成CO和H2;同时C02被活化生成CO和O*。稳定阶段:C02活化生成CO和O-M,CH4被O-M和*活化生成CHx*、OH-M和H*,然后生成H20和H2。2)CH4和C02同时被不同的活性物质活化,活化后形成CHx*、CO-M和H*,然后快速生成产物。根据提出的机理,建立了动力学模型,在700-850℃的温度区间范围内,求得到了重整反应的活化能E=128.3kJ/mol及反应气吸附平衡活化能ECH4=52.2kJ/mol, ECO2=17.5kJ/mol。
CO2and CH4are not only the main greenhouse gas, but also are an invaluable resource. With global warming, CO2emissions are attracting the attention of the The double gas head of multi-generation system taking gasification gas and coke oven gas as the gas resource, not only can produce energy and chemical products, but also can improve energy conversion efficiency. It is an important way to improve using efficiency of clean coal conversion and address greenhouse gas emissions. In the conversion system, the most critical technology is the syngas production from the reforming of coke oven gas (CH4) and gasified gas (CO2), in which reforming catalyst is the most important. Therefore, developing new catalyst materials, to obtain cheap and high-activity catalyst for the industrialization through modification, which are always being a hot research topic of materials science and catalytic fields.
     Carbonaceous catalysts have been concerned widespread because of cheap, rich pore structure and large specific surface area in recent years. Carbonaceous catalysts has many types, its structure and functional groups, so we can modify and change the structure of the carbonaceous catalysts and the composition of functional groups to regulate the activity of carbonaceous catalysts. Comparing with the traditional supported catalyst, it has species richness and the variability of the performance, not only provides a new way for the preparation of new carbonaceous catalysts, and also provides new opportunities for the development of reforming catalysts. In this paper, we systematically study the carbon dioxide reforming of methane under carbonaceous catalysts by means of experiment, modern instrumental analysis and reaction mechanism analysis. We have investigated factors influencing the process of reforming reaction, and provided the data for the design and scale of the pilot. Main conclusions are as follows:
     1. the carbon had apparent catalyzation to CO2-CH4reforming, the substance of Carbon catalytic is:①Carbonaceous catalysts surface has a rich oxygen functional groups, which is contribute to the dissociation of methan, and promote the conversion of CH4.②Development of surface area and pore structure increases the active sites, increases CH4reaction probability and catalytic activity.③The high catalytic efficiency and long life characteristics of carbon indicate, the different of oxygen species of carbon surface with metal oxides is the oxygen functional groups of the carbon catalyst generated by CO2or H2O gasification in reforming process, which is useful for extension catalyst catalytic of carbon.
     2. In the non-catalytic CO2-CH4reforming reaction, the first step reaction is methane decomposition forming the coke, and then the coke reacts with carbon dioxide. In the cabon-catalytic CO2-CH4reforming reaction, the first step methane and carbon dioxide are activation; then CO2-CH4reforming occurred. The methane decomposition is chain branching reactions, the chain initiation (methane activation) is a key step, that is to say, CH4collision with the active site of carbon materials surface get the energy and activated. The containing oxygen substances or oxygen functional groups of carbon materials surface is the catalytic active center (site), which can reduce the activation energy of CH4dissociation. The catalytic activity depends on the nucleophilic and electrophilic of oxygen species, the surface electro-nuclear nature of oxygen species is different due to different the metal species in carbon, the results of catalytic performance is inconsistent. The surface of the number of oxygen functional groups was determined by titration method, combined with quantum chemical and XPS analysis, that the oxygen functional groups of anhydride and the lactone structure in carbon materials surface is considered the catalytic active center.
     3. Carbons catalyst was the first time used to study the CO2reforming coke oven gas. Experimental results showed that the coal char was an effective catalyst for production of syngas, and addition of CO2did not enhance the CH4reforming to H2. It was also found that the product gas ratio of H2/CO is strongly influenced by the feed ratio of CO2/CH4, which rang from0.2to1.1. The modified coal char catalyst has more active than coal char catalyst I and II in CO2reforming of CH4. The conversion of methane can be divided into two stages. In the first stage, the conversion of CH4gradually decreased. In the second stage, the conversion of methane maintained nearly constant. The conversion of CO2decreased slightly during the overall reactions in CO2-CH4reforming. The coal char catalyst is a highly promising catalyst for the CO2reforming of methane to syngas.
     4. It has been found that the carbonaceous catalyst is an efficient catalyst on methane decomposition and CH4-CO2reforming. The trend of methane decomposition at lower temperature is similar to that at higher temperature. The methane conversion is high during initial of stage of the reaction, and then decays to a relatively fixed value after about30min. With the temperature increasing, the methane decomposition rate increases quickly. The reaction temperature has significant influence on methane decompositon, whereas, the carbon deposition does not affect methane decompositon significantly. Different types of carbon deposition were formed at different methane decompositon reaction temperature. The carbon deposition Type Ⅰ generated at900℃has minor effect on CH4-CO2reforming and it easily reacts with carbon dioxide but the carbon deposition Type II generated at1000℃and1100℃clearly inhibited CH4-CO2reforming and it is difficult to react with carbon dioxide. The results of XRD showed that the some graphite structure was found in carbon deposition Type Ⅱ. It indicated that carbon deposition gradually tends to be graphitization, with the increase of temperature reforming reaction.
     5. Development of high performance catalysts for the production of synthesis gas from CO2-CH4reforming. This catalyst with high standard quality and steady performance, has reached the international advanced levels. It shows good activity and stability for CO2-CH4reforming at900℃for within1440min-on-stream, with conversion of CH4and CO2being above90%. Therefore, it is a promising candidate for utilizing CO2-CH4reforming to produce syngas applications.
     6. A small high pressure reactor system was built with1200℃,12MPa. The catalytic activity and stability of catalysts were closely related to the reaction pressure. It was observed that the use of higher pressure substantially decreased CO2and CH4conversion and increased catalyst deactivation during CO2reforming of CH4, compared to runs at0.5MPa for carbonaceous catalysts. Deactivation was related to carbon formation. Some process adjustment methods, such as increasing the reaction temperature, prolonging reaction residence time, and increasing CO2and CH4molar ratio, which could improve catalysts activity and stability. Besides, the positive effect of surface oxygen containing groups (C-O) on catalyst activity had been demonstrated over carbonaceous catalysts. The basic function of the carbonaceous materials surface area also seemed to increase H-abstraction of methane and CO2adsorption.
     7. The carbon catalyst is not only as catalyst, also can take part in a chemical (physical) reaction. Carbon catalyst can provide an active substance, which can change the course of the carbon dioxide reforming of methane, and chang the activation energy of CO2-CH4reforming reaction. The carbon balance analysis showed that three reactions occur simultaneously in the CO2-CH4reforming reaction system over carbonaceous catalyst, methane decomposition, carbon dioxide gasification and carbon dioxide reforming of methane. The plug flow reactor model is used to describe chemical reactions in continuous, flowing systems. The apparent activation energy of non-catalytic and catalytic methane decomposition is154.02kJ/mol and56.42kJ/mol, respectively. From the material balance analysis of C atom, it can be found that the mass of carbonaceous catalyst reduce during the carbon dioxide reforming reaction of methane. It indicated that the gasification of carbonaceous materials by CO2takes place during the synthesis process. The consumption kinetics parameters of carbonaceous materials were determined by an overall unreacted shrinking core model. The apparent activation energy of consumption carbonaceous materials was more than230kJ/mol during CO2-CH4reforming. The apparent activation energy order of carbon dioxide gasification, methane decomposition and CO2-CH4reforming is:CO2gasification> CO2-CH4reforming> methane decomposition.
     8. By analyzing and comparing the mechanism model of Eley-Ridea and Langmuir-Hinshaelwood, we propose two possible mechanisms. The reforming reaction dynamic model was established based on the experimental data. We investigate the carbon dioxide reforming of methane dynamics in the range of 700-850℃, and obtain kinetic parameters (activation energy and frequency factor). These parameters are then used to predict reaction progress under various temperature ranges and conditions. By comparison, the result agreed with experimental data
引文
[1]Tollefson J. Graphic detail countries with highest CO2-emitting power sectors (tons per year) [J]. Nature,2007,450 (7168):327-327.
    [2]Keith P S, William T S. Atmospheric scienc:CO2 is not the only gas [J]. Science,2007, 315(5820):1804-1805.
    [3]Aschcroft A T, Cheetham A K, Green M L H, et al. Partial oxidation of methane to synthesis gas using carbon dioxide [J]. Nature,1991,352:225-226.
    [4]Pechimuthu N A, Pant K K, Dhingra S C. Deactivation studies over Ni-K/CeO2-Al2O3 catalyst for dry reforming of methane [J]. Industrial & Engineering Chemistry Research, 2007,46:1731-1736.
    [5]Shen J, Wang Z. A new technology for producing hydrogen and adjustable ratio syngas from coke oven gas [J]. Energy & Fuels,2007,21(6),3588-3592.
    [6]Yang Z, Zhang Y, Wang X, et al. Steam reforming of coke oven gas for hydrogen production over a NiO/MgO solid solution catalyst [J]. Energy & Fuels,2010,24 (2): 785-788.
    [7]Park D W, Chun S W, Jang J Y, et al. Selective removal of H2S from coke oven gas [J]. Catalysis Today,1998,44(1-4):73-79.
    [8]Bermudez J M, Fidalgo B, Arenillas A, et al. Dry reforming of cokeovengases over activated carbon to produce syngas for methanol synthesis [J]. Fuel,2010,89 (10): 2897-2902.
    [9]Guo J, Hou Z, Gao J, et al. Production of syngas via partial oxidation and CO2 reforming of cokeovengas over a Ni catalyst [J]. Energy & Fuels,2008,22 (3):1444-1448.
    [10]Turpeinen E, Raudaskosk i R, Pongracz E, et al. Thermodynamic analysis of conversion of alternative hydrocarbon-based feed stocks to hydrogen [J]. International Journal of Hydrogen Energy,2008,33 (22):6635-6643.
    [11]Zhang Y, Li Q, Shen P, et al. Hydrogen amplification of coke oven gas by reforming of methane in a ceramic membrane reactor [J]. International Journal of Hydrogen Energy, 2008,33 (13):3311-3319.
    [12]王华,刘中民.甲烷直接转化研究进展[J].化学进展,2004,16(4):593-602.
    [13]Rostmp-Nielsen J R. Fuels and Energy for the Future:The Role of Catalysis [J]. Catalysis Reviews,2004,46(3-4):247-270.
    [14]Krylov O V. Catalytic reactions of partial methane oxidation [J]. Catalysis Today,1993, 18(3):209-302.
    [15]Choudhary T V, Aksoylu E, Goodman D W. Nonoxidative activation of methane [J]. Catalysis Reviews-Science and Engineering,2003,45(1):151-203.
    [16]Wang L, Tan L, Xie M, et al. Dehydrogenation and aromatization of methane underNon-oxidizing condition [J]. Catalysis Letters.1993,21(1-2):35-41.
    [17]Ruckenstein E, Hu Y H. Highly efficient catalysts for CO2 reforming of methane [J]. Chemical Innovation,2000,30(3):39-40.
    [18]Ross J R H, VanKeulen A N J, Hegarty M E S, et al. The catalytic conversion of nanture gas to useful products [J]. Catalysis Today,1996,30(1-3):193-199.
    [19]Vannice M A. Catalytic synthesis of hydrocarbon from carbon-monoxide and hydrogen [J]. Catalysis Reviews-Science and Engineering,1976,14(1):153-191.
    [20]Gillies M T. Cl-Based chemicals from hydrogen and carbon monoxide [M]. New Jersey: noyes data corporation,1982:1-120.
    [21]Royer A S. Chemicals for Synthesis gas [M]. Goston:D Reidel Publishing Company. 1983:60-97.
    [22]李文钊.天然气催化转化新进展[J].石油与天然气化工,1998,27(1):1-3.
    [23]黄涛,姚洁,王公应.甲醇氧化羰化合成DMC铜系催化剂的研究[J].天然气化工,1998,23(1):26-29.
    [24]李琼玖,叶传湘.天然气转化制合成气工艺方法[J].氮肥设计,1996,34(5):45-48.
    [25]Stamkiewicz A I, Moulijn J A. Process intensification:transforming chemical engineering [J]. Chemical Engineering Progress,2000.1:22-34.
    [26]Kolios G, Frauhammer J. Carbon dioxide reforming of meathane to synthesis gas [J]. Chemical Engineering Science,2000,55(24):5945-5967.
    [27]Ertl G, Knozinger H, Weitkamp J. Handbook of Heterogeneous Catalysis [M].4rd. Wiley,1997:18-19.
    [28]Neumann B, Jacob K. Equilibrium relationships in the formation of CH, from CO and H, or from CO, and H2 [J]. Zeitschrift fuer Elektrochemie und Angewandte Physikalische Chemie,1924,30:557-562.
    [29]Byrne Jr P J, Gohr R J, Haslam R T. Recent progress in hydrogenation of petroleum [J]. Industrial and Engineering Chemistry Research,1932,24(10):1129-1135.
    [30]Anderson J R, Boudart M. Catalysis:science and technology [M]. New York: Springer-Verlag:1-30.
    [31]Tallg S, Bradford. CO2 reforming of methane to synthesis gas over sol-gel-made/ γ-Al2O3catalysts from Organometallic precuoors [J]. Journal of Catalysis,2000,194(2): 424-430.
    [32]胡捷,贺德华,李映伟,等Ni/ZrO2催化剂上甲烷水蒸气重整反应的研究[J].燃料化学学报,2004,(1):98-103.
    [33]Hickman D A, Schmidt L D. Synthesis gas production by direct oxidation of methane on monoliths [J]. Catalysis letters,1992,138(1):267-282.
    [34]Choudhary V R. Low temperature oxidative conversion of methane to synthesis gas over NiO-CaO catalyst [J]. Catalysis letters,1992,15(4):363-370.
    [35]Batiot-Dupeyat C, Valderrama G, Meneses A, et al. Pulse study of CO2 reforming of methane over LaNiO3 [J]. Applied Catalysis A.2003,248(1-2):143-151.
    [36]Pena M A, Gomez J P, Fierro J L G. New catalytic routes for syngas and hydrogenproduction [J]. Applied Catalysis A,1996,144(1-2):7-57.
    [37]Rostrap-Nielsen J R. Catalysis and large-scale conversion of natural gas [J]. Catalysis Today,1994,21(2-3):257-267.
    [38]van Keulen A N J, Sehan K, Hoebink J H B, et al. TAP Investigations of the CO2 reforming of CH4 over Pt/ZrO2 [J]. Journal of Catalysis,1997.166:306-314.
    [39]Purwanto W W, Muharam Y. An industrial gas engine performance and exhaust gas emission run wim gas fuel with high CO2 gas content, Proceedings of the Sixth AEESEAP T fiennial Conference Kuta, Bali, Indonesia, August 23-25,2000.
    [40]孙长庚,刘宗章,张敏华.甲烷催化部分氧化制合成气的研究进展[J].化学工业与工程,2004,21(4):276-280.
    [41]Rostrup-Nielsen J R. Production of synthesis gas [J]. Catalysis Today,1993,18(4): 305-324.
    [42]Wagner E S, Froment G F. Steam reforming analysis [J]. Hydrocarbon Processing, 1992,71 (7):69-71.
    [43]Wang H Y, Ruckenstein E. Carbon dioxide reforming of methane to synthesis gas over supported rhodium catalysts: the effect of support [J]. Applied Catalysis A, 2000, 204(1):143-152.
    [44]刘光明,邱发礼,郭慎独.稀土助剂改善甲烷水蒸汽转化催化剂抗积炭的机理研究[J].催化学报,1990,11(1):45-50.
    [45]杨燕,夏代宽,韩笑.Z型催化剂上甲烷蒸汽补碳转化制甲醇合成气宏观动力学的研究[J].石油与天然气化工,2004,33(2):75-77.
    [46]Saito R, Takeya T, Hormaguchi K. Raman intensity of single-wall carbon nanorubes [J]. Physical Review B,1998,57(7):4145-4153.
    [47]Cornaglia L M, Munera J, Irusta S, et al. Raman studies of Rh and Pt on La2O3 catalysts used in a membrane reactor for hydrogen production [J]. Applied Catalysis A,2004, 263(1):91-101.
    [48]Wang Y, Alsemeyer D C, Me Creery R. Structural basis of observed spectra [J]. Raman spectroscopy of carbon materials. Chemistry of Materials.1990,2(5):557-563.
    [49]Stull D R, Prophet H. JANAF Thermochemical Tables [M]. Washington D.C: Government Printing Office,1971:1141-1145.
    [50]Wang S B, Lu G Q. Carbon dioxide reforming of methane to produce synthesis gas over metal-suported catalysts:State of the art. Enery & Fuels,1996,10(4):896-904.
    [51]许峥,张继炎,张鎏.CH4-CO2转化的研究进展[J].石油化工,1997,26(6):402-407.
    [52]Gadalla A M, Sommer M E. Carbon dioxide Refoming of Methane on Nickel Catalysts [J]. Chemical Engineering Science,1989,44(12):2825-2829.
    [53]吴越.气化和气体合成反应的热力学[M].北京:中国工业出版社,1965:60-90.
    [54]Φlgaard-Nielsen B, Luntz A C. Holmblad P M et al. Activated dissociative chemisorption of methane on Ni (100):A direct mechanism under themal conditions? [J]. Catalysis letters,1995,32(1-2):15-30.
    [55]Luntz A C, Winters H F. Dissociation of methane and ethane on Pt (110) - Evidence for a direct mechanism under thermal Conditions [J]. Journal of Chemical Physics,1994, 101(12):10980-10989.
    [56]Luntz A C, Harris J. CH4 dissociation on metals-a quantum. Dynamics Model [J]. Surface Science,1991,258(1-3):397-426.
    [57]Seets D C, Wheeler M C, Mullills C B. Mechallism of the dissociative chemisorption of methane over Ir (110):Trapping-mediated Or direct? [J]. Chem. Physics Letters,1997, 266(5-6):431-436.
    [58]Bibby D M, Chang C D, Howe R F, et al. Methane Conversion [M]. Amsterdam: Elsevier,1988:51-60.
    [59]Vansanten R A, Neurock M. Concepts in theoretical heterogeneous catalytic reactivty [J]. Catalysis Reviews-Science and Engineering,1995,37(4):557-698.
    [60]Trevor D J, Cox D M, Kaldor A. Methane activation on unsupported platinum clusters [J]. Journal of the American Chemical Society,1990,112(10):3742-3749.
    [61]Kuijpers E D M, Breedijk A K, van der Wal W J J, et al. Chemisorption of methane on Ni/SiO2 catalyst and reactivity of the chemisorption products toward hydrogen [J]. Journal of catalysis,1983,81(2):429-439.
    [62]Beebe T P, Goodman D W, Kay B D, et al. Kinetics of the activated dissociative adsorption of methane on the low index planes of nickel single crystal surfaces [J]. Journal of Chemical Physics,1987,87(4):2305-2315.
    [63]Osaki T. Masuda H, Horiuchi T, et al. Highly hydrogen-deficient hydrocarbon species for the CO2-reforming of CH4 on Co/Al2O3 catalyst [J]. Catalysis Letters,1995,34(1-2): 59-63.
    [64]Osaki T. Masuda H, Mori T. Intermediate hydrocarbon species for the CO2-CH4 reaction on supported Ni catalysts [J]. Catalysis Letters,1994.29(1-2),33-37.
    [65]Peters J A. ARL Technical Repot [R]. Pennsylvania:The Pennsylvania State University, 1988.
    [66]刘延.稀土调变Ni基六铝酸盐催化剂上甲烷和二氧化碳重整制合成气反应研究[D].吉林:吉林大学,2002.
    [67]Richardson J T, Paripatyadar S A. Carbon dioxide reforming of methane with supported rhodium [J]. Applied Catalysis,1990,61(1):293-309.
    [68]Takayasu O, Hongo N, Matsuura I. Spillover effect for the reducing reaction of CO2 with CH4 over SiO2-supported transition metal catalysts physically mixed with MgO [J]. Studies in Surface Science and Catalysis,1993,77:305-308.
    [69]Ferreira P, Rodriguez I, Guerrero A. Methane interaction with silica and alumina supported metal catalysts. Applied Catalysis A,1997,148 (2):343-356.
    [70]Soblymosi F. The bonding structures and reactions of CO2 absorbed on clean and promoted metal [J]. Journal of Molecular Catalysis,1991,65(3):337-358.
    [71]Paul J, Pradier C M. Carbon Dioxide Chemistry:Environmental Issues [M]. Canlbridge: Athenaeum Press,1994:31-78.
    [72]Segner J, Campbell C T, Doyen G, et al. Catalytic oxidation of CO on Pt (111):The influence of surface defects and composition on the reaction dynamics [J]. Surface Science,1984,138(2-3):505-523.
    [73]Nikolic B Z, Huang H, Gervassio D, et al. Electroredution of carbon dioxide on platinum single-ceystal electrodes-electrochemical and in situ FTIR studies [J]. Journal of Electroanalytical Chemistry.1990,295(1-2):415-423.
    [74]Rodes A, Pastor E, Iwasita T. Structural effect on CO2 reduction at Pt single- crystal electrodes Part 2. Pt(111) and vicinal surfaces in the [011] zone. Journal of Electroanalytical Chemistry,1994,373:167-175.
    [75]RomanMarcinez M C, CazolaAMoros D, DeLecea C S M. et al. Structre sensitivity of CO2 hydrogen reaction catalyzed by Pt/carbon catalysts [J]. Langnmir,1996,12(2): 379-385.
    [76]李玉敏.工业催化原理[M].天津:天津大学出版社,1994:65-87.
    [77]Reitmeier R E, Atwood K, Bennet H A, et al. Production of synthetic gas reaction of lighthydrocarbons with steam and carbon dioxide[J]. Industrial and Engineering Chemistry Research,1948,40(4):620-626.
    [78]Claridge J B, York A P E, Green L H. Comparison of the group V and V I transition metal carbides for methane dry reforming and thermodynamic prediction of their relative stabilities[J]. Catalysis Letters,1999,57(1-2):65-69.
    [79]Rostrup-Nielsen J R, Bak Hansen J H. CO2-Reforming of Methane over Transition Metals [J]. Journal of Catalysis,1993,144 (1):38-49.
    [80]Swaan H M, Kroll V C H, Martin G A, et al. Deactivation of supported nickel catalysts during the reforming of methane by carbon dioxide [J]. Catalysis Today,1994,21 (2-3): 571-578.
    [81]Tsipopuriari V A, Efstathiou A M, Zhang Z L, et al. Reforming of methane with carbon dioxide to synthesis gas over supported Rh catalysts [J]. Catalysis Today,1994,21 (2-3): 579-587.
    [82]Kroll V C H, Swaan H M, Mirodatos C. Methane reforming reaction with carbon dioxide over Ni/SiO2Catalyst:I. Deactivation Studies [J]. Journal of Catalysis,1996. 161 (1):409-422.
    [83]Krylov O V, York A P E, Brungs A T, et al. New catalyst for t he conversion of met hane to synt hesis gas:molybdenum and tungsten carbide [J]. Journal of Catalysis,1998, 180(1):85-100.
    [84]Gadalla A M, Bower B. The role of catalyst support on the activity of nickel for reforming methane with CO2 [J]. Chemical Engineering Science,1988,43(11): 3049-3062.
    [85]Van Hook J A. Methane steam reforming [J]. Catalysis Reviews, Science and Engineering.1980,21(1):1-51.
    [86]Bradford M C J, Vannice M A. Metal-support interactions during the CO2 reforming of CH4 over model TiOx/Pt catalysts [J]. Catalysis Letters,1997,48 (1-2):31-38.
    [87]Bradford M C J. Vannice M A. Catalytic reforming of methane with carbon dioxide over nickel catalysts Ⅱ. Reaction kinetics [J]. Applied Catalysis A:General.1996, 142(1):97-122.
    [88]Tang S B, Qiu F L, Lu S J. Effect of supports on the carbon deposition of nickel catalysts for methane reforming with CO2 [J]. Catalysis Today,1995,24 (3):253-255.
    [89]Biddy B M, Chang C D, Howe R F, et al. Methane Conversion [M]. Amsterdam: Elsevier,1998:67-90.
    [90]Roberts S, Gorte R J. A study of platinum films on zirconia (100) [J]. Journal of Physical and Chemical,1991,95 (14):5600-5604.
    [91]Roberts M F, Jenekhe S A. Lewis acid complexation of polymers:gallium chloride complex of nylon 6 [J]. Chemistry of Materials,1990,2 (3):224-226.
    [92]Solymosi F, Kustan G, Erdohelyi A. Catalytic reaction of CH4 with CO2 over alumina-supported Pt metals [J]. Catalysis Letters,1991,11 (2):149-156.
    [93]Erdohelyi A, Fodor K, Solymosi F. Reaction of CH4 with CO2 and H2O over supported Ir catalyst [J]. Studies in Surface Science and Catalysis,1997,107:525-530.
    [94]Tsipouriari V A, Verykios X E. Kinetic study of the catalytic reforming of methane with carbon dioxide tosynthesis gas over Ni/La2O3 catalyst [J]. Catalysis today,2001,64 (1-2):83-90.
    [95]Iyer M V. New catalysts for syngas production from carbon dioxide and methane [D]. Morgantown:West Virginia University,2001.
    [96]Stagg S M, Resasco D E. Effects of promoters and supports on coke formation on Pt catalysts during CH4 reforming with CO2 [J]. Studies in Surface Science and Catalysis, 1997,111:543-550.
    [97]Nobuyuki I, Daiya M, Shogo S, et al. Promoting effect of nial2O4 for supported ni particles on sprayed Ni/AI2O3 catalysts [J]. Catalysis Letters,2000,69(1-2):33-36.
    [98]Horiuchi T, Sakuma K Fukui T. Suppression of carbon deposition in the CO2-reforming of CI-14 by adding basic metal oxides to a Ni/A12O3 catalyst[J]. Applied Catalysis A, 1996,144(1-2):111-120.
    [99]Lee J H, Lee E G, Joo O S, et al. Stabilization of Ni/Al2O3 catalyst by Cu addition for CO2 reforming [J]. Applied Catalysis A,2004,269(1-2):1-6.
    [100]SlagtemOlsbye U, Blom R et al. In situ XRD characterization of La-Ni-Al-O model catalysts for the CO2 reforming of methane [J]. Applied Catalysis A,1996,145(1-2): 375-388.
    [101]Wu Y Y, Kawaguchi O, Matsuda T. Catalytic reforming of methane with carbon dioxide on LaB03 (B=Co, Ni, Fe, Cr)catalysts [J]. Bull. Bulletin of the Chemical Society of Japan,1998,71(3):563-572.
    [102]纪敏,周美娟,毕颖丽,等La2O3-Ni/SrAl11O19催化剂上甲烷与二氧化碳重整反应的研究[J].分子催化,1997,11(1):13-20.
    [103]张美丽.甲烷二氧化碳重整制合成气催化剂的制备及反应性能的研究[D].北京: 北京化工大学,2006.
    [104]张华伟,赵炜,张永发.半焦在富含甲烷气体转化制备合成气中的作用[J].煤炭转化,2005,28(1):40-43.
    [105]Zhuang Q, Qin Y, Chang L. Promoting effect of cerium oxide in supported nickel catalyst for hydrocarbon steam reforming [J]. Applied Catalysis A:General,1991, 70(1):1-8.
    [106]Rostrup-Nielsen J R. Promotion by Poisoning. Studies in Surface Science and Catalysis, 1991,68:85-101.
    [107]Kirn G J, Cho D S, Kim K H, et al. The reaction of CO2 with CH4 to synthesis H2 and CO over nickel-loaded Y-zeolite [J]. Catal. Lett,1994,28(1):41-52.
    [108]Fischer F, Tropsch H. Verfahren zur Gewinnung mehrgliedriger Paraffinkohlenwasserstoffe aus Kohlenoxyden und Wasserstoff auf katalytischem Wege [P]. German patent:DRP 484337,1926.
    [109]Mahesh V. I. New Catalysts for Syngas Production from Carbon Dioxide and Methane [D]. West Virginia University,2001.
    [110]Zhang J. Research and development of nickel based catalyst for carbon dioxide reforming of methane [D]. Saskatoon:University of Saskatchewan,2008.
    [111]孙泉,李文英.甲烷/二氧化碳重整反应催化剂的制备及其反应性能的研究[J].燃料化学学报,1996,24(3):219-224.
    [112]Vernon P D F, Green M L H, Cheetham A K. et al. Partial oxidation of methane to synthesis gas, and carbon dioxide as an oxidising agent for methane conversion [P]. Catalysis Today.1992,13,417-426.
    [113]李春林,伏义路.不同方法制备的催化剂对重整反应的催化性能[J].催化学报,2003,24(3):187-192.
    [114]许峥,张继炎,赵金保,等.超细镍基催化剂上重整反应的性能Ⅱ:制备方法对催化性能和抗积碳性能的影响[J]催化学报,2000,21(4):309-313.
    [115]索掌怀,徐秀峰,马华宪,等.制备方法对Ni/MgO/Al2O3催化剂在甲烷与二氧化碳重整反应活性的影响[J].催化学报,2000,21(5):411-414.
    [116]徐占林,毕颖丽,甄开吉.氧化铝型六铝酸盐Ba-Ni-Al2O3催化甲烷CO2重整制合 成气[J].分子催化,1999,13(6):447-452.
    [117]徐占林,崔湘浩,甄明,等.六铝酸盐LaMAl11O19-δ催化CO2重整甲烷制合成气[J].高等学校化学学报,2000,21(2):298-300.
    [118]Montoya J A, Pascual E R, Gimon C, et al. Methane reforming with CO2 over Ni/ZrO2-CeO2 catalysts prepared by sol-gel [J]. Catalysis Today,2000,63(1):71-85.
    [119]Hayakawa T, SuZulki S, Nakamura J, et al. CO2 refoming of CH4 over Ni/perovskjte catalysts prepared by solid phase crystallization method [J]. Applied Catalysis A,1999, 183(2):273-285.
    [120]Shisbjdo T. Sukenobu M. Morioka H. et al. CO2 reforming of CH4 over Ni/Mg-Al oxide catalysts prepared by solid phase cryStsllization method from Mg-Al hydrotalcite-like precursors [J]. Catalysis letters,2001,73(1):21-26.
    [121]Anikeev V I, Parmon V N, Kirillov V A, Zamaraev K I. Theoretical and experimental studies of solar catalytic power plants based on reversible reactions with participation of methane and synthesis gas [J]. International Journal of Hydrogen Energy,1990, 15(4):275-286.
    [122]Ruiz J A C, Passos F B, Bueno J M C. Syngas production by autothermal reforming of methane on supported platinum catalysts [J]. Applied Catalysis A:General,2008. 334(1-2):259-267.
    [123]Hao Z, Zhu Q, Lei Z,et al. CH4-CO2 reforming over N1/Al2O3 aerogel catalysts in a fluidized bed reactor[J]. Powder Technology,2008,182(3):474-479.
    [124]Li L. Liu B S, Leung J W H, et. al. CH4/CO2 reforming over La2Ni04 and 10% NiO/CeO2-La2O3 catalysts under the condition of supersonic jet expansion via cavity ring-down spectroscopic analysis [J]. Catalysis Today,2008,131(1-4):533-540.
    [125]Rezaei M, Alavi S M, Sahebdelfar S. CO2 reforming of CH4 over nanocrystalline zirconia-supported nickel catalysts [J]. Applied Catalysis B:Environmental,2008,77 (3-4):346-354.
    [126]Zhang J G, Wang H, Ajay K D. Effects of metal content on activity and stability of Ni-Co bimetallic catalysts for CO2 reforming of CH4 [J]. Applied Catalysis A:General, 2008,339(2):121-129.
    [127]谢克昌.以煤气化为核心的多联产系统的技术基础和科学问题[C].中国煤炭科工集团,2004年中国国际煤化工及煤转化高科技术研讨会论文集.上海:中国煤炭科工集团,2004:102-106.
    [128]房倚天,王洋.流化床煤与富甲烷燃料气共气化制合成气的方法[P].中国发明专利:CN 1428403A,2003-7-9.
    [129]Song X, Guo Z. A new process for synthesis gas by co-gasifying coal and natural gas [J]. Fuel,2005,84(5):525-531.
    [130]Zhang Y F. A new techonlogy of three products from coal based on a L T integrated apparatus. Beijing:Proceeding of workshop on coal gasification for chean and secure energy for china,2003:235-246.
    [131]Tsang S C, Claridge J B, Green M L H. Recent advances in the conversion of methane to synthesis gas [J]. Catalysis Today,1995,23(1):3-15.
    [132]路勇,邓存,丁雪加等.担载型钴金属催化剂上甲烷与二氧化碳转化制合成气[J].催化学报,1995,16(6):447-452.
    [133]辛勤.固体催化剂研究方法[M].北京:科学出版社,2004:112-148.
    [134]Zhang Z L, Verkios X E. Carbon dioxide reforming of methane to synthesis gas over supported Ni catalysts [J]. Catalysis Today,1994,21(2-3):589-595.
    [135]Guerrero-Ruiz A, Seplulveda-Escribana A. Rodriguez-Ramos I. Cooperative action of cobalt and MgO for the catalysed reforming of CH4 with CO2 [J]. Catal.Today,1994, 21(2-3):545-550.
    [136]陈仰光,任杰,吴东等MgO-CeO2双金属氧化物对Ni/γ-Al2O3催化剂抗积炭性能的影响[J].石油化工,1994,23(12):771-775.
    [137]Li X C, Wu M, Lai Z H. Studies on nickel-baLsed catalysts for carbon dioxideRefoming of metthane[J]. Applied Catalysis A: General,2005,290(1-2):81-86.
    [138]Jeong H, Kim K I, Kim D. Effect of promoters in the memane reforming with carbon dioxide to synthesis gas oveer Ni/HY catalysts [J]. Journal of Molecular Catalysis A: Chemical,2006,246(1-2):43-48.
    [139]Olsbye U, Wurzel T, Mleczko L, et al. Kinetic and reaction engineering studies of dry reforming of methane over a Ni/La/Al2O3 catalyst [J]. Industrial & engineering chemistry research,1997,36(12):5180-5188.
    [140]Bridger G W, Chinchen G C. Catalysis handbook-with special reference to unite processes in ammonia and hydrogen manufacture [M]. New York:Springer-Verlag 1970,63-96.
    [141]Mark M F, Maier W F. CO2-Reforming of Methane on Supported Rh and Ir Catalysts. Journal of Catalysis,1996,164(1):122-130.
    [142]Tomishige K, Himeno Y, Yamazald O, et al. Development of new generation reforming catalyst-catalytic performance and carbon deposition behavior on Nickel-magnesia catalysts. Kinetics and Catalysis.1999.40(3):432-439.
    [143]Kroll V C H, Swaan H M, Lacombe S, Mirodatos C. Methane reforming reaction with carbon dioxide over Ni/SiO2 Catalyst:Ⅱ. A Mechanistic Study. Journal of Catalysis, 1996,164(2):387-398.
    [144]Kroll V C H, Tjatjopoulos G J, Mirodatos C. Kinetics ofmethane reforming over Ni/SiO2 catalysts based on a step-wise mechanistic model. Studies in Surface Science and Catalysis,1998,119:753-758.
    [145]Erdohelyi A, Cerenyi J, Solymosi E. Activation of CH4 and its reaction with CO2 over supported Rh catalysts. Journal of Catalysis,1993,141:287-299.
    [146]Bradford M C J, Vannice M A. Catalytic reforming of methane with carbon dioxide over nickel catalysts Ⅱ. Reaction kinetics. Applied Catalysis A,1996,142(1):73-96.
    [147]Bradford M C J, Vannice M A. CO2 reforming of CH4 over supported Pt catalysts. Journal of Catalysis,1998,173(2):157-171.
    [148]史克英,商永臣,魏树权,等.天然气二氧化碳转化制合成气的研究——Ⅸ.反应机理[J].哈尔滨师范大学自然科学学报.1998,14(1):51-54.
    [149]Schuurman Y C, Kroll V C H, Microdatos C. Unraveling mechanistic features for the methane reforming by carbon dioxide over different metals and supports by TAP expedments. Catalysis Today,1998,46:185-192.
    [150]邰学林.等压内冷式高温高压化学反应器[P].中国发明专利:CN200510117667.0,2005-11-09.
    [151]李志强,魏飞,向兰.管式高温高压水热反应装置[P].中国发明专利:CN3121941.1, 2003-04-18.
    [152]崔一尘,杨场,蔡宁生,等.甲烷在活性炭上催化裂解的热重分析[J].燃烧科学与技术,2005,11(5):480-485.
    [153]白宗庆,陈皓侃,李文,等.甲烷在活性炭上裂解制氢研究[J].燃料化学学报,2006,34(1):66-70.
    [154]白宗庆,陈皓侃,李文,等.热重—质谱联用研究焦炭在甲烷气氛下的热行为[J],燃料化学学报,2005,33(4):426-430.
    [155]Nazim M, Franklyn S, Ali T. Catalytic activity of carbons for methane decomposition reaction [J]. Catalysis Today.2005. (102-103):225-233.
    [156]Hwan K M, Kyoung K E, Jun'J N, et al. Hydrogen production by catalytic decomposition of methane over activated carbons:kinetic study [J]. International Journal of Hydrogen Energy,2004,29(2):187-193.
    [157]Moliner R, Suelves I, Liizal'o M J, et al. Thermocatalytic decomposition of methane over activated carbons:influence of textural P roperties and surface chemistry [J]. International Journal of Hydrogen Energy,2005,30(3):293-300.
    [158]Ashok J, Naveen K S, Venugopal A, et al. COx free hydrogen by methane decomposition Over activated carbons [J]. Catalysis Communications,2008,9(1): 164-169.
    [159]Haghighi M, Sun Z Q, Wu J H, et al. On the reaction mechanism of CO2 reforming ofmethane over a bed of coal char [J]. Proceedings of the Combustion Institute,2007, 31(2):1983-1990.
    [160]李延兵,肖睿,金保升,等.焦炭体系下二氧化碳重整甲烷制取合成气[J].燃烧科学与技术,2009,15(3):238-242.
    [161]金保升,李延兵,肖睿,等.焦炭体系下添加剂对C02重整CH4特性的影响[J].动力工程,2008,28(5):764-768.
    [162]李玉洁,王鹏,张永发,等.半焦对富含甲烷气体转化制备合成气的作用-改性半焦对CO和H2反应生成CH4的作用[J].煤炭转化,2007,30(1):34-37.
    [1]张华伟,赵炜,张永发.半焦在富含甲烷气体转化制备合成气中的作用[J].煤炭转化,2005,28(1):40-42.
    [2]张华伟.煤半焦在焦炉煤气转化制备合成气中的作用[D].太原:太原理工大学,2005.
    [3]李玉洁.半焦催化焦炉煤气转化制备合成气过程中主要反应的热力学和动力学分析[D].太原:太原理工大学,2007.
    [4]张丙模.小型高温高压反应器及加压炭催化CH4/CO2重整研究[D].太原:太原理工大学,2010.
    [5]张卫东.炭催化CH4-CO2重整制合成气机理及炭化剂中灰分和官能团特性研究[D].太原:太原理工大学,2009.
    [6]Boehm H P. Some aspects of the surface chemistry of carbon blacks and other carbons [J]. Carbon,1994,32 (5):759-769.
    [1]张永发,谢克昌,赵炜,等.富含甲烷气在高温炭体系中裂解重整制合成气的方法[P].中国发明专利:CN1490241A,2004-4-21.
    [2]师江柳,张继炎,张鎏.甲烷-CO2制取合成气研究现状评述[J].天然气化工,1995,20(2):35-43.
    [3]徐占林,毕颖丽,甄开吉.甲烷催化二氧化碳重整制合成气反应研究进展[J].化学进展.2000,12(2):121-128.
    [4]陈吉祥,王日杰,张继炎,等.甲烷与二氧化碳重整制取合成气研究进展[J].天然气化工,2003,28(6):32-36.
    [5]魏永刚,王华,何方,等.甲烷与二氧化碳催化重整制取合成气的研究进展[J].应用化工,2005,34(12):721-730.
    [6]Rezaei M, Alavi S M, Sahebdelfar S, et al. CO2 reforming of CH4 over nanocrystalline zirconia-supported nickel catalysts [J]. Applied Catalysis B:Environmental,2008. 77(3-4):346-354.
    [7]Liu H, Li S, Zhang S. Catalytic performance of novel Ni catalysts supported on SiC monolithic foam in carbon dioxide reforming of methane to synthesis gas [J]. Catalysis Communications,2008,9(1):51-54.
    [8]Rodriguez J A, Ma S, Liu P,et al. Activity of CeOx and TiOx nanoparticles grown on Au (111) in the water-gas shift reaction [J]. Scienc,2007.318 (5857):1757-1760.
    [9]Osaki T, Horiuchi T, Suzuki K, et al. Catalyst performance of MoS2 and WS2 for the CO2-reforming of CH4 Suppression of carbon deposition [J]. Applied Catalysis,1997, 155(2):229-238.
    [10]Krylov O V, Mamedov A K, Mirzabekova S R. Interaction of carbon dioxide with methane on oxide catalysts [J]. Catal Today,1998,42(3):211-215.
    [11]陈仰光,任杰,吴东.甲烷、二氧化碳重整催化剂的研究[J].石油化工,1994,(12):771-775.
    [12]Tsipouriari V A, Efstathioh A M, Zhang Z L, et al. Reforming of methane with carbon dioxide to synthesis gas over supported Rh catalysts. Catal Today,1994,21(2-3): 579-587.
    [13]Zhang Z L, Verykios X E. Carbon dioxide reforming of methane to synthesis gas over supported Ni catalysts [J]. Catal Today,1994,21(2-3):589-595.
    [14]Bradford M C J, Vannice M A. Catalytic reforming of methane with carbon dioxide over nickel catalysts Ⅱ. Reaction kinetics [J]. Applied Catalysis A:General,1996,142(1): 97-122.
    [15]王晓红,黄伟,谢克昌.甲烷活化及转化催化剂研究进展[J].煤炭转化,2001,24(1):27-30.
    [16]Suelves I, Lazaro M J, Moliner R, et al. Hydrogen production by methane decarbonization:Carbonaceous catalysts [J]. International Journal of Hydrogen Energy, 2007,32(15):3320-3326.
    [17]Suelves I, Pinilla J L, Lazaro M J, et al. Carbonaceous materials as catalysts for decomposition of methane [J]. Chemical Engineering Journal,2008,140(1-3):432-438.
    [18]Suelves I, Pinilla J L, Lazaro M J, et al. Kinetic study of the thermal decomposition of methane using carbonaceous catalyst [J]. Chemical Engineering Journal,2008,138(1-3): 301-306.
    [19]Ashok J, Naveen K S, Venugopal A, et al. COx free hydrogen by methane decomposition Over activated carbons[J]. Catalysis Communications,2008,9(1): 164-169.
    [20]Haghighi M, Sun Z Q, Wu J H, et al. On the reaction mechanism of CO2 reforming of methane over a bed of coal char [J]. Proceedings of the Combustion Institute,2007,31(2): 1983-1990.
    [21]李延兵,肖睿,金保升,等.焦炭体系下二氧化碳重整甲烷制取合成气[J].燃烧科学与技术,2009,15(3):238-242.
    [22]张华伟,赵炜,张永发.半焦在富含甲烷气体转化制各合成气中的作用[J].煤炭转化,2005,28(1):40-42.
    [23]张华伟.煤半焦在焦炉煤气转化制备合成气中的作用[D].太原:太原理工大学2005.
    [24]李玉洁,王鹏,赵炜,等.半焦在富含甲烷气体转化制备合成气中的作用(Ⅱ):改性半焦对CO和H2反应生成CH4的作用[J].煤炭转化,2007,30(1):34-38.
    [25]张美丽.甲烷二氧化碳重整制合成气催化剂的制备及反应性能的研究[D].北京:北京化工大学,2006.
    [26]金保升,李延兵,肖容,等.焦炭体系下添加剂对CO2重整CH4特性的影响[J].动力工程,2008,28(5):764-768.
    [27]李延兵.炭体系下二氧化碳重整甲烷试验研究及数值模拟[D].南京:东南大学2008.
    [28]Song H, Li M, Xiang J, et al. Fractal characteristic of three Chinese coals[J]. Fuel,2004, 83(10):1307-1313.
    [29]Zhang Y, Zhao W, et al. Study of CH4-H2O in coke oven gas reforming to produce syngas catalyzed by carbon catalyst. Pittsb Coal Conference, Pittsburgh, USA,2006.
    [30]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002.
    [31]Went Gregory Thomas. Studies of supported vanadium oxide catalysts for the selective catalytic reduction of nitrogen oxides [D]:Berkeley:University of California,1991.
    [32]Lietti L, Alemany J L, Forzatti P, et al. Reactivity of V2O5·WO3/TiO2 catalysts in the selective catalytic reduction of nitric oxide by ammonia [J]. Catalysis today,1996,29: 143-148.
    [33]Lietti L, Nova I, Ralnic G, et al. Characterization and reactivity of V2O5-MoO3/TiO2 De-NOx SCR catalyst [J]. Journal of catalysis,1999,187(2):419-435.
    [34]Alemany L, Lietti Luca,'Feflazzo Natale, et al. Reactivity and physicochemical characterization of V2O5-WO3/TiO2 De-NOx SCR catalysts [J]. Journal of catalysis. 1995,155(1):177-130.
    [35]庞克亮.天然焦的热解及催化气化反应特性研究[D].南京:东南大学,2007.
    [36]向银花,王洋,张建民等.煤焦气化过程中比表面积和孔容积变化规律及其影响因素研究[J].燃料化学学报,2002,30(2):109-12.
    [37]丘纪华.煤粉在热分解过程中比表面积和孔隙结构的变化[J].燃料化学学报,1994,22(3):316-319.
    [38]常迎梅,杨红果,马腾武,等.基于AFM煤体微结构研究[J].现代科学仪器,2006,(6):71-72.
    [39]张慧,李小彦.扫描电子显微镜在煤岩学上的应用[J].电子显微学报,2004,23(4):467-467.
    [40]王学涛.城市生活垃圾焚烧飞灰熔融特性及中金属赋存迁移规律的研究[D].南京:东南大学,2005.
    [41]Pengthamkeerati P, Satapanajaru T, Chularuengoaksom P. Chemical modification of coal fly ash for the removal of phosphate from aqueous solution [J]. Fuel,2008,87(12): 2469-2476.
    [42]Wang S, Yu J, Yu J. Conformation and location of amorphous and semi-crystalline regions in C-type starch granules revealed by SEM, NMR and XRD [J]. Food Chemistry, 2008,110(1):39-46.
    [43]Boehm H P. Some aspects of the surface chemistry of carbon blacks and other carbons [J]. Carbon,1994,32(5):759-769.
    [44]Ni Y, Yang S, Hong J, et al. Microwave-assisted preparation, characterization and properties of columnar hexagonal-shaped ZnO microcrystals [J]. Scripta Matefialia,2008, 59(1):127-130.
    [45]Vanesa A R, Josephine M H. Effect of anodic polarization on carbon deposition on Ni/YSZ anodes exposed to methane [J]. Applied Catalysis A:General,2008,342 (1-2): 49-55.
    [46]Lorenz H, Carrea E, Tamura M, et al. The role of char surface structure development in pulverized fuel combustion [J]. Fuel,2000,79(10):1161-1172.
    [47]Feng B, Bhatia S K. Variation of the pore structure of coal chars during gasification [J]. Carbon,2003,41 (3):507-523.
    [48]张守玉,王洋,朱廷钰,等.活化条件对彬县煤活性焦孔隙结构的影响[J].化学反应工程与工艺,2003,19(3):221-226.
    [49]严继民,张启元,高敬琮.吸附与凝聚固体的表面与孔(第二版)[M].北京:科学出版社,1986:96-125.
    [50]Wang D, Tan Y, Han Y, et al. Study on deactivation of hybrid catalyst for dimethyl ether synthesis in slurry reactor [J]. Journal of Fuel Chemistry and Technology,2008,36(2): 171-175.
    [51]朱之培,高晋生.煤化学[M].上海:上海科学技术出版社,1984:98-125.
    [52]庄新国,杨裕生,杨冬平,等.表面官能团对活性炭性能的影响[J].电池,2003,33(4):199-202.
    [53]舒新前,王祖纳.神府煤煤岩组分的结构特征及其差异[J].燃料化学学报,1996,24(5):426-433.
    [54]李敏.煤表面含氧官能团的研究[D].太原:太原理工大学,2004.
    [55]张卫东.炭催化CH4-CO2重整制合成气机理及炭化剂中灰分和官能团特性研究[D].太原:太原理工大学,2009.
    [56]Marcal P, Xavier Q. Characterization of Candiota(South Brazil)coal and combustion by-product [J]. International Journal of Coal Geology,2004,60(1):57-72.
    [57]Alexandra N G, Paul F C. Changes in geochemistry and mineralogy of thermally altered coal, Upper Hunter Valley, Australia [J]. International Journal of Coal Geology,2004, 57(3-4):197-210.
    [58]Guan R, Li W, Li B. Effects of Ca-based additives on desulfurization during coal pyrolysis[J]. Fuel,2003,82(15-17):1961-1966.
    [59]Bustin R M, Ross J V, Rouzaud J N. Mechanisms of graphite formation from kerogen:experimental evidence [J]. International Journal of Coal Geology,1995,28(1): 1-36.
    [60]Cezary C, Wiktofia R, Jerzy F J, et al. XRD and 29Si MAS NMR spectroscopic studies of carbon materials obtained from pyrolysis of a coal tar pitch modified with various silicon-bearing additives [J]. Fuel Processing Technology,2002,79(3):199-206.
    [61]周玉武,高辉.材料分析测试技术—材料X射线衍射与电子显微分析[M].哈尔滨:哈尔滨工业大学出版社,1998:25-86.
    [62]Kook K S, Mun J S, Done K. S. Quantitative x-ray diffraction analysis for sulfation of limestone in flue gas desulfurization [J]. Industrial & engineering chemistry research, 2000,39(7):2496-2504.
    [63]Pattanaik S. Huffinan G P. Sahu S, et al. X-ray absorption free structure spectroscopy and X-ray diffraction study of cementitious materials derived from coal combustion by products [J]. Cement and Concrete Research,2004.34(7):1243-1249.
    [64]Ruan C D, Colin W R. Quantitative x-ray powder diffraction analysis of clay minerals in Australian coals using Rietveld methods [J]. Applied Clay Science,2002,21(5-6): 227-240.
    [65]Lu L, Sahajwalla V, Kong C, et al. Quantitative x-ray diffraction analysis and its application to various coals[J]. Carbon,2001,39(12):1821-1833.
    [66]Takagi H, Maruyamak K, Yoshizawa N, et al. XRD analysis of carbon stacking structure in coal during heat treatment [J]. Fuel,2004,83(17-18):2427-2433.
    [67]Valentina V Z. X-ray investigation of transformation in coal organic mass during heating [J]. Fuel,2004,84(6):755-762.
    [68]Qiu J, Li Y, Wang Y, et al. A novel form of carbon micro-balls from coal [J]. Carbon, 2003,41(4):767-772.
    [69]Pevida C, Jacquemard P, Joly J P. Physicochemical properties of debris ejected from C/C brakes with different structural orders [J]. Carbon,2008,46(7):994-1002.
    [70]Guo L, Li H, Li K, et al. Effect of granular reinforcements on the properties of pitch-based carbon composites [J]. New Carbon Materials,2008,23(1):51-57.
    [71]Tian Y, Zhang Y, Wang B, et al. Coal-derived carbon nanotubes by thermal plasma jet [J]. Carbon,2004,42 (12-13):2597-2601.
    [72]陈国玺,张月明.矿物热分析粉品分析相变图谱手册[S].成都:四川科学技术出版社,1989:18-79.
    [1]Wang H Y. Ruckenstein E. Carbon dioxide reforming of methane to synthesis gas over supported rhodium catalysts:the effect of support [J]. Applied Catalysis A,2000,204(1): 143-152.
    [2]杨燕,夏代宽,韩笑.Z型催化剂上甲烷蒸汽补碳转化制甲醇合成气宏观动力学的研究[J].石油与天然气化工,2004,33(2):75-77.
    [3]Anikeev V I, Parmon V N, Kirillov V A, Zamaraev K I. Theoretical and experimental studies of solar catalytic power plants based on reversible reactions with participation of methane and synthesis gas [J]. International Journal of Hydrogen Energy,1990,15(4): 275-286.
    [4]Ruiz J A C. Passos F B, Bueno J M C. Syngas production by autothermal reforming of methane on supported platinum catalysts [J]. Applied Catalysis A:General,2008, 334(1-2):259-267.
    [5]Hao Z, Zhu Q. Lei Z,et al. CH4-CO2 reforming over Ni/Al2O3 aerogel catalysts in a fluidized bed reactor[J]. Powder Technology,2008,182(3):474-479.
    [6]Li L. Liu B S, Leung J W H, et. al. CH4/CO2 reforming over La2Ni04 and 10% NiO/CeO2 -La2O3 catalysts under the condition of supersonic jet expansion via cavity ring-down spectroscopic analysis [J]. Catalysis Today,2008,131(1-4):533-540.
    [7]Rezaei M, Alavi S M, Sahebdelfar S. CO2 reforming of CH4 over nanocrystalline zirconia-supported nickel catalysts [J]. Applied Catalysis B:Environmental,2008,77 (3-4):346-354.
    [8]Zhang J G, Wang H, Ajay K D. Effects of metal content on activity and stability of Ni-Co bimetallic catalysts for CO2 reforming of CH4 [J]. Applied Catalysis A:General, 2008,339(2):121-129.
    [9]谢克昌.以煤气化为核心的多联产系统的技术基础和科学问题[C].中国煤炭科工集团,2004年中国国际煤化工及煤转化高科技术研讨会论文集.上海:中国煤炭科工集团,2004:102-106.
    [10]房倚天,王洋.流化床煤与富甲烷燃料气共气化制合成气的方法[P].中国发明专利:CN1428403A,2003-7-9.
    [11]Song X, Guo Z. A new process for synthesis gas by co-gasifying coal and natural gas [J]. Fuel,2005,84(5):525-531.
    [12]Zhang Y F. A new techonlogy of three products from coal based on a L T integrated apparatus. Beijing:Proceeding of workshop on coal gasification for chean and secure energy for china,2003:235-246.
    [13]Tsang S C, Claridge J B, Green M L H. Recent advances in the conversion of methane to synthesis gas [J]. Catalysis Today,1995,23(1):3-15.
    [14]路勇,邓存,丁雪加等.担载型钴金属催化剂上甲烷与二氧化碳转化制合成气[J].催化学报,1995,16(6):447-452.
    [15]Pena M A, Gomez J P, Fierro J L G. New catalytic routes for syngas and hydrogenproduction [J]. Applied Catalysis A,1996,144(1-2):7-57.
    [16]辛勤.固体催化剂研究方法[M].北京:科学出版社,2004:112-148.
    [17]zhang Z l, verkios x e. carbon dioxide reforming of methane to synthesis gas over supported ni catalysts [J]. Catalysis Today,1994,21(2-3):589-595.
    [18]guerrero-ruiz a, seplulveda-escribana a, rodriguez-ramos i. cooperative action of cobalt and mgo for the catalysed reforming of ch4 with CO2 [J]. catal.today,1994,21(2-3): 545-550.
    [19]陈仰光,任杰,吴东等MgO-CeO2双金属氧化物对Ni/y-Al2O3催化剂抗积炭性能的影响[J].石油化工,1994,23(12):771-775.
    [20]Li X C, Wu M, Lai Z H. Studies on nickel-baLsed catalysts for carbon dioxideRefoming of metthane[J]. Applied Catalysis A: General,2005,290(1-2):81-86.
    [21]Jeong H, Kim K I, Kim D. Effect of promoters in the memane reforming with carbon dioxide to synthesis gas oveer Ni/HY catalysts [J]. Journal of Molecular Catalysis A: Chemical,2006,246(1-2):43-48.
    [22]Reitmeier R E, Atwood K, Bennet H A, et al. Production of synthetic gas reaction of lighthydrocarbons with steam and carbon dioxide[J]. Industrial and Engineering Chemistry Research,1948,40(4):620-626.
    [23]Claridge J B, York A P E, Green L H. Comparison of the group V and V I transition metal carbides for methane dry reforming and thermodynamic prediction of their relative stabilities[J]. Catalysis Letters,1999.57(1-2):65-69.
    [24]Rostrup-Nielsen J R, Bak Hansen J H. CO2-Reforming of Methane over Transition Metals [J]. Journal of Catalysis,1993,144 (1):38-49.
    [25]Swaan H M, Kroll V C H, Martin G A, et al. Deactivation of supported nickel catalysts during the reforming of methane by carbon dioxide [J]. Catalysis Today,1994,21 (2-3): 571-578.
    [26]Tsipopuriari V A, Efstathiou A M, Zhang Z L, et al. Reforming of methane with carbon dioxide to synthesis gas over supported Rh catalysts [J]. Catalysis Today,1994,21 (2-3): 579-587.
    [27]Kroll V C H. Swaan H M, Mirodatos C. Methane reforming reaction with carbon dioxide over Ni/SiO2Catalyst:I. Deactivation Studies [J]. Journal of Catalysis,1996,161 (1) 409-422.
    [28]Krylov O V, York A P E, Brungs A T, et al. New catalyst for t he conversion of met hane to synt hesis gas:molybdenum and tungsten carbide [J]. Journal of Catalysis,1998, 180(1):85-100.
    [29]Gadalla A M, Bower B. The role of catalyst support on the activity of nickel for reforming methane with CO2 [J]. Chemical Engineering Science,1988,43(11): 3049-3062.
    [30]Van Hook J A. Methane steam reforming [J]. Catalysis Reviews, Science and Engineering,1980,21(1):1-51.
    [31]Bradford M C J, Vannice M A. Metal-support interactions during the CO2 reforming of CH4 over model TiOx/Pt catalysts [J]. Catalysis Letters,1997,48 (1-2):31-38.
    [32]Bradford M C J, Vannice M A. Catalytic reforming of methane with carbon dioxide over nickel catalysts Ⅱ. Reaction kinetics [J]. Applied Catalysis A:General,1996,142(1): 97-122.
    [33]Saito Y, Yoshikawa T, Bandow S, et al. Interlayer spacings in carbon nanotubes [J]. Physical Review B,1993,48(3):1907-1909.
    [34]向军,胡松,孙路石,等.煤燃烧过程中碳、氧官能团演化行为[J].化工学报,2006,57(9):2180-2184.
    [35]David L P, Alan G. Application of XPS to coal characterization [J]. Fuel,1983,62 (9): 1024-1033.
    [36]Kelemen S R, Gorbaty M L, Kwiatek P J. Nitrogen transformations in coal during pyrolysis. Energy & Fuels,1998,12(1):159-173.
    [37]Glarborg P, Jensen A D, Johnsson J E. Fuel nitrogen conversion in solid fuel fired systems. Progress in Energy and Combustion Science,2003,29:89-113.
    [38]孟华平,赵炜,章日光,等.半焦对富含甲烷气体转化制备合成气的作用(Ⅳ)理论分析半焦表而含氧官能团的催化机理[J].煤炭转化,2008,31(3):31-35.
    [1]邰学林.等压内冷式高温高压化学反应器[P].中国发明专利:CN200510117667.0,2006-6-14.
    [2]李志强,魏飞,向兰.管式高温高压水热反应装置[P].中国发明专利:CN3121941.1,2003-10-8.
    [3]宫经德.壳牌煤气化技术及其工程应用[J].化肥设计,2007,45(6):8-12.
    [4]陈二孩,岑涛.Shell煤气化装置点火烧嘴与开工烧嘴的试验及应用[J].化肥设计,2009,47(1):44-46.
    [5]盖柯.管道保温层临界直径的计算[J].合肥教育学院学报,2000,17(2):10-11.
    [6]郑津洋,董其伍,桑芝富.过程设备设计[M].北京:化学工业出版社,2001:25-97.
    [7]袁宏宇,王辅臣,于遵宏.气化炉复合炉衬的传热计算[J].煤炭转化,2004,27(4):21-26.
    [8]屈强,瞿海根,于广锁,等.气流床气化炉托砖架温度分布研究[J].煤炭转化,2003,26(2):39-42.
    [9]Zhang W. Zhang Y. Study of CH4-CO2 reforming syngas with carbonaceous catalyst [J]. Shanxi Energy Conservion,2009(4):34-37.
    [10]张猛,张国杰,张永发.CH4/CO2重整反应过程中积炭的研究技术进展[J].广州化工,2009,37(4):58-60.
    [11]Zhang G, Dong Y, Feng M, et al. CO2 reforming of CH4 in coke oven gas over coal char catalyst [J]. Chemical Engineering Journal,2010,56(3):519-523.
    [12]Dong Y, Zhang B, Zhao W. Research and development of a small-scale high-temperature and high pressure reactor for coal methanation [J]. Coal Convervsion,2010,33(2): 64-67.
    [13]Zhang Y, Zhang M, Zhang G, et al. Effect of carbon deposition over carbonaceous catalysts on CH4 decomposition and CH4-CO2 reforming [J]. Frontiers of Chemical Engineering in China,2010,4(4):481-485.
    [14]Wang Y, Xu B. Comparative study of atmospheric and high pressure CO2 reforming of methane over Ni/MgO catalyst [J]. Catalysis Letters,2005,99(1-2):89-96.
    [15]Wang Y, Wang H, Li Y, et al. Performance of Ni/MgO-AN catalyst in high pressure CO2 reforming of methane [J]. Topics in Catalysis,2005,32(3-4):109-116.
    [16]Chen J, Wang R, Zhang J. Effects of pressure on catalysis performance of catalyst for CH4 reforming with CO2 [J]. Chemical Reaction Engineering and Technology,2005, 21(4):365-369.
    [17]张国杰,张永发,张猛,等.炭催化剂甲烷分解及其动力学特性[J].现代化工,2009,29(S1):29-32.
    [18]Verykios X E. Catalytic dry reforming of natural gas for the production of chemicals and hydrogen [J]. International Journal of Hydrogen Energy,2003,28 (10):10451063.
    [19]郭崇涛.煤化学M].北京:化学工业出版社,2003:67-92.
    [1]Vernon P D F, Green M L H, Cheetham A K, et al. Partial oxidation of methane to synthesis gas, and carbon dioxide as an oxidising agent for methane conversion [P]. Catalysis Today, 1992,13,417-426.
    [2]许峥,张继炎,赵金保,等.超细镍基催化剂上重整反应的性能Ⅱ:制备方法对催化性能和抗积碳性能的影响[J].催化学报,2000,21(4):309-313.
    [3]索掌怀,徐秀峰,马华宪,等.制备方法对Ni/MgO/Al2O3催化剂在甲烷与二氧化碳重整反应活性的影响[J].催化学报,2000,21(5):411-414.
    [4]徐占林,毕颖丽,甄开吉.氧化铝型六铝酸盐Ba-Ni-Al2O3催化甲烷CO2重整制合成气[J].分子催化,1999,13(6):447-452.
    [5]徐占林,崔湘浩,甄明,等.六铝酸盐LaMAl11O19_δ催化CO2重整甲烷制合成气[J].高等学校化学学报,2000,21(2):298-300.
    [6]孙泉,李文英.甲烷/二氧化碳重整反应催化剂的制备及其反应性能的研究[J].燃料化学学报,1996,24(3):219-224.
    [7]李忠,赵祯霞,徐科峰,等.超声辐射制备Fe3+/γ-A l2O3催化剂催化降解含酚废水[J].华南理工大学学报(自然科学版),2006,34(3):29-33.
    [8]Bianchi C L, Gotti E, Toscano L, et al. Preparation of Pd/C catalysts via ultrasound:a study of the metal distribution [J]. Ultrasonics Sonochemistry.1997,4(4):317-320.
    [9]梁新义,张黎明,丁宏远,等.超声波促进浸渍法制备催化剂LaCoO3/y-Al203[J].物理化学学报,2003,19(7):666-669.
    [10]刘越男,吕效平,韩萍芳.超声浸渍法制备Fe3O4/γ-Al2O3催化剂及其表征、活性研究[J].化工学报,2007,58(11):2805-2809.
    [11]尚会建,王亮,杨立彦,等.超声波浸渍制备醋酸锌-活性炭催化剂[J].煤炭转化,2011,34(1):65-69.
    [12]李延兵.炭体系下二氧化碳重整甲烷试验研究及数值模拟[D].南京:东南大学,2008.
    [13]Bodrov I M, Apelba'oom L O, T'yomkeen M I. Kinetics of steam-methane reaction on nickel surface [J]. Journal catalysis,1965,4(3):413-413.
    [14]Dipl.-Chem M F M, Wilhelm F M. Active Surface Carbon-A Reactive Intermediate in the production of synthesis Gas from Methane and Carbon Dioxide [J]. Angewandte Chemie International Edition,1994,33(15-16):1657-1660.
    [15]Erdohelyi A, Cserenyi J, Solymosi F. Activation of CH4 and its reaction with CO2 over supported Rh catalysts [J]. Journal of Catalysis,141(1):287-299.
    [16]王轶农,王荣书Hume-Rothery相形成的金属能带理论分析[J].佳木斯工学院学报,1995,13(3):203-206.
    [17]张邦维,廖树帜.合金固溶度理论的进展(一)[J].上海金属.1999,21(2):3-10.
    [18]张邦维,廖树帜.合金固溶度理论的进展(二)[J].上海金属.1999,21(3):3-10.
    [19]童琨,刘崇微,刘金尧,等.原位X射线衍射法研究合成低碳醇的Cu-Co-Al催化体系的活性物相[J].催化学报,1986,7(2):124-128.
    [1]宋世谟,王正烈,李文斌.物理化学(第三版)[M].北京:高等教育出版社,2001:218-326.
    [2]Pinilla J L, Suelves I, Lazaro M J, et al. Kinetic study of the thermal decomposition of methane using carbonaceous catalysts [J]. Chemical Engineering Journal,2008,138 (1-3):301-306.
    [3]Muradov N, Chen Z, Smith F. Fossil hydrogen with reduced CO2 emission:Modeling thermocatalytic decomposition of methane in a fluidized bed of carbon particles [J]. International Journal of Hydrogen Energy,2005,30(10):1149-1158.
    [4]Muradov N. Catalysis of methane decomposition over elemental carbon [J]. Catalysis Communications,2001,2(3-4):89-94.
    [5]Myung H K, Eun K L. Hydrogen production by catalytic decomposition of methane over activated carbons:kinetic study [J]. International Journal of Hydrogen Energy,2004, 29(2):187-193.
    [6]白宗庆,陈皓侃,李文,等.流化床中甲烷在活性炭上裂解制氢研究[J].天然气化工,2006,31(1):1-4.
    [7]于丽华,黄伟,谢克昌.甲烷活化机理研究进展[J].天然气化工,2003,26(1):43-45.
    [8]Chunyang J, Lihong G, Jiawei Z, et al. A Study on the kinetics of the catalytic reforming reaction of CH4 with CO2: Determination of the reaction order [J]. Journal of Natural Gas Chemistry,2003,2(3):201-204.
    [9]朱炳晨.化学反应工程[M].北京:化学工业出版社,2007:106-246.
    [10]孟辉,周泰锦,林梦海,等.甲烷在金属氧化物上催化脱氢的从头计算[J].化学物理学报,1998,11(5):450-455.
    [11]孟华平,赵炜,章日光,等.半焦对富含甲烷气体转化制备合成气的作[J].煤炭转化,2008,31(3):31-35.
    [12]F. Czechowski, K. Halina. Reactivity and Susceptibility to Porosity Development of Coal Maceral Chars on Steam and Carbon Dioxide Gasification [J]. Fuel processing Technology.1991,29(1-2):57-73.
    [13]周静,龚欣,于遵宏.气流量和煤样粒度对煤焦-CO2气化反应的影响[J].煤炭转化,2003,26(2):34-38.
    [14]D. H. Ahn, B. M. Gibbs, K. H. Ko, et al. Gasification kinetics of an indonesian sub-bituminous coal-char with CO2 at elevated pressure [J]. Fuel,2001,80(11): 1651-1658.
    [15]Akpan E, Sun Y, Kumar P, Ibrahim H, et al. Kinetics, experimental and reactor modeling studies of the carbon dioxide reforming of methane (CDRM) over a new Ni/CeO2-ZrO2 catalyst in a packed bed tubular reactor [J]. Chemical Engineering Science,2007,62(15): 4012-4024.
    [16]Akande A, Aboudheir A, Idem R, Dalai A. Kinetic modeling of hydrogen production by the catalytic reforming of crude ethanol over a co-precipitated Ni-Al2O3 catalyst in a packed bed tubular reactor [J]. International Journal of Hydrogen Energy 2006,31(2006): 1707-1715.
    [17]Ibrahim H H, Idem R O. Kinetic studies of the partial oxidation of gasoline (POXG) over a Ni-CeO2 catalyst in a fixed-bed flow reactor [J]. Chemical Engineering Science,2007, 62(23):6582-6594.
    [18]N. Gokon. Y. Osawa, D. Nakazawa, T. Kodama. Kinetics of CO2 reforming of methane by catalytically activated metallic foam absorber for solar receiver-reactors [J]. International Journal of Hydrogen Energy,2009,34:1787-1800.
    [19]张国杰,张永发,张猛,等.炭催化剂甲烷分解及其动力学特性[J].现代化工,2009,29(S1):29-32.
    [20]Schuurman Y'Marquez-Alvarez C, Kroll V C H, Microdatos C. Unraveling mechanistic features for the methane reforming by carbon dioxide over different metals and supports by TAP expedments. Catalysis Today,1998,46(2):185-192.
    [21]郭建军.复合氧化物负载的镍基催化剂上甲烷二氧化碳重整反应及其机理研究[D].杭州:浙江大学,2005.
    [22]李延兵.炭体系下二氧化碳重整甲烷试验研究及数值模拟[D].南京:东南大学,2008.
    [23]Tomishige K, Himeno Y, Yamazald O, et al. Development of new generation reforming catalyst-catalytic performance and carbon deposition behavior on nickel-magnesia catalysts, Kinetics and Catalysis,1999,40(3):432-439.
    [24]Michael F Mark, Wilhelm F Maier. CO2-Reforming of Methane on Supported Rh and Ir Catalysts [J]. Journal of Catalysis,1996,164(1):122-130.
    [25]Kroll V C H, Swaan H M, Lacombe S, et al. Methane Reforming Reaction with Carbon Dioxide over Ni/SiO2? Catalyst:Ⅱ. A Mechanistic Study [J]. Journal of Catalysis, 1996,164(2):387-398.
    [26]Kroll V C H, Tjatjopoulos G J Mirodatos, C. Kinetics of methane reforming over Ni/SiO2 catalysts based on a step-wise mechanistic model [J]. Studies in Surface Science and Catalysis,1998,119:753-758.
    [27]Erdohelyi A, Cerenyi J, Solymosi F. Activation of CH4 and its reaction with CO2 over supported Rh catalysts [J]. Journal of Catalysis,1993,141(1):287-299.
    [28]徐占林,毕颖丽,甄开吉.β-氧化铝型六铝酸盐BaNiAl(11)0(19-δ)催化甲烷CO2重整制合成气[J].分子催化,1999,13(6):447-452.
    [29]徐占林,崔湘浩,甄明,等.六铝酸盐LaMAl11O19-δ催化CO2重整甲烷制合成气[J].高等学校化学学报,2000,21(2):298-300.
    [30]史克英,商永臣,魏树权,等.天然气二氧化碳转化制合成气的研究-Ⅸ.反应机理[J].哈尔滨师范大学自然科学学报.1998,14(1):51-54.
    [31]Haghighi M, Sun Z Q, Wu J H, et al. On the reaction mechanism of CO2 reforming of methane over a bed of coal char [J]. Proceedings of the Combustion Institute,2007,31(2): 1983-1990.
    [32]Beebe T P, Goodman D M, Kay B D, et al. The kinetics of the activated dissociative adsorption of methane on the low index planes of Nickel single crystal surfaces [J]. The journal of Chemical Physics,1987,87(4):2305-2315.
    [33]Kuijpers E G M, Breedijk A K, Wal W J, et al. Chemisorption of methane on NVSiO2 catalysts and reactivity of the chemisorption products toward hydrogen [J]. Journal of Catalysis,1983,81(2):429-439.
    [34]Ferreira A P, Rodriguez R, Anderson J A, et al. Mechanistic aspects of the dry reforming ofmethane over ruthenium catalysts [J]. Applied Catalysis A:General,2000,202(2): 183-196.
    [35]Luntz A C, Harries J. Cl-14 dissociation on metals:a quantum dynamic model [J]. Surface Science,1991,285(1-3):397-426.
    [36]贺黎明,沈召军.甲烷的转化和利用[M].北京:化学工业出版社,2005:54-106.
    [37]Wei J, Iglesia E. Structural requirements and reaction pathways in methane activation and chemical conversion catalyzed by rhodium [J]. Journal of Catalysis,2004,225(1): 116-127.
    [38]Bustamante F, Enick R M, Cugini A V, et al. High-Temperature kinetics of the homogeneous reverse water-Gas shift reaction [J]. AIChE Journal,2004,50(5): 1028-1041.
    [39]Iyer M V, Norcio L P, Kugler E L, et al. Kinetic Modeling for Methane Reforming with Carbon Dioxide over a Mixed-Metal Carbide Catalyst. Industrial and Engineering Chemistry Research,2003,42(12):2712-2721.
    [40]A M Efstathiou, A Kladi, V.A. Tsipouriari, et al. Reforming of Methane with Carbon Dioxide to Synthesis Gas over Supported Rhodium Catalystsll. A Steady-State Tracing Analysis:Mechanistic Aspects of the Carbon and Oxygen Reaction Pathways to Form CO [J]. Journal of Catalysis.1996,158(1):64-75.
    [41]Xu Y, Tian Z, Xu Z, et al. Reactions in a Mixture of CH4 and CO2 under the Action of Microwave Discharge at. Journal of Natural Gas Chemistry,2002,11(1):28-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700