用户名: 密码: 验证码:
批量热浸镀锌池上方废气的收集装置研究及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们环保意识的逐渐提高和国家对环境保护的要求日益严格,批量热浸镀锌生产过程中产生的大量含尘废气,急需进行控制和收集,但我国目前尚没有针对批量热浸镀锌池上方废气收集的装置和设计方法。
     本文是在完成批量热浸镀锌池上方废气的收集装置研究及数值模拟工作的基础上撰写的,从批量热浸镀锌废气收集装置的需求分析入手,应用QFD(Quality Function Deployment)知识对装置进行了质量机能展开,得到其质量屋,从而确定了设计任务和设计冲突,针对设计任务和冲突,应用TRIZ(发明问题解决理论)提出了三种解决方案,并对各方案进行了综合模糊评判。文章结合通风和空气调节理论对吹吸式热浸镀锌废气收集装置进行了结构设计,最后应用FLUENT软件针对三种方案的废气收集装置在工作过程中气体流动进行了数值模拟。特别是在四个方面对热浸镀锌废气收集装置的设计提出了新的设计理论和方法。
     首先,在方案分析阶段,应用QFD对批量热浸镀锌池上方废气收集装置进行质量机能展开,得到了废气装置的质量屋(HOQ),结合先进的发明问题解决理论——TRIZ理论对装置进行了创新性设计和研究,并对设计方案进行了模糊综合评价(FCE),在此基础上创新性地提出了QFD/TRIZ/FCE的产品创新设计综合模型。其次,在进行装置的结构设计的基础上,提出了批量热浸镀锌上吹吸式废气收集装置,该装置通过静压复得法,采用变截面通风风道,实现了均匀吹、吸风,能在锌池上方形成均匀气幕,有效地控制了锌池上方废气的流动。第三,根据FLUENT对锌池上方气流进行数值模拟的结果,得出1.5m宽的热浸镀锌上吹吸式废气收集装置的吹吸口高度差应在130-230mm较为合理,吹风口出口风速在9-12m/s较为理想。第四,提出了批量热浸锌池宽度与废气收集方式的关系。锌池宽度小于0.6m采用上单吸式废气收集装置,宽度在0.6m至1.2m之间的锌池采用上双吸式废气收集装置,对于宽度在1.2m以上的锌池,宜采用上吹吸式废气收集装置。
     理论分析和实践设计表明,以上这些理论和方法,为批量热浸镀锌池上方废气收集装置建立了一套比较完善的设计方法,为提高我国批量热浸镀锌池上方废气控制和收集装置的设计水平奠定了理论和设计基础。
With the increasing strict specification of civilian and government towords environmental protection, it is in urgent need to control and collect the waste gas produced during the process of general galvanizing. However, up to now, there is still neither specific device designed to collect the waste gas nor predecent method to diesign the device domestically.
     Simulating flow field of the waste gas flowing above zinc pot and studying of waste gas collecting devices for general galvanizing were finished in this paper. Starting with needs analysis of waste gas collecting device for the general galvanizing, the quality function deployment about the decice was finished by QFD tool, and the house of quality (HOQ) as a result of the process was also achieved. The result showed the main task and conflict in the design process. The three kinds of solutions to this task and conflict are proposed by the TRIZ theory and evaluated by fuzzy comprehensive evaluation (FCE) tool. Combined with the ventilation and air conditioning theory, the structure of waste gas collecting device for general galvanizing of the blowing-sucking style was designed. In addition, the flow fields of the three kinds of types of devices in operation were simulated by FLUENT software. Finally, four aspects of the new design theory and method of the wasete gas collecting device for general galvanizing were highlighted.
     First of all, during the program analysis stage, the kind of QFD/TRIZ/FCE innovative design model, which come form the process of general galvanizing device's QFD analysis, TRIZ tool analyses to the HOQ and the programs evaluation, was proposed. Secondly, base on the method of the static presses regain, the structure of waste of collecting device for general galvanizing of blowing-sucking style was proposed. The device can cover the waste gas from general galvanizing with uniform air curtain. Because the duct is designed to variable cross-section, the gas can be blown and sucked up evenly. As the result, the waste gas of general galvanizing is controlled effectively. Thirdly, according the FLUENT numerical simulation result of waste gas flowing above the zinc pot,130-230mm is a ideal height difference between blowing mouth and sucking mouth, the velocity of gas coming from blowing mouth is best between 9 and 12 meter per second.Fourthly, the relationship between the width of general galvanizing pot and the waste gas collecting methods is proposed. For example, the one-sided inflow device should be used to the zinc pot with a width less than 0.6 meter, and the two-sided inflow device is used to the zinc pot with a width between 0.6 meter and 1.2 meter. The blowing-sucking style collecting device would be a best choice when the zinc pot is over 1.2 meter wide.
     The theoretical analysis and practical design indicated that a method can be built up by adopting above mentioned theories and methods. And the method will help to found a rationale for the improvement of design of waste gas collecting devices for general galvanizing.
引文
[1]Javaherdashti R.. How corrosion Affects Industry and life[J]. Anti-corrosion Methods and Materials,2000,47(1):30-34
    [2]柯伟.中国腐蚀调查报告[M].北京:化学工业出版社,2003:2-7
    [3]Shibli S. M. A., Manu R.. Process and performance improvement of hot dip zinc coating by dispersed nickel in the under layer[J]. Surface and Coatings Technology,2005,197:103-108
    [4]Douglas C. Wynne. Development of Galvanizing in the U.K.[J]. Iron and Steel Engineer,1987, (7):40-41
    [5]仲海峰.国外钢板热镀锌技术进展[J].腐蚀与防护,2002,23(11):474-478
    [6]Paul Chapman. Computation Fluid Dynamics for Effective Combustor Design and Modification[J].Industrial Heating,1997(11):4348
    [7]Agarwal A. T.. Design guide for dust collectors[J]. Chemical Egnineering,2005, 112(2):42-49
    [8]金颖.钢铁企业烟气排放与扩散的研究[D].同济:同济大学硕士论文,2001:3-5
    [9]Shannon Michael J..Understanding and selecting dust collectors[J].Journal of protective Coatings & Lingings,1996,13(5):37-42
    [10]张明星,陈海炎,颜翠平等.FLUENT软件在除尘领域的应用[J].济南大学学报,2006,20 (2):161-167
    [11]Jolius Gimbun, Chuah T. G., Thomas S. Y.,et al. Prediction of the effects of cone tip diameter in the cyclone performance[J].Aerosol Science,2005,36:1056-1065
    [12]李磊,胡非,程玲等.Fluent在城市街区大气环境中的一个应用[J].中国科学院研究生院学报,2004,21(4):478-492
    [13]刘巽俊,陈群,李骏等.车用柴油机冷却系统的CFD分析[J].2003,21(2):126-133
    [14]Satoru Kaneko, Takashi Ikeda, Takuro Saito, et al. Experimental study on static and dynamic characteristics of liquid annular convergent-tapered seals with honeycomb roughness pattern[J]. ASME Journal of Tribology,2003, Vol.125:595-599
    [15]陈康,黄德波.CFD技术在三体船阻力性能研究中的应用[J].哈尔滨工程大学学报,2006,27(3):363-368
    [16]易太连,欧阳光耀,朱石坚.CFD在柴油机连杆轴承穴蚀分析和轴承改进中的运用[J].润滑与密封,2006,183(11):139-142
    [17]张怀新,潘雨村.CFD在潜艇外形方案比较中的应用[J].船舶力学,2006,10(4):1-7
    [18]郑眷雷,胡寿根,陈康民.轿车车身外部流场的数值模拟及分析[J].上海理工大学学报,2000,22(3):225-231
    [19]刘松涛,周心权,闰宁等.基于CFD技术的地铁站台火灾通风模式优化[J].辽宁工程技术大学学报,2008,27(1):17-23
    [20]Wassermann G. S.. On how to prioritize design requirements during the QFD planning process[J]. IEE Transactions.1993,25(3):59-65
    [21]William E.. The Customer-Driven Company Managerial Perspectives on QFD[M]. ASI Press, U.S.A.1988
    [22]张公绪,孙静.新编质量管理学[M].北京:高等教育出版社,2004,340-351
    [23]James L.. Bossert Quality Function Deploymen[J]. Jorunal of Markenting, 1992,27(2):32-36
    [24]洪生伟.质量工程学[M].北京:机械工业出版社,2007,180-186
    [25]Gao M., Zhou M.C., Candill R.J.. Integration of Disassembly Leveling and Bin Assignment for Remanufacturing Automation[J]. IEEE Trans. Robot, Automat, 2002,18(6):867-874
    [26]Andrew Kusiak. Concurrent Engineering-Automation, Tools and Techniques: Quality by Design[M]. New York:John Wiley & sns inc,1993:239-250
    [27]Velasc Tomas, Mark D., Rowe R.. Back Propagation Artificial Neural Networks for the Analysis of Quality Control [J]. Computer and Industrial Engineering, 1993,25:1-4
    [28]廖支平.基于QFD、TRIZ的产品创新设计系统研究[D].浙江:浙江工业大学硕士学位论文,2006
    [29]张彦军.基于QFD与TRIZ的机械产品概念设计研究[D].西安:西安电子科技大学硕士学位论文,2004
    [30]刘尚明.TRIZ理论及其在机械产品创新设计中的应用[J].现代制造技术与装 备,2007:183(7)43-44
    [31]颤润华.创新设计-TRIZ:发明问题解决理论[M].北京:机械工业出版社,2002
    [32]林晓宁.QFD和TRIZ集成应用系统的开发[M].沈阳:东北大学硕士论文.2004
    [33]根里奇·阿奇舒勒原著;列夫·舒利亚克英译;黄玉霖,范怡红汉译.创新40法:TRIZ创造性解决技术问题的诀窍:TRIZ keys to technical innovation[M].成都:西南交通大学出版社,2004,7
    [34]张付英.基于TRIZ冲突解决原理的液压缸活塞密封技术研究[J].润滑与封密,2006:180(8)31-32
    [35]黄秀芳.TRIZ的基本理论及实践[J].机械设计与制造,2003:128-130
    [36]谢庆生.机械工程模糊优化方法[M].北京:机械工业出版社,2002,76-86
    [37]Dubios D., Prade H.. Fuzzy sets and system[M]. New York:Academic Press, 1980
    [38]孙一坚.简明通风设计手册[M].北京:中国建筑工业出版,2006:140-153
    [39]电子工业部第十设计研究院.空气调节设计手册[M].(第二版).北京:中国建筑工业出版社,2005:241-293
    [40]滕琴,杨冬冬,田奇,勇蔡松,素钱勇.送风管道均匀送风的设计方法[J].流体机械,2003,(31):310-313
    [41]徐勇.通风与空气调节工程[M].北京:机械工业出版社,2005:286-288
    [42]马中飞.工业通风与防尘[M].北京:化学工业出版社,2007:61-62
    [43]KUBO N.. Two-Phase Glow Numerical Simulation of Molten Steel and Argon Gas in a Continuous Casting Mold[J]. ISIJ International,2002,42 (11):1251-1258
    [44]PFLEGER D., BECKER S.. Modeling and Simulation of the Dynamic Flow Behaviour in a Bubble Column[J]. Chemical Engineering Science,2001,56 (4): 1737-1747
    [45]HAWLADER M. N. A., LIU B. M.. Numerical study of the thermal-hydraulic performance of evaporative natural draft cooling towers[J]. Applied Thermal Engineering,2002,22(1):41-59
    [46]蔡芬.气流组织对室内空气品质影响的数值模拟[D].武汉:华中科技大学硕士论文,2005:13-18]
    [47]陶文铨.数值传热学[M].西安:西安交通大学出版社,1988
    [48]Milosavljevic Nenad, Heikkila Periti. A comprehensive approach to cooling tower design[J]. Applied thermal engineering,2001,21(9):899-915
    [49]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004:116-118
    [50]张少梅.城市污水处理厂臭气问题评价与控制的研究[D].上海:同济大学博士论文,2005,74-76
    [51]徐涛.影剧院置换通风的数值模拟[D].武汉:华中科技大学硕士学位论文,2005:20-21
    [52]徐文亮.干熄焦挡板除尘器除尘性能的数值模拟与优化[D].北京:北京科技大学硕士论文,2005,31-32
    [53]于婉丽,李丽艳.体育馆的空调设计明[J].辽宁建筑,1997(1):35-36
    [54]李磊,胡非,程雪玲等.Fluent在城市街区大气环境中的一个应用[J].中国科学院研究生院学报,2004(4):475-478
    [55]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004,24-26
    [56]叶楠.室内三种通风方式气流组织和空气品质研究[D].淮南:安徽理工大学硕士论文,2006,21-23
    [57]吴子牛.计算流体力学[M].北京:科学出版社,2001
    [58]FISENKO S. P., PETRUCHIK A. I., SOLODUKHIN A. D.. Evaporative cooling of water in a natural draft cooling tower[J]. International Journal of Heat and Mass Transfer,200,45(23):4683-4694
    [59]叶楠.室内三种通风方式气流组织和空气品质研究[D].淮南:安徽理工大学硕士论文,2006,21-23
    [60]徐涛.影剧院置换通风的数值模拟[D].武汉:华中科技大学,2005:27-31
    [61]邵喆.高炉出铁口及铁沟二次烟气污染控制研究[D].上海:同济大学,2001,19-23
    [62]徐静.体育馆空调气流组织CFD模拟研究[D].天津:天津大学硕士论文,2005:20-25
    [63]张发勇.双洞长大公路隧道火灾事故通风数值模拟研究[D].成都:西南交通大学硕士学位论文,2005,15-17
    [64]Fluent. Int. Fluent 6.2 user's guide manual[J]. Lebanon, NH., America,2005, Volume.3(23):37-39
    [65]Fidaros D.K., Baxevanou C.A., Dritselis C.D., et al.Numerical modeling of flow and transport process in a calciner of cement production[J]. Powder Technology, 2007,117(1):81-86
    [66]Li Silas K. L., Kennedy W. D.. CFD analysis of station fire conditions in Buenos Aires subway[J]. ASHRAE Transactions,1999,105(1):410-413
    [67]王瑞金,张凯,王刚.FLUENT技术基础与应用实例[M].北京:清华大学出版社,2007:1-3
    [68]韩占忠,王敬,兰小平FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004:19-21
    [69]蔡芬.气流组织对室内空气品质影响的数值模拟[D].武汉:华中科技大学硕士论文,2005:13-18
    [70]王璐雷.高速列车在强侧风作用下的气动性能数值模拟研究[D].北京:北京交通大学,2005:9-11
    [71]徐涛.影剧院置换通风的数值模拟[D].武汉:华中科技大学,2005:27-31
    [72]Gianluca Iaccarino. Prediction of the turbulent flow in a diffuser with commercial CFD codes[J]. Annual Research Briefs, Center for Turbulence Research, USA,2000,271-278
    [73]Gambit 2.2 User's Guide. Fluent Inc.
    [74]喻正强.大跨复杂体型建筑物风场的数值模拟[D].武汉:武汉理工大学,2006:28-30
    [75]Mare di L., Jones W.P.. LES of turbulent flow past a swept fence[J]. International Journal of Heat and Fluid Flow,2003,24(4):606-615
    [76]王瑞金,张凯,王刚Fluent技术基础与应用实例[M].北京:清华大学出版社,2007:36-38
    [77]喻正强.大跨复杂体型建筑物风场的数值模拟[D].武汉:武汉理工大学,2006:28-30
    [78]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004:148-149

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700