用户名: 密码: 验证码:
利用cDNA-AFLP技术分析橡胶树叶片组织受多主棒孢侵染后的基因差异表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橡胶树棒孢霉落叶病是东南亚和中非植胶区最具破坏性的橡胶树叶部病害之一,是危害世界天然橡胶产业健康发展的重要限制性生物因子,其病原菌为多主棒孢(Corynespora cassiicola)。该病自2006年首次在国内发现为害,至今已在除广东外的主要植胶区的橡胶苗圃和部分开割胶园发生为害,且蔓延迅速,业已成为我国天然橡胶产业健康发展的潜在威胁之一。了解并利用好橡胶树抗性机制来综合防治该病已成为目前橡胶生产亟待解决的现实问题。
     本研究利用cDNA-AFLP技术和常规生理生化分析手段,通过比较具有一定抗性的橡胶树品种热研7-33-97受多主棒孢病菌(HCCGD01)侵染前后的基因表达情况,筛选抗性相关的特异表达序列;并且比较不同寄主(橡胶、木薯、番木瓜和黄瓜)多主棒孢病菌侵染橡胶树叶片后防御酶活性的变化情况。研究结果发现,利用优化的cDNA-AFLP分析体系,96对选择性扩增引物的扩增,共获得372条差异谱带;其中的265条谱带表现为上调表达,107条谱带表现为下调表达。选取其中的81条差异谱带进行克隆与序列分析,经Blastx序列同源性比对发现,20条差异序列与未知功能蛋白相关,61条差异序列与已知功能蛋白具有一定的同源性;45条差异表达序列可能参与多主棒孢与橡胶树的相互作用,其功能涉及新陈代谢、蛋白质合成、定位与贮存、信号转导、物质运输和抗病等生理生化过程;其中的EY712和FI732差异表达序列功能与抗病性相关。进一步选取其中的6条差异谱带进行荧光定量PCR验证分析,结果与cDNA-AFLP技术分析获得的结果保持一致。这不仅验证了本研究利用cDNA-AFLP技术来分析橡胶树叶片组织受多主棒孢侵染后的基因差异表达的可行性,也可推测出所分析的差异表达序列可能是属于诱导表达型的基因。
     不同寄主多主棒孢病菌侵染橡胶树叶片后防御酶活性变化测定结果发现,来自不同寄主的多主棒孢侵染橡胶树叶片组织所引起的四种防御酶活性变化有所不同。其中,分离自橡胶树的两株多主棒孢菌株HCCGD01和HCCHN42侵染橡胶树叶片组织后引起的防御酶活性变化最大,均表现出明显增强;来自木薯的MaCCGD02菌株侵染后防御酶活性变化次之;而来自番木瓜的CpCCYN01菌株和黄瓜的PaCCSD04菌株侵染后,除苯丙氨酸解氨酶(PAL)有所变化外,其余的(?)-1,3-葡聚糖酶、过氧化物酶(POD)和多酚氧化酶(PPO)活性变化很小。
     本研究结果为进一步克隆和分析橡胶树叶片组织受多主棒孢侵染后的差异基因奠定了一定的研究基础,为阐明多主棒孢病菌与橡胶树互作机理,以及开展橡胶树抗棒孢霉落叶病分子辅助育种提供理论依据。
Corynespora Leaf Fall, caused by Corynespora cassiicola, is one of the most destructive diseases of Hevea brasiliensis in South East Asian and Central African countries. It has been a biological constraint for the healthy development of the world's natural rubber industry. The first report of Corynespora cassiicola on Hevea rubber in China was in 2006. Nowadays, the disease has occurred in some plantations on tapping and rubber nurseries of main rubber cultivation areas except Guangdong Province. The endangered areas threated by the disease have been expanded rapidly. The Corynespora Leaf Fall disease has emerged as a potential threat to healthy development of natural rubber industry in China. In order to prevent the disease, it has become an urgent problem to understand and make a good use of host resistance mechanisms in natural rubber industry.
     To selecte defense-related genes we analyzed the differentially expressed genes from the leaves of CATAS 7-33-97 after inoculated with Corynespora cassiicola (HCCGD01) by cDNA-AFLP technique. At the same time, we also measured the changes of defensive ezymes activities in the leaves of CATAS 7-33-97 after inoculated by Corynespora cassiicola, which were isolated from different hosts (Hevea brasiliensis, Cassava, Papaya and Cucumber). The result showed that the 372 transcript derived fragments (TDFs) displayed altered-expression patterns after inoculation by 96 primer pairs, with 265 of which are showing up-regulated and 107 down-regulated. The 81 TDFs were cloned and sequenced, of which 61 had known functions and 21 were related with unknown protein through Blastx searching the GenBank database. The 45 TDFs may have an effect on the interactions of Hevea brasiliensis with Corynespora cassiicola, which were homologous to genes involved in some means of physiological and biochemical such as metabolism, protein synthesis, signal transduction, disease defense, protein destination and storage, transporters et al. EY712 and FI732 were related to disease defense. The 6 interesting TDFs were further selected for validation of cDNA-AFLP expression patterns by means of qRT-PCR analysis. It not noly confirmed the acuracy of the cDNA-AFLP technique, but also sepeculated that the differential expressioned sequences may be induced.
     The influence of Corynespora cassiicola isolated from 4 different hosts on defensive enzymes activities (β-1,3-glucanase, POD, PAL, PPO) in the leaves of CATAS 7-33-97 was studied in the paper. The results showed that the changes of 4 kinds of defensive ezymes activities in the leaves of CATAS 7-33-97 were different with inoculated Corynespora cassiicola isolated from different hosts. The activities of these defensive enzymes quickly enhanced after inoculation by the pathogens (HCCGD01 and HCCHN42) isloated from Heavea brasiliensis, and slowly increased in leaves inoculated by MaCCGD02 isolated from cassava. However, the activities ofβ-1,3-glucanase, POD, PPO almost unchanged when the leaves were infected by PaCCSD04 from cucumber and CpCCYN01 from papaya.
     The result of this study should be helpful for further cloning and analysis of the different expressed genes in the leaves of CATAS 7-33-97, which inoculated by Corynespora cassiicola. Moreover, the molecular mechanism of the interactions about Heavea brasiliensis and Corynespora cassiicola was elucidated. And it has established the theoretical basis for advanced Heavea brasiliensis molecular breeding resistant to Corynespora cassiicola.
引文
1. Alia Dellagi, Paul R.J.Birch, Jacqueline Heilbronn, Gary D. Lyon and Ian K. Toth. cDNA-AFLP analysis of differential gene expression in the prokaryotic plant pathogen Erwinia carotovora. Microbiology[J],2000,146:165~171
    2. Ajin Mandaokar, Bryan Thines, Byongchu Shin, et al.. Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling[J]. The Plant Journal,2006,46(6): 984~1008
    3. Bachem C W B, Hoeven R S van der, Bruijn S M de, et al. Visualization of differential gene expression using a novel method of RNA finger printing based on AFLP:analysis of gene expression during potato tuber development[J]. Plant Journal,1996,9:745~753
    4. Biochemical Characterization of Hevea Brasiliensis Colletotrichum Gloeosporioides Interaction (CABabstract)
    5. Breton, F., d'Auzac, J., Garcia, D., Sanier,C.and Eschbach, J.M. Recent researches on Corynespora cassiicola/Hevea brasiliensis interaction. Proceedings of Workshop on Corynespora Leaf Fall Disease of Hevea Rubber, Medan, Indonesia,1996, pp:49~78
    6. Breton,F. Reactions de defence dans L'intereaction Hevea brasiliensis/Corynespor a cassiicola et implication D'une toxine dans le determinisme de la reponse clonale. Thesis, University Montpellier 2, France,1997, pp.196
    7. Brugmans B, Carmen AF D, Bachem C W B, et al. A novel method for the construction of genome wide transcriptome maps[J]. The Plant Journal,2002,31(2):211~222
    8. Chisholm S T, Coaker G, Day B, et al. Host microbe interactions:Shaping the evolution of the plant immune response[J]. Cell,2006,124 (4):803~814
    9. Christian W.B. Bachem, Ronald J.F.J. Oomen and Richard G.F. Visser. Transcript imaging with cDNA-AFLP:A Step by Step Protocol. Plant Molecular Biology Reporter,1998,16:157~173
    10. Ermolaeva O, Rastogi M, Pruitt K D et al. Data management and analysis for gene expression arrays[J]. Nature Genetics,1998,20:19~23
    11. Gobina, M.S., Achuo, E.A.and Chuba.P.N. Field Evaluation of Hevea Clones for Leaf Disease Resistance[J]. IRRDB,2002:55-59
    12. Fukuda T, Kido A, Kajino K, Tsutsumi M, Miyauchi Y, Tsujiuchi T, Konishi Y, hino O. Cloning of differentially expressed genes in highly and low metastatic rat osteosarcomas by a modified cDNA-AFLP method[J]. Biochemical and Biophysical Research Communications,1999,261 (1):35~40
    13. Hammerschmidt R, Kuc J. Lignification As a Mechanism for Induced Systemic Resistance in Cucumbe [J]. Physi Plant Path,1982, (20):61~71
    14. H, Tan and A.M. Tan Genetic Studies of Leaf Disease Resistance in Hevea[J]. Nat. Rubb,11(2): 148~114
    15. Hubank M, Schatz DG. Identifying differences in mRNA expression by representational difference analysis of cDNA [J]. Nucleic Acids Res,1994,22(25):5640~5648
    16. Joseph, A. Investigations on certain biochemical changes and phyllosphere microflora of Hevea brasillensis as influenced by nitrogenous fertilizer application and Corynesspora cassiicola inoculation. Ph.D. Thesis, Mahatma Gandhi University, Kottayam,India,1998, pp.188
    17. Kimiyo Sage-Ono, Michiyuki Ono, Hiroshi Harada, and Hiroshi Kamada. Accumulation of a Clock~Regulated Transcript during Flower-Inductive Darkness in Pharbitis nill[J]. Plant Physiol. 1998,116:1479~1485
    18. LiHuiyu, JiangJing, WangShan, Liu Feifei. Expression analysis of ThGLP, a new germin-like protein gene, in Tamarix hispida[J]. Journal of Forestry Research,2010,21(3):323~330
    19. Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction[J], Science,1992,257 (5027):967~971
    20. Liang X, Hajivandi M, Veach D, Wisniewski D, Clarkson B, Resh MD, Pope RM. Quantification of change in phosphorylation of BCR-ABL kinase and its substrates in response to Imatinib treatment in human chronic myelogenous leukemia cells[J]. Proteomics,2006,6(16):54~64
    21. LingYang, BingsongZheng, ChuanzaoMao. cDNA-AFLP analysis of inducible gene expression in rice seminal root tips under a water deficit[J]. Gene,2003,314:141~148
    22. Liu G S, Greenshields D L, Sammynaiken R, N. Hirji R, Selvaraj G, Wei Y D. Targeted alterations in iron homeostasis underlie plant defense responses[J]. Journal of Cell Science,2006,596~605
    23. Liyanage, A de S., Jayasinghe, C.K., Liyanage, N.I.S. Losses due to Corynespora Leaf Fall disease and its eradication. Proceedings of Rubber Research Institute of Malaysia-Rubber Growers Conference, Malacca, Malaysia,1989, pp:401~410
    24. Martin G B, Bogdanove A J, Sessa G. Understanding the functions of plant disease resistance proteins [J]. Annual Review Plant Biology,2003,54:23~61
    25. Marianna Polesani, Filomena Desario, Alberto Ferrarini, Anita Zamboni, Mario Pezzotti, Andreas Kortekamp and Annalisa Polverari. cDNA-AFLP analysis of plant and pathogen genes expressed in grapevine infected with Plasmopara viticola[J]. BMC Genomics,2008,9:142
    26. Patrick S, Andreas C, Robert D. Transient expression of members of germin-like gene family in epidermal cells of wheat confers disease resistance[J].The Plant Journal,1999,20(5):541~552
    27. Philip, S., Josephe, A., Kumar, A., Jacob, C.K.and Kothandaraman, R. Detection (3-1,3-glucanase isoforms against Corynespora Leaf Fall Disease of Rubber[J]. Indian Journal of Nature Rubber Research,2001,14(1):1~6
    28. Pu Jinji, Zhangxin, Qi Yangxian, et al. First record of Corynespora Leaf Fall disease of Hevea rubber tree in China. Australasian Plant Disease Notes,2007,2:35~36
    29. Schena M, Shalon D, Dav is R W, et al. Quantitative monitoring of gene expression pattern swith a complementary DNA microarray[J]. Science,1995,270:467~470
    30. Schulze A. From membranes to chips-a pocket guide to DNA microarray technology:DNA microarrays:gene expression applications[J]. J. Cell Sci,2002,115:1781
    31. Stollberg J, Ursehitz J., Urban Z and Boyd C.D. A quantitative evaluation of SAGE[J]. Genomeres, 2000,10:1241~1248
    32. Vander Biezen EA, Jones JD. Trends in Biochemical Sciences,1998,23(12):454~456
    33. Vanloon, L.C. and Van Strien, F.A. The families of pathogenesis related proteins their activities and comparative analysis of PR-1 type proteins[J]. Physiological Molecular Plant Pathology,55:85~97
    34. Van Stein OD, et al.. Nucleic Acids Research,1997,25(13):2598~602
    35. Veleuleseu V.E. Tantalizing transeriptomes:SAGE and its use in global gene Expression analysis[J]. Science,1999,286:1491~1492
    36. Vidhyasekaran, P.A virulence gene for crop disease management. Genetic engineering, molecular biology and tissre culture for crop pest and disease management.(ed P.V Vidhyasekaran). Daya Publishing House Delhi, pp.65~74
    37. Wend E. Durrant, Owen Rowland, Pedro Piedras, Kim E. Hammond-Kosack and Jonathan D. G. Jones. cDNA-AFLP Reveals a Striking Overlap in Race-Specific Resistance and Wound Response Gene Expression Profiles[J]. The Plant Cell,2000,12:963~977
    38. Xiaojie Wang, Chunlei Tang, Gang Zhang, Yingchun Li, Chenfang Wang, Bo Liu, Zhipeng Qu, Jie Zhao, Qingmei Han, Lili Huang, Xianming Chen and Zhensheng Kang. cDNA-AFLP analysis reveals differential gene expression in compatible interaction of wheat challenged with Puccinia striiformis f. sp. tritici[J]. BMC Genomics,2009,10:289
    39. Yang Ling, Zheng BingSong, Mao ChuanZao, Yi Ke, Zhang WeiPing, Wu YunRong, WuPing, Tao QingNan. Analysis of Gene Expression During Enhanced Seminal Root Elongation of Rice Under Upland Condition by cDNA-AFLP[J]. Journal of Plant Physiology and Molecular Biology,2003, 29(1):65~70
    40.陈华.橡胶树白粉病的危害众防治[J].植保技术与推广,1995,(1):27~28
    41.陈守才,邵寒霜,胡东琼,郑学勤.橡胶树抗白粉病基因连锁RAPD标记的克隆与序列分析[J].热带作物学报,1994,15(2):21-25
    42.陈军营,孙佩,王德勤,陈新建.一种改良的克隆小麦GLP3基因启动子的TAIL-PCR技术[J].植物生理学通讯,2007,43(4):754~758
    43.邓军,曹建华,林位夫,林秀琴.橡胶树死皮研究进展[J].热带农业科学,2008,24(6):456~461
    44.高士刚,闫红飞,陈会娜,杨文香,刘大群.6个小麦抗叶锈病近等基因系rnRNA表达差异研究[J].河北农业大学学报,2008,31(6):7~12
    45.郭刚,黄华孙,张伟算等.几种橡胶新品系对白粉病的抗性初步评价[J].华南热带农业大学学报,2000,6(4):5
    46.郭军,屈冬玉,王晓武,金黎平,谢开云.马铃薯晚疫病菌小种特异无毒基因候选表达序列的cDNA-AFLP鉴定[J].园艺学报,2005,32(1):44~48
    47.古瑜,贾占温,孙德岭,宋文芹.植物抗病机制的研究进展[J].天津农业科学,2008,14(4):45~48
    48.贺三刚 利用cDNA-AFLP技术筛选与羊毛细度相关的分子标记.新疆大学硕士论文,2008:33
    49.黄贵修,时涛,刘先宝等.巴西橡胶树棒孢霉叶病[M].北京:中国农业科学技术出版社,2008:15
    50.黄华孙.橡胶育种五十年[M].北京:中国农业出版社,2005:145~146
    51.李金玉,李冠,赵惠新,王贤雷,杜钰.植物抗病分子机制研究进展[J].种子,2006,25(2):45~50
    52.李茂,蒋昌顺.主要热带作物对炭疽病抗病机制研究进展[J].热带农业科技,2008,31(1):45~52
    53.刘会宁,曹国先.园艺植物的抗病机制[J].特产研究,2004,3:61~66
    54.刘静.橡胶树白粉病研究进展[J].热带农业科技,2010,33(3):1~5
    55.刘静,赵颖.抑制性消减杂交(SSH)技术及其应用[J].河北化工,2008,31(7):31~32
    56.刘喜梅,许艳丽,张韧,吴茂森,何晨阳.大豆根组织受尖孢镰刀菌侵染后基因表达反应的cDNA-AFLP分析[J].植物病理学报,2008,38(2):16~23
    57.刘志勇,杜永臣,王孝宣,国艳梅,高建昌.高温胁迫下番茄叶片差异表达基因的cDNA-AFLP分析[J].园艺学报,2008,35(7):1011~1016
    58.卢钢,曹家树cDNA-AFLP技术在植物表达分析上的应用[J].植物学通报,2002,(1):103~108
    59.卢昕,彭建华,张科立,黄贵修.巴西橡胶树主要种质对棒孢霉落叶病抗性评价[J].热带作物学报,2007,28(4):74~77
    60.罗婵娟.BTH诱导橡胶树对白粉病的抗性机制.海南大学硕士论文,2008:8~11
    61.罗文波,于淑娟,高大维.抑制性扣除杂交技术(SSH)及其研究进展[J].生物技术,2000,10(3):
    62.林运萍,蒋菊生,白先权,易杰祥.橡胶树棒孢霉落叶病的发生及防治[J].中国热带农业,2008,1:54~55
    63.潘美辉,金虎林,袁建刚,强伯勤.基因差异表达的研究方法[J].基础医学与临床,1997,17(5):1~10
    64.潘羡心,彭建华,刘先宝,等.不同来源橡胶树多主棒孢病菌致病性及基础生物学特性的比较[J].热带作物学报,2008,29(4):494~500
    65.彭世清,傅湘辉,吴坤鑫,陈守才.巴西橡胶树死皮病相关基因HbMyb1的结构分析及表达[J].植物生理与分子生物学学报,2003,29(3):147~152
    66.强磊,林凡云,伦玮.抑制性消减杂交技术(SSH)及其在植物抗病性机制研究中的应用[J].陕西农业科学,2006,2:29~30
    67.单家林,肖倩莼,余卓桐,黄武仁,郑学勤,杨公正.低聚糖素诱导橡胶树抗白粉病作用机制初探[J].亚热带植物科学,2005,34(1):31~32
    68.沈国顺,刘丽霞.抑制性差减杂交技术(SSH)及其研究应用进展[J].中国兽医学报,2004,24(5):511~514
    69.孙常青,施俊凤,郭志利,刘烨锋.抑制差减杂交法(SSH)及其在植物中的应用[J].山西农业科学,2007,35(4):38~41.
    70.孙涌栋,张兴国,杜小兵,苏承刚,毕喜红.黄瓜扩张蛋白基因CsEXP10的克隆与表达[J].植物生理与分子生物学学报,2006,32(3):375~380
    71.孙卓,郑服丛.BTH诱导橡胶抗炭疽病效果初探[J].广东农业科学,2008,7:76~77
    72.史学群,史学群,宋海超,郑服丛.过氧化物酶、过氧化物酶同工酶、酯酶同工酶与橡胶树抗炭疽病的关系[J].热带作物学报,2002,2:39~44
    73.宋蓓.枣cDNA-AFLP技术体系优化及其在抗枣疯病相关基因片段筛选中的应用.河北农业大学硕士论文,2007:15
    74.覃宝祥,胡新文,邓晓东,郭建春.橡胶树死皮病的形成及其机制[J].植物生理学通讯,2005,41(6):827~830
    75.汤华,帅爱华,向福英.植物基因差异表达的研究方法及进展[J].海南大学学报自然科学版,2006,24(3):309~316
    76.王文娟,张飞云.植物抗病分子机制研究进展[J].生物技术通报,2007,1:19~23
    77.王俊美,孙燕飞,刘红彦,康振生,徐红明.白粉菌诱导的小麦类萌发素蛋白的克隆、定位及表达分析[J].中国农业科学,2009,42(9):3104~3111
    78.王宏梅,蒋选利,白春微,左希,丁海霞.小麦两种主要防御酶的变化与抗白粉病的关系[J].贵州农业科学,2009,37(4):78~80
    79.吴样孙,陈一壮,蒙信满,郭建夫,袁红旭.水稻纹枯病抗性反应中主要防御酶的活性变化[J].中国农学通报,2008,24(5):327~330
    80.吴茂森,田峰,齐放军,何晨阳.水稻与白叶枯病菌互作的基因表达谱分析与差异性表达基因的识别[J].中国农业科学,2007,40(2):277~282
    81.肖倩莼,单家林,余卓桐,陈永强,伍树明,符瑞益.橡胶树对白粉病抗病新种质筛选研究[J].作物品种资源,1997,1:33~40
    82.向殉.白菜同核异质雄性不育系与其保持的生物学差异比较及相关差异表达基因克隆.浙江大 学博士论文,2008:55
    83.徐立新,袁潜华,罗越华.DNA微阵列方法与应用[J].贵州科学,2004,22(4):61~65
    84.阳成波,印遇龙,龚建华,郁海.DNA芯片技术研究进展及其在分子营养上的应用[J].生物技术通报,2006(增刊):178~183
    85.杨菲菲.基因差异表达的研究方法[J].现代农业科技,2007,17:232~235
    86.喻时举,林位夫.橡胶树死皮发生机理研究现状及展望[J].安徽农业科学,2008,36(17):7299~7300,7487
    87.余卓桐,王绍春.橡胶主要无性系对白粉病抗病性鉴定[J].热带作物学报,1992,13(1):47~51
    88.余永廷,谢媛媛,黄丽丽等.不同碳、氮源组合对小麦全蚀病菌产生胞(?)-1,3-葡聚糖酶的影响[J].西北农林科技大学学报,2007,35(2):109~114
    89.赵继荣,雒淑珍,张增艳,刘红霞cDNA-AFLP技术及其在植物基因表达分析中的应用[J].华北农学报,2009,24(增刊):18~22.
    90.张丽丽,师校欣,杜国强,王惠英.植物抗病机制及果树抗病育种研究[J].华北农学报,2006,21(增刊):175~179.
    91.张尤凯,周桂元,梁炫强.作物抗病性生化机制的遗传研究进展[J].中国农学通报,1997,13(5):43~44
    92.张云霞,陈守才,邓治.橡胶树死皮病研究进展[J].热带农业科学,2006,26(5):56~61
    93.朱玉梅,张荣.不同抗性小麦品种感染蓝矮病植原体后体内防御酶活性的研究[J].西北农林科技大学学报,2008,36(6):156~169
    94.张云华,张立军,邱德文,杨秀芬,曾洪梅,袁京京.灰葡萄抱菌激活蛋白对番茄灰霉病的诱导抗性及防御相关酶活性的影响[J].河北农业大学学报,2008,31(3):69~72
    95.曾永三,王振中.苯丙氨酸解氨酶和过氧化氢酶活性与豇豆抗锈病性的关系[J].仲恺农业技术学院学报,2003,16(1):1~5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700