用户名: 密码: 验证码:
油茶内生拮抗菌Y13定殖动态及其防治炭疽病作用机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油茶炭疽病(Camellia oleifera anthracnose)是我国油茶的主要病害之一,严重引起落花落果,大大降低了油茶产量。目前对于油茶炭疽病的防治主要是化学防治,但化学农药残留严重污染了环境和生态安全,并且有害生物的抗药性也日益严重。生物防治具有安全、高效及无污染等特点,因此已经成为防治植物病害的重要途径,受到人们的广泛关注。本实验室从油茶健康叶上分离得到的一株对油茶炭疽病具有良好防治效果的内生细菌Y13,经鉴定该菌株为枯草芽孢杆菌(Bacillus subtilis)。我们研究发现,Y13对油茶炭疽病有较好的防治效果,但田间试验效果不稳定。为了有效利用此菌株,本论文以内生细菌Y13为对象,研究Y13在油茶体内的定殖动态及对炭疽病菌的作用机理,主要研究结果如下:
     (1)油茶内生拮抗细菌Y13在体内的定殖动态。采用抗生素标记法对Y13进行筛选,得到了抗利福平菌株Y13R;通过盆栽试验,采用喷叶,灌根和蘸根三种处理方式对油茶苗进行Y13接种处理,在不同时间内测定了在油茶根、茎、叶内Y13的定殖数量,不同处理方法均可使Y13在油茶体内各部位定殖,喷叶接种法只能在油茶叶及茎内检测到Y13菌株,根内检测不到,且Y13种群数量在油茶茎叶中呈现先上升后下降的趋势,第10d左右叶中定殖量达到高峰,为5.88×103cfu/g,第25d时,茎中已检测不到Y13菌株,在叶中的定殖量仍可达1.8×103cfu/g;蘸根处理中,Y13在根、茎中数量呈逐渐下降趋势,在叶片中数量逐渐上升,20d左右有所下降,到25d左右定殖量稳定在1.28×103cfu/g左右;灌根处理与蘸根处理相似。从Y13在油茶体内的定殖部位来看,Y13在叶中的定殖量最多,根和茎中较少,从不同的处理方式比较,喷叶接种法Y13定殖量较大,其次是蘸根和灌根。
     (2)Y13抗菌活性物质的分离及其特性研究。通过平板对峙培养法,测定了Y13发酵滤液对油茶炭疽病的抑菌效果可达61.2%,说明Y13分泌有效抑菌活性物质至胞外;对发酵滤液利用有机溶剂提取活性物质结果表明:该活性物质不溶于有机溶剂,可被甲醇、乙醇沉淀,说明该物质极性较大;采用酸碱沉淀法提取活性物质结果表明,活性物质可在酸性条件下沉淀出来,且pH2-3时沉淀活性最强;采用不同浓度硫酸铵盐盐析法提取活性物质,结果表明,活性物质可被硫酸铵盐析沉淀,且在70%的硫酸铵饱和度下粗提物的拮抗活性最大;硫酸铵盐析物经3500Da透析袋透析后测定其活性也可达39.8%,推测该类活性物质为抗菌蛋白类物质。对活性粗提物进行理化性质研究,结果表明,该活性物质对热较稳定,对紫外线照射不敏感,在中性pH条件下较稳定,在强碱条件下不稳定,在酸性条件下易产生沉淀,对胰蛋白酶不敏感,对蛋白酶K部分敏感。
     (3)Y13对油茶炭疽病诱导抗性机制。通过Y13诱导处理及炭疽病菌接种油茶苗,测定了不同接种时间油茶体内的PAL、POD、SOD、PPO等酶活性及MDA含量和活性氧产生速率变化,结果表明,Y13诱导处理后, PAL、POD、PPO和SOD活性明显增强。同时Y13和炭疽病处理组诱导处理第3dPAL活性达到最大,为对照的2.9倍,只接种Y13及炭疽病处理组PAL活性于第5d达到高峰,分别是对照组的2.1和2.8倍;POD和SOD诱导后第5d活性最高,分别比对照增加了15.5-29.5及8.5-20.5个酶活性单位;PPO诱导后3d达活性高峰,7d后迅速下降。活性氧(O2-)产生速率诱导后1d最大,比对照增加80.6%,10d左右接近对照,Y13单独诱导和同时Y13和炭疽病菌诱导均使MDA含量在第1d时迅速下降,第3d左右比对照下降了36%。Y13通过诱导油茶体内相关抗病基因的表达,从而增强了油茶内防御酶SOD、POD、PPO等活性,减少油茶内活性氧物质,降低了膜脂过氧化程度,从而增强了油茶综合抗病能力。
Camellia oleifera anthracnose is one of the major diseases in China's Camellia producing areas. It occurs broadly and causes serious drop in buds and leaves, sometimes resulting in the death of the tree. The Camellia anthrax prevention and treatment by planting resistant varieties and chemical control to control the growing problem of pest resistance, and chemical pesticide residues pose a serious hazard. Characteristics of biological control for its safety, efficiency and no pollution has become an important way of plant diseases, widespread concem.Endophytic bacteria Y13is isolated from the healthy leaves of Camellia which has good control effect to Camellia anthrax, the strain was identified as Bacillus subtilis.
     The study found that endophytic bacteria Y13has better control effect to Camellia anthracnose. But the control effect is not stable in field experiment.so In order to effectively take advantage of this strain, take endophytic bacteria Y13as research object,the paper studied Y13'colonization in Camellia oleifera and mechanism to Camellia anthrax. The main results are as follows:
     (1) Colonization of Endophytic bacteria Y13in the Camellia. Endophytic bacteria Y13was induced by rifampicin and obtained Y13R by antibiotics labeled method.By pot experiment,cameilia seedlings were inoculated with Y13by sprayings pouring root and dipping root.and determinded Y13's quantity on different time.Different inoculated methods made Y13'colonization in Camellia.the Y13strain can only be detected in the oil tea leaves and stems,not detected in roots by spray leaf inoculation.and Y13's quantity incresed at first time and decreased at end.on the10d the quantity of Y13in the leaves reached its peak,5.88×103cfu/g. On the25d Y13can not be detected in the stems,but in the leaves Y13'quantity can reach1-8×103cfu/g.By dip root treatment,Y13'quantity decreased gradually in roots and stems but increased in leaves.and decreased on the20d.the quantity of Y13in leaves reached1-28X103cfu/g or so on the25d. Irrigation is similar to dipping root. According to the colonization site of Y13in the Camellia oleifera,the quantity of Y13in the leaves is larger than roots and stems. According to the treatment,spray is better than pouring root and dipping root.
     (2) Characteristics and separation of antibacterial substance inY13.By plate confrontation culture, determinded the inhibitory effect of Y13sterile filtrate to the Camellia anthrax up to61.2%, which showed that Y13secreted active material to extracellular, indicating effective inhibition of Y13secretion of active substances to the extracellular, the use of organic solvents to extract the active substances results show that:the active substances is not soluble in organic solvents, can be precipitated by methanol and ethanol, indicating that the polarity of the substance is large, using PH precipitation method extract active meterial showed that:Active substances can be precipitated under acidic conditions PH2-3precipitated the strongest activity, using different concentrations of ammonium sulfate precipitation method to extract the active substance, the results show that the active substances can be precipitated by ammonium sulfate. and the activity of substance is highest in70%ammonium sulfate, The activity of salt analyte reached39.8%after dialysis.so we can conjecture the active substance is protein.on activity in crude extracts of the physicochemical properties, the results showed that the antagonistic activity of substance stable to heat, was not sensitive to the ultraviolet radiation stable in neutral pH conditions, unstable in acid and alkali conditions, easy to produce precipitation under acidic conditionspartially sensitive to proteinase K is not sensitive to trypsin.
     (3) Study on the induced resistant mechanism of Y13to Camellia anthrax. By Y13'induce and Camellia anthrax treatment, changes of Camellia seedlings'resistance enzymes PAL、POD、SOD、PPO and content of MDAand AOX production rate were determinded on different inoculation time.The results show that, After induction treatment of Y13, the activities of PAL, POD, PPO and SOD in the plant leaves inereased obviously. the PAL activity of vaccination Y13and anthrax reached their maximum3days after the treatment, and showed2.9fold higher more than the water control treatment. When only anthrax vaccine or Y13, the PAL activity reached a peak in5days,1.7and2.3fold higher more than the water control treatment respectively; the activity of POD and SOD after induction come to the highest in5days, increased of15.5-29.5and8.5-20.5units of one activity respectively, compared with the control treatment; PPO activity reached its peak3days after the induction, but decreased rapidly7days latter.02-production rate reached its peak1day after the induction,increased of80.6%, compared with the control treatment,and then tended to normal level10days latter. MDA content Vaccination Y13Individually and simultaneously inoculation Y13and anthrax decreased rapidly after induction treatment lday. decreased of36%, compared with the control treatment3days latter.Y13induced resistance gene expression in Camellia, thus increased the Camellia defense enzymes SOD, POD, PPO activity, reduced the Camellia reactive oxygen species, reduced membrane lipid peroxide level, thereby enhanced the Camellia comprehensive resistance ability.
引文
[1]邵必发,谈成忠,徐光余.油茶炭疽病防治技术的研究[J].农技服务,2008,25(9):82-103.
    [2]Perotti R.On the limits of biological enquiry in soil science[J]. Pro Intern. Soc.Soil.1926,2:146-161.
    [3]Tervet I W. and Hollis J P.Bacteria in the storage organs of healthy plants[J]. Phytopathol.1948,38:960-967.
    [4]Hollis, J. P.Bacteria in the healthy patoto tissue[J]. Phytopathol.1951,41:197-209.
    [5]Samish Z, Etinger-Tulczynska R and Bick M. The microflaora within the tissue of fruits and vegetables[J].Food.Sci.1963,28:259-266.
    [6]王琦.棉花维管组织内生细菌分析之一不同抗性品种含菌动态与土质[J].中国微生态学杂志,1997,9(1):48-50
    [7]Mcinroy,J.A.andKloepper.J.W,1991 Analysis of population desities and identification of endophytic bacteria Maize and cotton in the field.B ulletin SROP 14:8,328-331.
    [8]Sturz et al,sturz A V and Matheson B G.Populations of endophytic bacteria which influence host resistance to Erwinia induce bacterial soft rot in potato tubers. Plant and Soil.1996,184:265-271.
    [9]Sturz AV, Christie B R and Matheson B G. Associations of bacterial endophyte population fromed clover and potato crops with potential for beneficial allelopathy [J]. Can. J. Microbiol.,1998,44:162-167.
    [10]邹文欣,谭仁祥.内生菌生物化学的多样性和它们的潜在利用[M].李永森,植物科学的进展.第二卷,中国高等出版社,1999:183-190.
    [11]Dong Z, Canny M J, Mccully M E, et al. Anitrogen-fixing endophyte of sugarcan stems [J]. Plant Physiol.,1994,105:1139-1147.
    [12]海伟力,王耀东.水稻根际联合固氦细菌的研究[J].微生物学报,1993,12(1):79-85.
    [13]Barac T. Engineered endophytic bacteia improve phytormediationof water soluble, volatile, organicpollutants [J].Nat. Biotechnol.,2004,22:83-588.
    [14]Shields MS. TOM a new aromatic degradtive plasmid from Burkolderia (Pseudomonas) cepaciaG4 [J]. Appl. Environ. Microbiol.,1995,61:1352-1356.
    [15]Di Fiore S.Endophytic bacteria their possible role in the host plant. Genetics. Physiology. Ecology[M].Heidelberg:Springer,1995, p169.
    [16]Van Buren A M, Andren C, Ishimaru CA. Biological control of the bacterial ring rot pathogen by endophytic bacteria isolatied from potato [J].Phytopathology, 1993,83:1406.
    [17]易图永,高必达,何昆.水稻纹枯病菌生防细菌的筛选[J].湖南农业大学学报,2000(2):116-1180.
    [18]Mukhopadhyay NK, Garrison NK, Hinton DM, et al. Identification and characterization of bacterial endophytes of rice [J]. Mycopathology,1996,134: 151-159.
    [19]曲宝成,孙军德,冯敏.番茄灰霉病内生拮抗细菌的分离筛选初报[J].微生物学杂,2004,24(4):62-64.
    [20]Benhamou N, Kloepper J W, Tuzum S. Induction of Vesistance against Fusarium Wilt of tomato by combination of C:hitosan with an endophytic bacterial strain: Ultrastructare and cytochemistry of the host response[J]. Planta,1998,204(2): 153-168.
    [21]刘润进,裘维蕃.内生菌VAM诱导植物抗病性研究的新进展[J].植物病理学报,1994,24(1):1-4.
    [22]杨海莲,孙晓璐,宋未.植物根际促生细菌和内生细菌的诱导抗病性的研究进展[J].植物病理学报,2000,30:106-110.
    [23]王万能.烟草内生细菌118防治黑胫病的机理研究[J].西南农业大学学报,2003,25(1):28-31.
    [24]夏正俊,顾本康,吴蔼民.植物内生及根际土壤菌诱导棉花对大丽轮枝菌抗性的研究[J].中国生物防治,1996,12(1):7-10.
    [25]陈延熙.增产菌的应用与研究[J].生物防治通报,1985,1(2):22-23.
    [26]孔庆科,丁爱云.内生细菌作为生防因子的研究进展[J].山东农业大学学(自然科学版)2001,32(2):56-60.
    [27]Maurhofer M, Keel C. Influence of plant species on disease suppression by P.fluorescens strain CHAO with enhanced antibiotic production [J]. Plant pathology,1995,44:40-50.
    [28]何红,邱思鑫,胡方平.植物内生细菌生物学作用研究进展[J].微生物学杂志,2004,4(3):40-45.
    [29]WilhelmE, ArthoferW, SehafleituerR, etal.Bacillussubrilis, anendoPhyteof ehestnutCeasat j lasantagonistagainstchestnutblight honectri oparasitica)[J].PlantCellTiss.Org.Cult.,1998,52:105 - 108.
    [30]冯永君,宋未.植物内生菌[J].自然杂志,2001,23(5):249-252.
    [31]文才艺,吴元华,田秀玲.植物内生菌研究进展及其存在的问题[J].生态学杂志,2004,23(2):86-91.
    [32]邹文欣,谭仁祥.植物内生菌研究新进展[J].植物学报,2001,43(9):881-892.
    [33]罗宽.王庄.利用拮抗的Pseudamonas spp和无致病力的P. solanacearum防治青枯病的研究[J].植物病理学报,1983,13(1):51-56.
    [34]Kluepfel D A. The behavior and tracking of bacteria in the rhizosphere [J]. Annu. Rev. Phytopathol.,1993,31:441-472.
    [35]Hurek T, Reinhold-Hurek B, Van Montagu M, et al. Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses [J]. J. Bacteriol., 1994,176:1913-1923
    [36]Khammas K M and Kaiser P. Characterization of a pectinolytic activity in Azospirillum irakense[J]. Plant Soil,1991,137:75-79.
    [37]Duijff B J, Gianinazzi-Pearson V and Lemanceau P. Involvement of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fluorescens strain WCS417r [J]. New Phytologist, 1997,135:325-334.
    [38]安千理,李久蒂.植物内生固氮菌[J].植物生理学通讯.1999,35(4):265-271.
    [39]葛银林,李德葆.植物抗病性的诱导、机制、分子生物学研究进展[J].中国生物防治,1995,11(3):134-141.
    [40]Kloepper JW, Tunzun S.Proposed definition related to induced disease resistance [J].Bisocontrol Sci.Technology,1992,2:349-351.
    [41]董汉松.植物诱导抗性原理和研究[M].北京:科学出版社,1995.
    [42]陈捷.植物病理生理学[M].沈阳:辽宁科技出版社,1994.
    [43]Ross, A.F. Systemic acquired resistance induced by localized virus infection in plants [J]. Virology,1961,14:340-358.
    [44]Dean R A, Kuc J. Rapid lignification in response to wounding and infection as a mechanism for induced systemic protection in cucumber [J]. Physiol Mol Plant Pathol,1987,31:69.
    [45]沈英,黄大年,范在丰,等.稻瘟菌非致病性和弱致病性菌株对稻株诱导抗性的初步研究[J].中国水稻科学,1990,4(2):95-96.
    [46]Mereier J, Baka Mand Baskhara Reddy, et al. Shortwave ultraviolet irradiation for control for decay caused by Botrytis cinerea in bell paper:induced resistance and germieidal effects [J]. Journal of the American Society for Horticultural Seienee,2001,126 (1):128-133.
    [47]邢家华,陈定花,朱卫刚,等.植物化学诱抗剂[J].浙江化工,2002,33(3):51-52.
    [48]White PF. Acetylaslieylic acid induces resistance to tobacco mosaic virus in tobacco.Virology,99:410-412.
    [49]王海华,曾富华,康健等.几种化学因子对水稻抗白叶枯病诱导作用比较[J].湛江师范学院学报(自然科学版),2000,21(3):46-50.
    [50]Ohashi Y, Matsuoka M. Loealization of Pathogenesis-related protein in the epidemis and intercellular space of tomato mosaic virus infection [J].Plant Cell Physiol.,1987,28(7):1227-1235.
    [51]SuttonD. Systemc cross protection in bean against colletotrichum lindemuthianum [J].Aust. Plant Pathol,1979,8:4-5.
    [52]Kuc J. Shockley G. Protection of cucumber against colletotrichum lagenarium [J]. Phytopathology,1975,65:195-199.
    [53]Alstron S.Induction of disease resistance in common bean susceptible to halo blights bacterial Pathogen after seed bacterization with rhizosphere Pseudomonas [J].Gen. Appl.Microbiol,1991,37:495-501.
    [54]Liu L, Kloepper JW, Trzun S. Induetion of systemic resistance in cueumber again-st Fusarium Wilt by Plant growth-promoting rhizobacteria [J]. Phytopathology,1995,85(6):695-698.
    [55]Liu L, Kloepper JW, Trzun S. Induetion of systemic resistance in cueumber again-st bacterial Angular leaf spot by plant growth-promoting rhizobaeteria[J].Phytopathology,1995,85(8):843-847.
    [56]Leeman M, Pelt JAVan, Ouden FMDen, et al. Induction of systemic resistance ag-ainst Fusarium wilt of radish by lippolysac charides of Pseudomonas fluorescens[J].Phytopathology,1995,85(9):1021-1027.
    [57]Meyer GDe, Bigirimana J, Elad Y. Induced resistance in Trichoerma harzianum T39 biocontrol of Botrytis cinerea[J].Eur. J. Plant Pathol.1998,104(3):279-286.
    [58]翁启勇,李开本.诱导植物系统抗性研究及进展[J].福建农业学报,1998,13(4):23-28.
    [59]童蕴慧,郭桂萍,徐敬友,等.拮抗细菌对番茄植株抗灰霉病的诱导[J].中国生物防治,2004,20(3)187-189.
    [60]刘芳.内生细菌TB2发酵粗提液对辣椒疫病诱抗效果的研究[D].福建.福州:福建农林科技大学,2003.
    [61]Raskin I. Role of salicylic acid in plants.Annu Rev.Plant physiol [J]. Plant. Mol. Biol.1992,43:439-463.
    [62]Dean R.A.,KUC J. Rapid lignification in response to wounding and infection as a mechanism for induced systemic protection in cucumber. Physio.IMo.1 PlantPatho.l,1987,31:69.
    [63]李洪莲,王守正,王金生等.黄瓜对炭疽病诱导抗性的初步研究Ⅱ-透导抗病机制的研究,植物病理学报,1993,23(4):327-332.
    [64]R H Reignault, A Cogan, J Muchembled, et al. Teahouse induces resistance to powdery mildew in wheat [J].New Phytologist,2001,149(3):519-529.
    [65]Nicole B. Physiol [J].Mol Plant Pathol,1992,41:33-52.
    [66]骆桂芬,崔俊涛,张莉,等.黄瓜叶片中糖和木质素含量与霜霉病诱导抗性的关系[J].植物病理学报,1997,27(1):65-69.
    [67]Keen N T,Horsch R.Hydroxyaseollin production by varioussoybean tissueswarning againstuse of'unnatural" host-parasite systems. Phytopathology,1972,62: 439-442.
    [68]Flores G H A. Studies on elicitation, biological and chemical properties of phytoalexins in Populus tremuloides.ForestryAbstracts,1982,43(10):611.
    [69]胡景江,朱玮,文建雷,等.杨树细胞壁HRGP和木质素的诱导积累与其对溃疡病抗性的关系[J].植物病理学报,1999,26(2):151-156.
    [70]翟彩霞,马春红,秦君等.植物诱导抗病性的常规鉴定-相关酶活性变化与诱导抗病性的关系.中国农学通报,2004,20(5):222-224.
    [71]高鸣宁.新疆甜瓜经疫霉菌毒素诱导后酶活性的变化[J].植物生理通讯,1998(4):256-258.
    [72]毕咏梅,欧阳光察.稻瘟病菌诱导物对水稻苯丙烷类途径酶系和绿原酸的诱导作用.植物生理学通讯,1990(3):18-20.
    [73]Mario, Moniz Desa.nRapid activation of phenylpropanoid metabolism in elicitor treated hybrid Poplar (Populus trichocarpa Torr. & Gray Populusdeltoides Marsh) suspension cultured cells [J].Plant Physiology,1992,98:728-737.
    [74]李靖,利容千,袁文静.黄瓜感染霜霉病菌叶片中-些酶活性的变化[J].植物病 理学报,1991,21(4):277-283.
    [75]吴岳轩,曾富华,王荣臣.杂交稻对白叶枯病的诱导抗性与细胞内防御酶系统关系的初步研究[J].植物病理学报,1996,26(2):127-131.
    [76]叶明志,王树彬,高汉芳,等.水稻对细菌性病害的抗性与多酚氧化酶活性的关系[J].福建农业大学学报,1996,25(1):50-55.
    [77]杨家书,李舜芳,吴畏.小麦品种对白粉病抗病性与过氧化物酶的关系[J].植物病理学报,1984,14(4):235-239.
    [78]宋凤鸣,葛秀春,郑重.活性氧及膜脂过氧化与棉花对枯萎病抗性的关系[J].植物病理学报,2001,31(2):110-116.
    [79]徐文联,曾艳.植物诱导抗性基因工程[J].生物学通报,1996,31(1):18-20.
    [80]刘喜存,刘红彦,李洪连,植物诱导抗病性及其研究现状[J].河南农业科学,2006,04:12-16.
    [81]王金生.植物抗病性分子机制[J].植物病理学报,1995,25(4):289.
    [82]董汉松.植物抗病防卫基因表达调控与诱导抗性遗传的机制[J].植物病理学报,1996,26(4):289
    [83]沈萍.微生物学[M].北京:高等教育出版社,2000.
    [84]Monica LE,Elizabeth A D J,William E B J, et al.Viabilityand stability of biological control agents on cotton and snap bean seeds[J]. Pest. Management. Science.,2001,57 (8):695-706.
    [85]杨合同,唐文华,迟建国,等.植病芽抱杆菌的种类鉴定及其对生姜青枯病的作用机理和防治效果[J].中国生物防治,2002,18(1):21-24.
    [86]陈中义,张杰,黄大防.植物病害生防芽抱杆菌抗菌机制与遗传改良研究[J].植物病理学报,2003,33(2):97-103.
    [87]Bhatt D D and Vaughan E K. Preliminary investigation on biological control of grey mold(Botrytis cinerea) of strawberries[J].Plant Dis.Rep,1962,46:342-345.
    [88]Pusey P L, Wilson C.L. Postharvest biological control of stone fruit brown rot by Bacillus subtilis[J]. Plant Dis,1984,68:753-756.
    [89]Mari M,Guizzardi,M. and Pratella P C. Biological control of grey mold in pears by antiagonistic bacteria [J].Biological control,1996,7:30-37.
    [90]Office of Pesticide Program:biopesticide.2001, in http://www.epa. Gov/ pesticides/biopesticides.
    [91]Silveria EBDa, Mariano R de L R, Michereff S J, et al. Antagonism of Bacillus spp. Against Pseudomonas solanacearum and effect on tomato seeding growth[J].Fitopatologia Brasilra,1995,20(4):605-612.
    [92]Baker K F. Evolving oncepts of biological control of plant pathogens[J].Ann.Rev.Phytopathol,1987,25:67-85.
    [93]Paulitz TC, Belanger RR. Biological control in green-house systems. Annu Rev Phytopathol,2001,39:103-133.
    [94]Walker R, Powell A and Seddon B. Bacillus isolates from the spermosphere of peas and dwarf French beans with antifungal activity Borytis cinerea and Pythium species[J]. Applied Microbiology,1997,84,791-801.
    [95]Handelsman, Sandra Raffel,Ellen H et al.Biological control of damping-off of alfalfa seedings with Bacillus cereus UW85. Applied and Enviromental Microbillogy,1990,56(3):713-718.
    [96]蒋跃明,陈芳,李月标等.生物菌剂防治荔枝采后病害的初步研究[J].果树科学,1997,14:185-186.
    [97]范青,田世平.枯草芽抱杆菌(Bacillus subtilis) B-912对采后柑橘果实青、绿霉病的抑制效果[J].植物病理学报,2000,30(4):333-348.
    [98]孔建,王文夕,赵白鸽,等.枯草芽抱杆菌B-903菌株抗真菌作用研究初报[J].生物防治通报,1992,8(2):91-92.
    [99]朱天辉,罗孟军,杨佐忠.枯草芽抱杆菌对金花梨果腐病控制的研究[J].四川林业科技,2000,21(3):14-17.
    [100]林东,徐庆,刘忆舟,魏军明,瞿礼嘉,顾红雅,陈章良.2001.枯草芽抱杆菌50113分泌蛋白的抑菌作用及抗菌蛋白的分离纯化.农业生物技术学报,9(1):77—80
    [101]刘永锋,高渊,黄建华,陈云,陆凡,陈志谊.2002.拮抗细菌B一916及其分泌物对几种植物病原菌的毒力分析.中国生物防治,18(1):45—46
    [102]邱思鑫.2004.防病促生植物内生芽抱杆菌.福建农林大学博士学位论文.
    [103]杨春城,韦文添,古能平,等.四种杀菌剂对芒果炭疽病和蒂腐病菌的抑制作用[J].广西园艺,2004,15(2):24-25.
    [104]叶锋.在抗油茶炭疽病中的作用研究[J].江西农业大学学报,2001,2(5):160-163.
    [105]王连荣,吴桂发,吴桂余.银杏外种皮提取液防治苹果炭疽病的效应[J].中国果树,1995(4):30-31.
    [106]王军,陈绍红,黄永芳,等.水杨酸诱导油茶抗炭疽病的研究[J].林业科学研究,2006,19(5):629-632.
    [107]杨公正,陈永强,肖倩莼,等.无公害生物农药低聚糖素防治芒果炭疽病试验[J].华南热带农业大学学报,2004,10(1):7-9.
    [108]石晶盈,陈维信,刘爱媛,等.采后龙眼炭疽病的化学防治和生物防治试验[J].中国果树,2006(4).44-55.
    [109]袁红旭,陈勇明,何财能,等.拮抗炭疽病的柑橘内生细菌的分离与筛选[J].果树学报,2005,22(5):510-513.
    [110]RobertsD P, KobayashiD Y. Behavior of biocontrol bacteria in the sperm sphere and rhizosphere[J]. Plant Pathology,1996,1:137-147.
    [111]DING L X(丁立孝),LI W Z(李文泽)Screening ampicillin and kanamycin resistant strains from peanut endophyte mutant induced with ultro-violet[J]. J.Laiyang Agric.College(莱阳农学院学报),1997,14(4):235-239(in Chinese).
    [112]WELLINGTON B,MARCELA T B. Deliver ymethods for introducing endophytic bacteria into maize[J].Biocontrol.,2004,49(3):315-322.
    [113]童蕴慧,郭桂萍,徐敬友,等.拮抗细菌诱导番茄植株抗灰霉病机理研究[J].植物病理学报,2004,34(6):507-511.
    [114]张志良,翟伟.植物生理学实验指导(第3版)[M].高等教育出版社,2004.
    [115]周琦.植物生理实验指导[M].北京:中国农业大学出版社,2001.
    [116]朱广廉,钟海文,张海琴.植物生理学实验[M].北京:北京大学出版社,1990,37-40.
    [117]王爱国,罗广华.植物的超氧化物自由基与经氨反应的定量关系[J].植物生理学通讯1990,26(6):55-57.
    [118]Jetiyanon K, Wei G. Induced systemic resistance (ISR) of cucumber by stem jection and seed treatment with PGPR[J]. Phytopathology,1995,85:114-147.
    [119]王万能,全学军,肖崇刚.植物诱导抗性的机理和应用研究进展[J].湖北农业科学,2010,49(1):204-206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700