用户名: 密码: 验证码:
基底样乳腺癌与管腔A乳腺癌干/祖细胞的表型和功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     近年来的研究表明,乳腺癌是一种高度异质的疾病,由五种在形态、基因表达谱、生物学和临床后果差异明显的分子亚型组成。随着乳腺癌肿瘤干细胞的证实,人们认识到乳腺癌的分子亚型和白血病的亚型类似,彼此间可能是细胞起源不同的独立性疾病实体。因此推测各分子亚型有生物学功能和细胞表型不同的肿瘤干细胞。为此,本研究选取五个分子亚型中差别最为明显的基底样乳腺癌和管腔A乳腺癌,分别分离培养各自的干/祖细胞,对比研究两种细胞的生物学功能和细胞表型。
     第一部分乳腺癌干/祖细胞的分离培养与鉴定
     目的从人乳腺癌新鲜组织分离、培养具有干细胞样特性的肿瘤细胞,通过细胞表型鉴定,结合体内、外功能分析,鉴定其是否具有肿瘤干细胞的生物学特性,并进一步探讨了乳腺癌细胞原代无血清培养的影响因素。
     方法将乳腺癌细胞接种于添加生长因子的无血清培养基,通过乳腺癌微球(mammosphere, MS)无血清悬浮培养富集乳腺癌干/祖细胞;应用连续无血清传代培养生成MS检测乳腺癌微球细胞(mammosphere-derived cells, MSDCs)的自我更新能力,血清诱导检测其分化能力;采用间接免疫荧光标记、激光共聚焦扫描镜观测MSDCs的CD34、神经巢蛋白(Nestin)和上皮特异性抗原(ESA)的表达;构建裸鼠皮下移植瘤模型,观察MSDCs的成瘤情况和组织学特点。
     结果30例未化疗乳腺癌标本除2例污染外均成功培养出MS,12例化疗后乳腺癌标本有5例未获得足够的乳腺癌细胞,另7例富集MS,能在无血清培养基中形成MS; MSDCs分化前后呈ESA阳性表达,但均不表达CD34、nestin蛋白,证明其为上皮干细胞来源;MSDCs不仅可在无血清培养基中连续传代形成MS,能经血清诱导多向分化,还能在裸鼠体内形成与原发瘤性质相同的移植瘤,表现出干细胞样特性。
     结论本研究从乳腺癌新鲜组织分离培养获取的MSDCs为具有肿瘤干细胞生物学特性的乳腺癌细胞,可用于乳腺癌干/祖细胞的实验研究。
     第二部分基底样乳腺癌与管腔A乳腺癌干/祖细胞的干细胞生物学行为比较
     目的从人基底样乳腺癌和管腔A乳腺癌新鲜组织分离、培养具有干细胞样特性的肿瘤细胞,比较其体外的增殖能力、自我更新能力和分化能力以及在体内的生长能力,探讨其生物学特点与临床病理特点的关系。
     方法将乳腺癌细胞接种于添加生长因子的无血清培养基,通过无血清非粘附性乳腺癌微球培养富集两个乳腺癌亚型的MSDCs;通过体外无血清培养并测定生长曲线,评估两种MSDCs的增殖能力;应用连续无血清克隆形成实验,计算乳腺癌微球形成效率(mammosphere forming efficiency, MSFE),比较两种MSDCs的自我更新能力;血清诱导分化并测定生长曲线,评估两种MSDCs的分化能力;构建裸鼠皮下移植瘤模型,比较移植瘤的生长情况和组织学特点。
     结果基底样乳腺癌和管腔A乳腺癌均成功培养出MS,基底样乳腺癌的MS生长速度快,密度大,MS体积大,包含的细胞数量多;基底样乳腺癌MSDCs倍增时间短,生长曲线迅速上升,管腔A乳腺癌MSDCs倍增时间长,生长曲线则走行平缓,两者增殖活力有显著性差别(P<0.05);基底样乳腺癌和管腔A乳腺癌的MSDCs均可在无血清培养基中连续传代形成MS,基底样乳腺癌比管腔A乳腺癌具有更高的原代细胞MSFE,但基底样乳腺癌传代过程中,细胞容易贴壁分化,MSFE持续下降,传代多不超过15代;而管腔A乳腺癌,虽然丧失克隆性成能力的悬浮单细胞明显增多,但贴壁分化细胞较少,MSFE下降较慢,均可传代20次以上;经血清诱导后,基底样乳腺癌MSDCs比管腔A乳腺癌的MSDCs分化早,增殖更快。基底样乳腺癌MSDCs在裸鼠体内形成的移植瘤生长速度比管腔A乳腺癌的MSDCs的移植瘤快,呈现低分化、血管丰富的恶性肿瘤病理特征。
     结论基底样乳腺癌MSDCs有更强的增殖能力和自我更新能力、分化能力,但因容易分化导致传代形成克隆的能力下降。
     第三部分基底样乳腺癌与管腔A乳腺癌干/祖细胞的表型特征比较
     目的从人基底样乳腺癌和管腔A乳腺癌新鲜组织分离、培养具有干细胞样特性的肿瘤细胞,比较其体外分化前后的细胞表型变化,进一步探讨其细胞起源和异质性形成的机制。
     方法制作细胞涂片,间接免疫荧光化学检测细胞角蛋白CK14、CK18和CK19在基底样乳腺癌和管腔A乳腺癌MSDCs分化前后的表达情况;流式细胞术检测CD44和CD24在基底样乳腺癌和管腔A乳腺癌MSDCs分化前后的表达情况及CD44+CD24-细胞的含量;分析原代细胞内CD44+CD24-细胞的含量与MSFE的关系。
     结果基底样乳腺癌的MSDCs呈CK19+/CK14+CK18-,经血清诱导分化后,表达管腔上皮标志CK18和肌上皮标志CK14;管腔A乳腺癌的MSDCs表型呈CK18+/CK19+/CK14-,经诱导分化后表达管腔上皮标志CK18和CK19,不表达肌上皮细胞标志CK14; CD24在基底样乳腺癌表达极低或无表达,但在管腔A乳腺癌高表达。基底样乳腺癌原代细胞CD44-/CD24细胞的含量较高,含CD44+/CD24-/low细胞2.52%±0.58%,而管腔A乳腺癌含量最高的是CD44-/CD24+细胞,但不含CD44+/CD24-/low细胞或含量极低基底样乳腺癌和管腔A乳腺癌
     基底样乳腺癌CD44-/CD24-细胞的含量较高,均含有CD44+/CD24"/low细胞,而管腔A乳腺癌含量最高的是CD44-/CD24+细胞,13例标本中只有3例检出CD44+/CD24-/low细胞,且含量均低于1%。
     结论基底样乳腺癌和管腔A乳腺癌MSDCs有不同的细胞表型,两者的分化能力和分化方向也不同,可能有不同的细胞起源。
INTRODUCTION
     Human breast cancers are heterogeneous both within tumor and between tumors. The presence of five molecular subtypes of breast cancer has been demonstrated. Among these subtypes, luminal A and basal-like are two distinct subtypes in pathology and in molecular profiles. We speculated that luminal A and basal-like tumor has its own cancer stem cells respectively. In this study, we have isolated breast cancer stem/progenitor cells from basal-like breast cancer and luminal A breast cancer and explored their biological behaviors.
     Part I Isolation, Propagation and identification of Breast Cancer Cells with Stem/Progenitor Cell Properties
     Object:To isolate, propagate and identify human breast cancer with stem cell-like properties in vitro and identify their stem cell-like properties through phenotypic and functional assay. To explore the method and influential factors on the formation of mammospheres in serum free culture system.
     Methods:Single cell suspensions derived from human breast cancer tissues were seeded in ultra low attachment plates in serum free media supplemented with bFGF, EGF and B27 for enriching human breast stem/progenitor cells as nonadherent mammospheres. Serial passaging in serum free media supplemented with bFGF, EGF and B27 was performed to determine self-renewal ability of mammosphere-derived cells. Differentiation was induced by culturing mammospheres in DMEM-F12 supplemented with serum without growth factors. Expression of CD34, nestin and epithelial specific antigen (ESA) on mammospheres was detected by indirect immunofluorescence under confocal laser scanning microscopy. The mammosphere-derived cells were implanted into nude mice to assess their tumorigenesis ability.
     Result:We got nonadherent mammospheres from 30 samples which had not endured chemotherapy. Cells from seven samples formed nonadherent mammospheres out of 12 cases which had received chemotherapy. The mammosphere-derived cells in our culture display stem cell-like properties for they can be serially passaged and form mammospheres in serum-free medias and differentiate along different mammary epithelial lineages in serum-supply medias. The mammosphere-derived cells expressed the putative epithelial cell marker ESA, but not CD34 and nestin, as indicated that our cultures were epithelial stem cell origin but not hematopoietic stem cells or neural stem cells origin. New tumors identical with the primary tumors formed when cells were injected into the mammary fat pad of nude mice. This suggested that cells in our culture were tumorigenic breast cancer cells.
     Conclusion:The mammosphere-derived cells from human breast cancer fresh tissues in our culture display stem cell-like properties and can be used for cancer stem cell research.
     PartⅡA comparison of Stem/Progenitor Cells Properties in cells derived from Basic-Like and Luminal-A Breast Cancer
     Object:To isolate breast cancer stem/progenitor cells from basal-like breast cancer and luminal A breast cancer and explored their biological behaviors.
     Methods:Human breast cancer stem/progenitor cells were enriched in suspension cultures as nonadherent mammospheres. Proliferative capacity of mammosphere-derived cells in serum free media was assessed though determinations of the growth curve. Serial sphere formation assay was performed to determine self-renewal ability of breast cancer stem cells. Differentiation was induced by culturing mammosphere-forming cells in DMEM-F12 supplemented with serum without growth factors. Growth potential in vivo was evaluated by implanting mammosphere-derived cells into nude mice to constitute animal model and measuring the size of xenograft tumor.
     Results:Cells from all samples including basal-like subtype and luminal A subtype grew in serum-free conditions as mammosphere. Basic-like tumors have a high stem cell frequency (5.1%±1.08%) than that of luminal A tumors (2.02%±0.30%) and yielded mammospheres with a larger diameter which contained more cells. Mammospheres from both basic-like tumors and luminal A tumors could be serially passaged. Basic-like tumors showed a progressive decrease in sphere-forming efficiency, increased differentiation tendency and failed to passage beyond 15 generations with most cells adhering and terminally differentiating, while mammospheres derive from luminal A tumors could be serially passaged over 20 generations in vitro though more and more single cells lost their sphere-forming potentials. All mice of basal-like subtype group gave rise to new tumors when 105 cells per animal were injected while three of five animals could form tumors in luminal A subtype group. The tumor size of basal-like subtype group increases more rapidly than that of luminal A subtype group.
     Conclusion:mammosphere-forming cells from basal-like breast cancers showed different capabilities for self-renewal, clonogenicity, and tumorigenicity from that of mammospheres-derived cells from luminal A breast cancers.
     PartⅢPhenotypic Characterization of cancer Stem/Progenitor Cells derived from Basic-Like and Luminal-A Breast Cancer
     Object:To isolate breast cancer stem/progenitor cells from basal-like breast cancer and luminal A breast cancer and explore their phenotypic variation.
     Methods:The expression of CK14, CK18 and CK19 on mammospheres and differentiated cells was detected by indirect immunofluorescence under confocal laser scanning microscopy. The expression of CD44, CD24 and the ratio of CD44+/CD24-/low cell population was evaluated by flow cytometry.
     Result:mammospheres derived from basal-like tumors showing positivity for CK14 and CK19, but not for CK18. differentiated cells revealed positivity for all these three markers. Mammospheres derived from luminal carcinomas expressed CK18 and CK19, but not CK14. Staining for these cytokeratins, revealed positivity for both CK18 and CK19, but not CK14.CD44+/CD24- tumor cells were detected in all basal-like subtype cases with a proportion 27.7%±1.4%,while absent or low in luminal A breast cancer.
     Conclusion:This paper shows, for the first time, that basal-like breast cancers and luminal A breast cancer exhibited different phenotypic and functional characteristics. This implied that they could originate from different mammary epithelial cells in different stage.
引文
[1]A. Jemal, R. Siegel, E. Ward, et al. "Cancer statistics,2006," CA:A Cancer Journal for Clinicians, vol.56, no.2, pp.106-130,2006.
    [2]Glass AG, Lacey JV Jr, and Carreon JD, et al. Breast cancer incidence,1980-2006: combined roles of menopausal hormone therapy, screening mammography, and estrogen receptor status [J]. J Natl Cancer Inst 2007,99 (15):1152-1161.
    [3]Ravdin PM, Cronin KA, Howlader N, et al. The decrease in breast-cancer incidence in 2003 in the United States [J]. N Engl J Med 2007,356 (16):1670-1674.
    [4]Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours [J]. Nature.2000,40(6):747-752.
    [5]Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications [J]. PNAS, 2001,98:10869-10874.
    [6]Sorlie T, Tibshirani R, Parker J, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets [J]. PNAS,2003,100(14):8418-8423.
    [7]Sotiriou C, Neo SY, McShane LM, et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study [J]. PNAS 2003, (18):10393-10398.
    [8]Tamimi RM, Baer HJ, Marotti J, et al. Comparison of molecular phenotypes of ductal carcinoma in situ and invasive breast cancer [J]. Breast Cancer Res. 2008,10(4):R67.
    [9]Kao J, Salari K, Bocanegra M, et al. Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery [J]. PLoS One.2009,4(7):e6146
    [10]Spitale A, Mazzola P, Soldini D,et al. Breast cancer classification according to immunohistochemical markers:clinicopathologic features and short-term survival analysis in a population-based study from the South of Switzerland [J]. Ann Oncol. 2009,20(4):628-635.
    [11]Pedraza V, Gomez-Capilla JA, Escaramis G, et al. Gene expression signatures in breast cancer distinguish phenotype characteristics, histologic subtypes, and tumor invasiveness [J]. Cancer.2010,116(2):486-496.
    [12]Onitilo AA,Engel JM,Greenlee RT,et al. Breast cancer subtypes based on ER/PR and Her2 expression:comparison of clinicopathologic features and survival[J].Clin Med Res.2009,7(1-2):4-13.
    [13]Wiechmann L, Sampson M, Stempel M, et al. Presenting features of breast cancer differ by molecular subtype[J]. Ann Surg Oncol.2009,16(10):2705-2710.
    [14]Nguyen PL, Taghian AG, Katz MS, et al. Breast cancer subtype approximated by estrogen receptor, progesterone receptor, and HER-2 is associated with local and distant recurrence after breast-conserving therapy [J]. J Clin Oncol.2008, 26(14):2373-2378.
    [15]Hwang-Verslues WW, Kuo WH, Chang PH, et al. Multiple lineages of human breast cancer stem/progenitor cells identified by profiling with stem cell markers[J]. PLoS One.2009,4(12):e8377.
    [16]Sφrlie T.Molecular portraits of breast cancer:tumour subtypes as distinct disease entities[J]. Eur J Cancer.2004,40(18):2667-2675.
    [17]A1-Hajj M, Wicha M S, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells [J]. PNAS,2003,100(7):3983-3988.
    [1]王榕,蒋敬庭,杨伊林,吴昌平.肿瘤干细胞的分离与纯化研究进展[J].中国组织工程研究与临床康复,2009,13(1):161:16
    [2]Chen J, Chen ZL. Technology update for the sorting and identification of breast cancer stem cells [J]. Chin J Cancer.2010,29(3):265-9.
    [3]Al-Hajj M, Wicha M S, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells [J]. PNAS,2003,100(7):3983-3988.
    [4]Dontu G, Abdallah WM, Foley JM, et al.In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells [J]. Genes Dev.2003, 17:1253-1270.
    [5]Charafe-Jauffret E, Ginestier C, Iovino F, et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature[J]. Cancer Res.2009,69:1302-1313.
    [6]Grimshaw MJ, Cooper L, Papazisis K, et al. Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells[J].Breast Cancer Res.2008,10,:R52.
    [7]Ponti D, Costa A, Zaffaroni N, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties[J]. Cancer Res.2005,65:5506-5511.
    [8]R Ian Freshney, Karl Franzens, Roswitha Pfragner. Culture of Human Tumor Cells (Culture of Specialized Cells) [M]. Wiley-Liss,2003-11-30
    [9]蔡文琴.《现代实用细胞与分子生物学实验技术》[M].北京:人民军医出版社,2003年.
    [10]平轶芳,卞修武,姚小红,等.人胶质瘤干细胞趋化因子受体CXCR4活化促进血管生成的作用[J].中华病理学杂志,2007,36(3):179-183.
    [11]James J, Das A V, Rahnenfuhrer J, et al. Cellular and molecular characterization of early and late retinal stem cells/progenitors:differential regulation of proliferation and context dependent role of Notch signaling[J]. J Neurobio,2004, 61(3):359-376.
    [12]Zheng W, Nowakowski R S, Vaccarino F M. Fibroblast growth factor 2 is required for maintaining the neural stem cell pool in the mouse brain subventricular zone [J]. Dev Neurosci,2004,26(2-4):181-196.
    [13]Li X, Lewis MT, Huang J, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy [J].J Natl Cancer Inst.2008,100(9):672-679.
    [14]Yu F, Yao H, Zhu P, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells[J]. Cell.2007,131 (6):1109-1123.
    [15]李海志,易彤波,武正炎。悬浮培养联合化疗药物筛选乳腺癌干细胞[J]。中国癌症杂志,2008,18(3):129-132.
    [16]Gabriela Dontu,Kyle W Jackson,Erin McNicholas,et al. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells[J]. Breast Cancer Res 2004,6:R605-R615.
    [17]Liu,S; Dontu,G; Mantle,ID,et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells[J]. Cancer-Res. 2006,66(12):6063-6071.
    [18]Brennan KR, Brown AM.Wnt proteins in mammary development and cancer [J]. Mammary Gland Biol Neoplasia.2004,9(2):119-131.
    [19]Farnie G, Clarke RB, Spence K, et al.Novel cell culture technique for primary ductal carcinoma in situ:role of Notch and epidermal growth factor receptor signaling pathways[J]. J Natl Cancer Inst.2007,99 (8):616-627.
    [1]Bhargava R, Striebel J, Beriwal S, et al.Prevalence, morphologic features and proliferation indices of breast carcinoma molecular classes using immunohistochemical surrogate markers[J]. Int J Clin Exp Pathol.2009, 2(5):444-455.
    [2]Ihemelandu CU, Leffall LD Jr, Dewitty RL, et al. Molecular breast cancer subtypes in premenopausal and postmenopausal African-American women:age-specific prevalence and survival[J]. J Surg Res.2007,143(1):109-18.
    [3]Bertucci F, Finetti P, Cervera N, et al. How different are luminal A and basal breast cancers [J]? Int J Cancer.2009,124(6):1338-1348.
    [4]Kim, M. J., J. Y. Ro, S. H. Ahn, et al. Clinicopathologic significance of the basal-like subtype of breast cancer:a comparison with hormone receptor and Her2/neu-overexpressing phenotypes [J]. Hum Pathol 2006.37(9):1217—1226.
    [5]Dontu G, Abdallah WM, Foley JM, et al.In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells [J]. Genes Dev.2003, 17:1253-1270.
    [6]Farnie G, Clarke RB, Spence K, et al. Novel cell culture technique for primary ductal carcinoma in situ:role of Notch and epidermal growth factor receptor signaling pathways [J]. J Natl Cancer Inst.2007,99 (8):616-627.
    [7]Phillips TM, McBride WH, Pajonk F. The response of CD24 (-/low)/CD44+breast cancer-initiating cells to radiation [J]. J Natl Cancer Inst.2006,98 (24):1777-1785.
    [8]Fillmore CM, Kuperwasser C.Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy [J]. Breast Cancer Res.2008,10(2):R25.
    [9]Dey D, Saxena M, Paranjape AN, et al. Phenotypic and functional characterization of human mammary stem/progenitor cells in long term culture [J].PLoS One. 2009,4:e5329.
    [10]Ponti D, Costa A, Zaffaroni N, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties[J]. Cancer Res.2005,65:5506-5511.
    [11]Livasy CA, Karaca G, Nanda R, et al. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma [J]. Mod Pathol.2006,19(2):264-71.
    [12]Fulford LG, Easton DF, Reis-Filho JS, et al.Specific morphological features predictive for the basal phenotype in grade 3 invasive ductal carcinoma of breast [J]. Histopathology.2006,49(1):22-34.
    [1]Jamieson CH, Ailles LE, Dylla SJ, et al.Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML[J]. N Engl J Med.2004 Aug 12;351(7):657-67.
    [2]Kelly LM, Gilliland DG. Genetics of myeloid leukemias [J]. Annu Rev Genomics Hum Genet.2002,3:179-198.
    [3]Mohammadizadeh F, Naimi A, Rajabi P, et al. Expression of basal and luminal cytokeratins in breast cancer and their correlation with clinicopathological prognostic variables [J]. Indian J Med Sci.2009,63(4):152-62.
    [4]Laakso M, Loman N, Borg A, et al.Isola J. Cytokeratin 5/14-positive breast cancer: True basal phenotype confined to BRCA1 tumors [J]. Mod Pathol 2005,18:1321-8.
    [5]B6cker W,Hungermann D,Decker T.Anatomy of the breast[J].Pathologe,2009, 30(l):6-12.
    [6]Nielsen, T. O., F. D. Hsu, and K. Jensen, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma[J]. Clin Cancer Res 2004,10(16):5367-5374.
    [7]Kim, M. J., J. Y. Ro, S. H. Ahn, et al. Clinicopathologic significance of the basal-like subtype of breast cancer:a comparison with hormone receptor and Her2/neu-overexpressing phenotypes [J]. Hum Pathol 2006.37(9):1217-1226.
    [8]Livasy, C.A., G. Karaca, R. Nanda. et al. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma[J]. Mod Pathol 2006.19(2):264-271.
    [9]Alizadeh AA, Ross DT, Perou CM, et al. Towards a novel classification of human malignancies based on gene expression patterns [J]. J Pathol 2001,195(1):41-52.
    [10]Stingl J, Raouf A, Emerman JT,et al.Epithelial progenitors in the normal human mammary gland[J]. J Mammary Gland Biol Neoplasia,2005,10(1):49-59.
    [11]Raouf A, Zhao Y, To K, et al. Transcriptome analysis of the normal human mammary cell commitment and differentiation process[J]. Cell Stem Cell 2008; 3: 109-18.
    [12]Christophe Ginestier, Min Hee Hur, Emmanuelle Charafe-Jauffret, et al. ALDH1 Is a Marker of Normal and Malignant Human Mammary Stem Cells and a Predictor of Poor Clinical Outcome[J]. Cell Stem Cell,2007,1(5):555-567
    [13]Villadsen R, Fridriksdottir AJ, Ronnov-Jessen L, et al. Evidence for a stem cell hierarchy in the adult human breast [J]. J Cell Biol.2007,177:87-101.
    [14]Bocker W, Moll R, Poremba C,Common adult stem cells in the human breast give rise to glandular and myoepithelial cell lineages:a new cell biological concept[J]. Lab Invest.2002,82(6):737-46.
    [15]Boecker W, Buerger H.Evidence of progenitor cells of glandular and myoepithelial cell lineages in the human adult female breast epithelium:a new progenitor (adult stem) cell concept[J]. Cell Prolif.2003,36 Suppl 1:73-84.
    [16]Dontu G, Abdallah WM, Foley JM, et al.In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells [J]. Genes Dev.2003, 17:1253-1270.
    [17]Marangoni E, Lecomte N, Durand L, et al.CD44 targeting reduces tumour growth and prevents post-chemotherapy relapse of human breast cancers xenografts [J].Br J Cancer.2009,100(6):918-922.
    [18]Schabath H, Runz S, Joumaa S, et al. CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells [J]. J Cell Sci.2006,119(Pt 2):314-325.
    [19]Bircan S, Kapucuoglu N, Baspinar S, et al.CD24 expression in ductal carcinoma in situ and invasive ductal carcinoma of breast:an immunohistochemistry-based pilot study[J].Pathol Res Pract.2006,202(8):569-576.
    [20]Al-Hajj M, Wicha M S, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells[J]. PNAS,2003,100(7):3983-3988.
    [25]Abraham BK, Fritz P, McClellan M, et al. Prevalence of CD44+/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis [J]. Clin Cancer Res,2005,11(3):1154-1159.
    [21]Phillips TM, McBride WH, Pajonk F. The response of CD24 (-/low)/CD44+ breast cancer-initiating cells to radiation [J]. J Natl Cancer Inst.2006, 98(24):1755-1757.
    [22]Li X, Lewis MT, Huang J,et al. Intrinsic Resistance of Tumorigenic Breast Cancer Cells to Chemotherapy [J]. JNatl Cancer Inst,2008,100 (9):672-679.
    [23]Tanei T, Morimoto K, Shimazu K, et al.Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res. 2009,15(12):4234-4241.
    [24]Honeth G,Bendahl PO,Ringner M,et al.The CD44+/CD24-phenotype is enriched in basal-like breast tumors[J]. Breast Cancer Res.2008,10(3):R53.
    [25]Shipitsin M, Campbell LL, Argani P, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell 2007; 11(3):259-73.
    [1]Sorlie T, Tibshirani R, Parker J, et al.Repeated observation of breast tumor subtypes in independent gene expression data sets. PNAS,2003,100(14):8418-8423.
    [2]Sotiriou C, Neo SY, McShane LM, et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. PNAS 2003,100(14):10393-10398.
    [3]Livasy CA, Perou CM, Karaca G, et al. Identification of a basal-like subtype of breast ductal carcinoma in situ. Hum Pathol,2007,38(2):197-204.
    [4]Tamimi RM, Baer HJ, Marotti J, et al. Comparison of molecular phenotypes of ductal carcinoma in situ and invasive breast cancer. Breast Cancer Res. 2008;10(4):R67.
    [5]Nguyen PL, Taghian AG, Katz MS, et al. Breast cancer subtype approximated by estrogen receptor, progesterone receptor, and HER-2 is associated with local and distant recurrence after breast-conserving therapy. J Clin Oncol. 2008,26(14):2373-8.
    [6]Voduc KD, Cheang MC, Tyldesley S, et al. Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol.2010,28(10):1684-1691.
    [7]Abd El-Rehim DM, Ball G, Pinder SE, et al. High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int J Cancer 2005,116:340-350.
    [8]Torsten O. Nielsen, Forrest D. Hsu, Kristin Jensen, et al. Immunohistochemical and Clinical Characterization of the Basal-Like Subtype of Invasive Breast Carcinoma. Clinical Cancer Research,2004,10:5367-5374
    [9]Cheang MC, Voduc D, Bajdik C, et al. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 2008,14:1368-1376.
    [10]Yehiely F, Moyano JV, Evans JR, et al.Deconstructing the molecular portrait of basal-like breast cancer. Trends Mol. Med,2006,12:537-544.
    [11]Asselin-Labat ML, Shackleton M,Stingl J,et al. Steroid hormone receptor status of mouse mammary stem cells. J Natl Cancer Inst,2006,98(14):948-51.
    [12]Dalgin GS, Alexe G, Scanfeld D, et al. Portraits of breast cancer progression. BMC Bioinformatics.2007,8:291.
    [13]Shipitsin M, Campbell LL, Argani P, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell.2007,11(3):259-273.
    [14]Al-Hajj M, Wicha M S, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA.2003;100(7):3983-3988.
    [15]Passegue E, Jamieson CH, Ailles LE, et al. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? PNAS,2003,100:Suppl 111842-11849.
    [16]Jamieson CH, Ailles LE, Dylla SJ, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML.N Engl J Med. 2004,351(7):657-667.
    [17]Passegue E, Wagner EF, Weissman IL.JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell. 2004,119(3):431-43.
    [18]Siwko SK, Dong J, Lewis MT, et al.Evidence that an early pregnancy causes a persistent decrease in the number of functional mammary epithelial stem cells--implications for pregnancy-induced protection against breast cancer. Stem Cells.2008,26(12):3205-3209.
    [19]Alvi, A. J., H. Clayton,et al. Functional and molecular characterisation of mammary side population cells. Breast Cancer Res 2003.51:R1-R8.
    [20]Welm, B. E., S. B. Tepera, et al. Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 2002.2451:42-56.
    [21]Shackleton M, Vaillant F, Simpson KJ, et al. Generation of a functional mammary gland from a single stem cell. Nature,2006,439:84-88.
    [22]John Stingl, Peter Eirew, Ian Ricketson,et al. Purification and unique properties of mammary epithelial stem cells. Nature,2006,439:993-997.
    [23]Sleeman KE, Kendrick H, Ashworth A, et al.CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res.2006,8(1):R7.
    [24]Stingl J, Raouf A, Emerman JT,et al.Epithelial progenitors in the normal human mammary gland. J Mammary Gland Biol Neoplasia,2005,10(1):49-59.
    [25]Raouf A, Zhao Y, To K, et al. Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell 2008,3: 109-118.
    [26]Rene Villadsen, Agla J. Fridriksdottir,et al. Evidence for a stem cell hierarchy in the adult human breast. The Journal of Cell Biology,2001,177(1):87-101
    [27]Ginestier C, Hur MH, Charafe-Jauffret E, et al.ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell.2007,1 (5):555-567.
    [28]Boecker W, Buerger H. Evidence of progenitor cells of glandular and myoepithelial cell lineages in the human adult female breast epithelium:a new progenitor (adult stem) cell concept. Cell Prolif.2003 Oct;36 Suppl 1:73-84.
    [29]Dimri, G, Band, H.& Band, V. Mammary epithelial cell transformation:insights from cell culture and mouse models. Breast Cancer Res.2005,7:171-179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700